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Annotation 

A universal approach to the description of dynamics of complex systems, identification of their 

models, and finding the solutions by means of computer simulation is proposed (on the example 

of CPPI-models). The dynamic graph balance models permit to reflect in a convenient visual 

form the main matter-energetic processes of real-world systems dynamics. Computer simulation 

is proposed to use both for solving of complex game theoretic problems and for their 

identification. An idea of representative scenarios is developed in this frame. A special computer 

software should be developed for the implementation of the method. 
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1  Introduction 

 

In the seminal paper [7] a static model of joint consideration of private and public interests was 

proposed. They proved that if each agent's payoff function is a convolution by minimum of the 

private and public parts then a Pareto optimal Nash equilibrium exists in the agents' game in 

normal form. An investigation of the models of concordance of private and public interests 

(CPPI-models) was continued by the authors [8,9]. The conditions of system compatibility in 

CPPI-models based on the notion of price of anarchy [1] were studied, and different mechanisms 

of control providing the system compatibility were analyzed. Dynamic versions of CPPI-models 

were also built [3,4]. 

This paper makes a contribution to dynamic graph representation, identification and 

simulation of CPPI-models as instruments of the applied systems analysis. First, there is a 

number of mathematical models which permit to describe the state of complex systems including 

explicit or implicit consideration of their dynamics. Some examples are Markov chains, finite 

automates, Petri nets, queuing systems. In this paper we develop a technique of dynamic graph 

balanced CPPI-models [15]. Second, the standard methods of econometrics [6] and theory of 

identification [14] are based on long time series of reliable data which are often absent in real 

applications. We propose to solve the problems of structural and numerical identification by 

means of building a special computer software. Third, computer simulation [13] is an appropriate 

method of solving complex dynamic problems. We specify this method for CPPI-models with 

different information structure and introduce the idea of representative scenarios. 

The rest of the paper is organized as follows. In Section 2 dynamic graph balanced CPPI-

models are described. Section 3 gives an idea of computer simulation with CPPI-models with 

different information structure based on a small number of representative scenarios. Section 4 is 

concerned with computer simulation support of the identification of CPPI-models. Section 5 

concludes. 
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2 Dynamic Graph Balanced CPPI-Models 

 

The description of the state of a complex system in the moment of time t taking into 

consideration its structure by means of dynamic multidigraphs [15] includes the following 

elements. 

1. A set of vertices Y(t)=(y1(t),...,yn(t)) where n(t) is a number of vertices in the moment t. 

Decompose the set Y(t) onto two non-intersecting subsets: t Y(t) = Y1(t)  Y2(t),Y1(t)  Y2(t) 

=  (it is possible that Y2(t) = ). Let’s name the vertices from the subset Y1(t) compartments 

and denote them by squares and the vertices from the subset Y2(t) transformers and denote by 

circles. 

2. A set of arcs Z(t)={zij
k
(t)}, 1 i, j  n(t), 1  k  N, where zij

k
(t) is the arc from the vertex 

yi to the vertex yj (in particular the loop if i=j) on which a resource k can move in the moment t; 

N is a total number of resources within the system. 

3. A set of state variables of the compartments X(t) = {xi
k
(t)}, 1 i n(t), 1  k  N, where 

xi
k
(t) is a value of the resource k in the compartment yiY1 in the moment t. Then xi(t) is a state 

vector of the compartment yi in the moment t (the collection of all its resources). 

4. A set of state variables of the arcs F(t) = {fij
k
(t)}, 1 i, j  n(t), 1  k  N, where fij

k
(t) is a 

weight of the arc zij
k
(t), i.e. a number of the resource k moved during the time [t,t+1] from the 

vertex yi to the vertex yj, i j, or a quantity of increase (decrease) of the resource k in the 

compartment yi during the same time, i=j (∆t=1). In each considered situation (problem) the set 

F(t) can be split into two non-intersecting subsets: t F(t)=F1(t)  F2(t), F1(t)  F2(t) =   (in 

particular it is possible that F2(t) = ). Variables from the set F1(t) are called regulated (they 

change in the strength of given rules) and variables from the subset F2(t) are called regulators 

(they can change arbitrarily in the admissible set). 

5. A set of limitations on the compartments capacity X = {xi
k
}, 1 in(t), 1  k  N, where xi

k
 

is a maximal number of the resource k which can be stored in the compartment yi. 

6. A set of limitations on the carrying capacity of the arcs F = {fij
k
}, 1 i, j n(t), 1  k  N, 

where fij
k
 is a maximal number of the resource k which can be moved from the vertex yi to the 

vertex yj, ij, or produced (destructed) in the compartment yi, i=j, during the time unit. Thus, the 

extended state of a complex system is a set S(t) = < Y(t), Z(t), X(t), F(t), X, F>. 

To avoid a consideration of digraphs with multiple arcs let’s map to each vertex yiY1 the 

only value xi(t) and to each arc zijZ the only weight aij(t). Then a dynamic structure of the 

system consists of the separate “scalar” structures each of which represent a certain aspect of 

matter and energy interactions within the system. The partition of a set of vertices of the dynamic 

digraph onto two parts permits to describe the principal matter-energetic processes in the real-

world systems such as 1) movement (transfer, exchange) of resource between the compartments; 

2) production/destruction of the resource in the compartments; 3) transformation of the resource. 

The respective models can be called dynamic graph balanced ones. Describe the processes by 

such models. 

1. A movement of the resource k between two compartments yi and yj in the moment t can be 

performed if the arc zij
k
(t) exists (Fig.1). 

 
Fig.1 A movement of the resource k between compartments yi and yj 



Advances in Systems Science and  Application(2016) Vol.16 No.4                                                                                                 45 

 

 

Assume that in the moment t the stocks of the resource k in the compartments yi and yj are 

equal to xi
k
(t) and xj

k
(t) respectively and the state variable of the arc zij

k
(t) is fij

k
(t). Then 

).()()1(),()()1( tftxtxtftxtx
k

ij

k

j

k

j

k

ij

k

i

k

i      (1) 

2. Production/destruction of the resource k in the compartment yi in the moment t is possible 

if the loop zii
k
(t) exists (Fig. 2). 

 
Fig.2 Production/destruction of the resource k in the compartment yi 

 

The case fii
k
(t) > 0 corresponds to the production and the case fii

k
(t) < 0 to the destruction of 

the resource k. The result is 

).()()1( tftxtx
k

ii

k

i

k

i       (2) 

3. A transformation of some resource into other one is possible if a vertex-transformer from 

the set Y2 exists. It is the most complicated class of processes which contains a number of 

subclasses. The subclasses can be classified by different criterions such as 

а) a simple transformation (resource k into resource l); 

b) a composite transformation (one resource into several ones, many resources into one or 

many to many); or 

A) a unit transformation (within one compartment); 

B) a binary transformation (between two compartments); 

C) a multiple transformation (between several compartments).  

Consider the case bB as an example. Assume that initial stocks of the resource are xi
k
(t), xi

l
(t), 

xj
l
(t). The transformation satisfies the equations 

),()()1(),()()1(

),()()1(

tftxtxtftxtx

tftxtx

l

pj

l

j

l

j

l

ip

l

i

l

i

k

ip

k

i

k

i




    (3) 

where yi, yj are compartments, yp is a transformer.  

Now consider as a more detailed example a known predator-prey model[12] 

,, 21222
2

21111
1 xxx

dt

dx
xxx

dt

dx
      (4) 

where x1(t), x2(t) are biomasses of the prey and predator respectively in the moment t; ε1, ε2 

are coefficients of the natural increase of the populations; γ1, γ2 are coefficients of the predator-

prey interaction. A representation of the model (4) by means of the dynamical digraph is shown 

in Fig. 3. 

 

 
Fig.3 A representation of the predator-prey model by means of the dynamical hierarchical 

digraph 
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The loops z11
1
 and z22

2
 describe an increase of the prey biomass (resource 1) and a decrease 

of the predator biomass (resource 2) in the compartments y1 and y2 respectively, and the 

transformation y3 describes a simple binary transformation of the prey biomass into the predator 

biomass. In the general case a natural dynamics of the system resources is represented by a 

balance equation for each compartment and each resource: 

,1),(,,1

),()()()1(
)()(

Nktnlji

tftftxtx
tSy

k

jl

k

tSy

ij

k

j

k

j

jlji



 


    (5) 

The relation (5) added by initial data represents in fact a simulation model describing the 

system dynamics with consideration of its structure. The equation (5) considers both a passive 

regulation of the system (due to change of fjl
k
, fmj

k
 F1 in the strength of given relations) and an 

active one (due to choice of fjp
k
, fqj

k
 F2). The active regulation could additionally change the 

sets Y and Z. It is natural to name the changes of the sets X and F resource ones and the changes 

of the sets Y and Z structural ones. The totality of resource and structural changes determines the 

dynamics of the system S. 

An extended state of the system S(t) is also changed by external impacts. The system 

environment can be represented by a vertex y0 with the state vector x0(t) = (x0
1
(t), ... , x0

N
(t)). 

Respectively the set of arcs Z(t) is added by elements of the type z0i
k
(t), zi0

k
(t) and the set of state 

variables of the arcs F(t) by elements f0i
k
(t), fi0

k
(t), 1 ≤ i ≤ n(t), 1 ≤ k ≤ N. An influence of the 

environment is considered in (5) without loss of generality with the condition that y0 can belong 

to the sets Sj
+
, Sj

-
. Besides, an external impact can change the sets Y(t), Z(t). If there are several 

sources of impact then it is necessary to introduce several external vertices y01 ,..., y0M , 

respective arcs and state variables. 

Consider as an example the predator-prey model with man-made impact 

,, 221222
2

121111
1 xxxx

dt

dx
xxxx

dt

dx
    (6) 

where in comparison with the model (4) the characteristics of man-made exploitation of the 

community are added, namely an intensity of use λ and methods of use α, β. A representation of 

the model (6) by means of the dynamical hierarchical digraph is given in Fig. 4. In comparison 

with the Fig.3 to the compartments y1 ("preys") and y2 ("predators") the compartment y0 

reflecting the community environment (a source of exploitation) and arcs z10
1
, z20

2
 with state 

variables αλx1, βλx2 are added [15].  

 

 
Fig.4 Modeling of exploitation in the predator-prey system by means of the dynamical digraph 
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Now consider CPPI-model written in a discrete form: 





Ni

iJJ max;       (7) 
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

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t
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.,...,1,0;);,(1 TtNiuxgrr t

i

t

i

t

i

t

i 
    (12) 

 

In this dynamic model each agent shares his resource ir  between a production of a public 

good )( iu and a private activity )( ii ur  . Respectively, his current payoff is a sum of the private 

gain )( iii urp  and the share in the consumption of the public good )(xcsi . His integral payoff 

is given by the formula (9), where ipc, are continuous increasing concave functions, 

.0)0()0(  ipc The utilitarian social welfare function (7) is also introduced. If it is associated 

with a principal then a choice of the variables is s. t. (8) is considered as an economic control of 

the principal. The equations of dynamics are given by formulas (11)-(12), where x is a state 

vector, and the function of its dynamics is linear for simplicity. 

The implementation of the model dynamics (11)-(12) can be given by the following 

algorithm: 

given ;,,,, 0000 Niryzx ii   

Ttotfor 0:  

);(:{ 11 t

i

t

ii

t

i

t

i urpyy  
 




 
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t
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tt ubxx ;: 1  

);(: 1 ttt xczz    

})()(: 1 tt

i

t

i

tt

i

t

i

t

ii

t

i zsyxcsurpr  
. 

This algorithm can be represented by a dynamic graph balanced model as follows (Fig. 5). 

Notice that the equation (12) is specified by means of this model. The relations for J and iJ  are 

omitted for simplicity, they can be represented similarly. 

In fact, in Fig. 5 a general relation )(:1 t

ijk

t

jk

t

jk xx  is presented graphically as 

 

 
Fig.5 A balance relation 

 



 

48  A.V. Antonenko, O.I. Gorbaneva, G.A. Ougolnitsky: Concordance of Private and Public Interests: Dynamic Graph … 

 

By default, it is supposed that t

ijk

t

ijk  )( (a linear transformation), and t

ik

t

ijk x (a 

transference). 

 

 
Fig.6 CPPI-model presented by the dynamic graph balanced model 

 

 

3 Computer Simulation with CPPI-Models 

 

Schematically, a process of simulation modeling with a CPPI-model can be represented as follo

ws. Each scenario Mj ,...,1 includes a set of the principal's control variables 
T

t

n

i

t

jis
11)( }{
  and a s

et of the agents' control variables 
T

t

n

i

t

jiu
11)( }{
 . These two sequences generate the respective syste

m trajectory T

t

t

jx 1)( }{   and payoffs )(1)( ,}{ j

n

iji JJ  . 

However, it is important to consider an information structure of the hierarchical game (7)-

(12). To develop a classification of information structures in the hierarchical differential games 

with many followers three attributes characterizing the principal's strategy can be used: 

1) absence/presence of a feedback of the principal's strategy on the state of a controlled 

dynamic system. This attribute has two basic values: open-loop strategies (OL) which depend 

only on the moment of time t , and closed-loop strategies (CL) which depend on the game 

position ))(,( txt [2]; 

2) absence/presence of a feedback of the leader's strategy on the followers' strategies. In the 

first case we deal with a Stackelberg game, and games of the second type we propose to call 

Germeier games [10,11]; 

3) methods of hierarchical control. Here we differentiate compulsion, when the principal 

influences the followers' sets of feasible strategies, and impulsion, when the principal influences 

the followers' payoff functionals [15]. 
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In turn, the followers can choose one of the three modes of behavior: 

(a) isolation, when the followers act independently and come to a Nash equilibrium; 

(b) cooperation, when they pool resources and combine efforts to maximize the summarized 

payoff functional; 

(c) collaboration, when the followers voluntarily maximize the principal's payoff functional. 

Notice that in the case of CPPI-models cooperation and collaboration coincide because 





Ni

iJJ . To explain the proposed classification we use the following two tables. 

 

Table 1 Basic information structures in the hierarchical games [11] 

 Without a feedback on the 

followers' controls 

With a feedback on the 

followers' controls 

Without a feedback on the 

system state 
t1  t2  

With a feedback on the 

system state 
x1  x2  

 

Table 2 Maximal guaranteed payoffs of the principal for different information structures 

      

Principal 

Followers 

 

Inaction 

(s-const) 

Impulsion 

t1 , x1 (ST) t2 , x2 (GER) 

Isolation 

(NE) 

0

NEJ  
STIMP

NEJ 
 

GERIMP

NEJ 
 

Cooperation 

(C) 

0

CJ  
STIMP

CJ 
 

GERIMP

CJ 
 

 

In table 1 the types of leader's strategies using the denotations proposed in [11] are shown. 

The table 2 should be explained in more details. In hierarchical differential games the principle 

of optimality is a maximal guaranteed strategy of the principal with consideration of an optimal 

reaction of the followers. The respective maximal guaranteed payoffs of the principal for the 

enumerated information structures are collected in the Table 2. In the case of isolation it is 

supposed that the optimal reaction of the followers is their Nash equilibria set NE. In the case of 

cooperation the optimal reaction of the followers is the set C of points of maximum of their 

summary payoff functional. In this paper we consider only a case of impulsion, when the 

principal chooses a vector of strategies ),...,( 1 nsss  in the modes t1 , x1  (Stackelberg games) 

or t2 , x2  (Germeier games). The strategies can be OL ( t1 , t2 ) or CL ( x1 , x2 ).In the 

degenerate case of inaction s is constant (no control). 

Thus, in the case of inaction ),(inf0 uJJ
NEu

NE


 ),(inf0 uJJ
Cu

C


 )(inf0

max uJJ
Uu


. 

In the case of impulsion for Stackelberg games we have 
),(infsup

)(
usJJ

sNEuSs

STIMP

NE


 
, 

),(infsup
)(

usJJ
sCuSs

STIMP

C


 
, and for Germeier games  

)),~((infsup
)~(~~

usJJ
sNEuSs

GERIMP

NE 


 
, 

)),~((infsup
)(~~

usJJ
sCuSs

GERIMP

C 


 
  , where 

USUSSUsS 
~

:},:~{
~


. 

Now we can describe an approach to the implementation of the characterized information 

structures in the simulation mode. In the case t1 strategies have the form )(),( tuts . A scenario 

Mj ,...,1 represents a pair of discrete control trajectories
T

t

n

i

t

jis
11)( }{
 , 

T

t

n

i

t

jiu
11)( }{
  for which a 

discrete phase trajectory T

t

t

jx 1)( }{   and the payoffs )(1)( ,}{ j

n

iji JJ   are calculated. 
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In the case of information structure t2 strategies have the form )()),(,( tututs . Asarule, 

impulsion is implemented by a mechanism of reward and punishment of the type 





 


,),(

,)(),(
))(,(

otherwisets

Ututs
tuts

P

R

R

     (13) 

where RU is a set of the agents' strategies encouraged by the principal, )(),( tsts PR - strategies 

of reward and punishment respectively ),(),(( i

R

iii

P

ii usJusJ  . In many situations it is possible 

to think that PPRR stssts  )(,)( . For each agent's control trajectory
T

t

n

i

t

jiu
11)( }{
 belonging to the 

scenario Mj ,...,1 , at each step Tt ,..,1  the condition (13) is checked, and the respective 

value t

jx )(  
and the respective summands of payoffs are calculated. 

In the case of information structure x1 strategies have the form ))(,()),(,( txtutxts , and rules 

of the type 





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
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
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(14) 

where  F

r

F

k

F

l

FL

r

L

k

L

m

L XXXXXXXXXX ,...,,... 11 , should be 

applied step by step for all scenarios T

t

t

j

T

t

t

j us 1)(1)( }{,}{  , Mj ,...,1 . The implementation of the 

game x2 is more complicated and is omitted here. 

It is important to note the following thing. In the majority of organizational and socio-

economic systems a number of scenarios reflecting qualitatively different control strategies is 

quite small. In fact, for a qualitative differentiation of control strategies it is sufficient to study 

"strong", "moderate", and "weak" types of them. For example, if an effort is measured on a scale 

[0,1] then the values 0, 1/2, 1 representatively reflect the mentioned strategies. If it is not 

sufficient due to a reason then the values 1/4, 3/4 can be considered additionally, and so on. 

Such scenarios can be called representative ones. Therefore, in the set of representative 

scenarios the complete enumeration becomes a practically implementable procedure. 

 

 

4 Computer Simulation Support of the Identification of CPPI-Models 

 

The problems of identification of mathematical models are solved by econometrics [6] and 

theory of identification [14]. But these theories have at least two essential shortages. First, their 

implementation requires to use long time series of reliable data of observations. But such time 

series are often hardly available and even absent (for example, in social processes such as 

corruption). Second, the standard methods solve only the problem of numerical identification, i.e. 

determination of the numerical values of model parameters. In the same time, in applied systems 

analysis a problem of structural identification is more important (which classes of functions 

should be used in the model). 

We propose a unified computer-based approach to solving the problems of structural and 

numerical identification (CPPI-models are used as an example).  

In mathematical modeling it is well known that to provide adequacy one must build 

hierarchical gradually complicated sequences of models. First, the simplest model is built which 

reflects only the most essential features of a modeled object. As a rule, the model contains only a 

few parameters and allows for an analytic investigation. After that investigation is made and 

some results are received, it becomes clear in which direction the model is bounded and which 

properties of the real system it does not describe. Then the model is perfected in the required 
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direction, and the procedure repeats. In the limit, the respective sequence of gradually 

complicated models can describe the system's behavior with any required accuracy. 

This methodology is used for both structural and numerical investigation of mathematical 

models. As for the structural identification, we always start from linear functions. Specific 

features of the models should always be considered. In CPPI-models the functions c and ip are 

increasing, thus we use linear functions )0(  abaxy . After that, it is natural to explore 

power functions. In CPPI-models the functions c and ip are concave, thus functions 

)1(  baxy b are used. Again, it is natural to start from 2/1b ; if it is necessary then other 

values 1b can be analyzed. At last, other classes of continuous increasing concave functions 

can be taken if necessary.  

In the numerical identification a feasible range of values is determined for each parameter 

(for example, maxmin aaa  ). Using the idea of representative scenarios, the values 

2/)(,, maxminmaxmin aaaa  are examined first. If it is not sufficient, a dichotomy of the segments 

],2/)[(],2/)(,[ maxmaxminmaxminmin aaaaaa  is made, and so on. 

The idea is implemented by developing a computer software providing to a user the 

possibility of choice of different classes of functions and values of their parameters. The essence 

of the software consists in a modification of genetic algorithms for solving problems with several 

input parameters. The genetic algorithm decreases a number of required calculations on some 

orders in comparison with known numerical methods. The numerical methods give the value of a 

result with almost any given accuracy, but in the case of more than four input parameters too 

many calculations are required. In turn, genetic algorithms don't guarantee such an accuracy but 

practically don't depend on the number of model parameters. In the same time, the accuracy of 

the order 10
-6

 can be achieved which is more than sufficient for CPPI-models.  

A possible development of the software includes usage of parallel calculations. Though 

genetic algorithms can decreases the number of calculations on some orders there are still 

hundreds of thousands and even millions of them, therefore paralleling seems a logical way. 

Each stream will contain its own genetic algorithm and input data set. The solutions of each 

stream are cumulated for further processing.  

Another promising direction of the software development is to seek a solution not in the 

domain of parameters values but in the domain of types of the solved problem. A modification of 

the genetic algorithm of another type is required for this.  

At last, the software can be developed by adding a possibility of the formation of arbitrary 

kinds of problems. The respective tool is parsing, i.e. a decomposition of a given term on more 

fine formulas which form a new term available for processing. 

Thus, the described approach assumes an active usage of the methodology of applied systems 

analysis based on simulation modeling. If a precise analytical solution of an optimization 

problem is troubled then it can be investigated qualitatively on the base of scenario method using 

the idea of representative scenarios determined by means of systems analysis. Therefore, 

simulation modeling serves as a universal numerical method of solving complex mathematical 

problems.  

 

 

5 Conclusion 

 

In this paper a universal approach to the description of dynamics of complex systems, 

identification of their models, and finding the solutions by means of computer simulation is 

proposed (on the example of CPPI-models). The dynamic graph balance models permit to reflect 

in a convenient visual form the main matter-energetic processes of real-world systems dynamics. 

This technique is applied to CPPI-models. Computer simulation is proposed to use both for 
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solving of complex game theoretic problems and for their identification. An idea of 

representative scenarios is developed in this frame. A special computer software should be 

developed for the implementation of the method. 
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