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and the Asymptotics of its Spectrum

A. V. Kachkina1,2*

1Lomonosov Moscow State University, Moscow, Russia
2 Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia

Abstract: In this paper, we study the asymptotic behavior of the discrete spectrum of the Sturm–
Liouville operator given on R+ by the expression −y′′ + q(x)y and the zero boundary condition
y(0) cosα+ y′(0) sinα = 0, for rapidly growing potentials q(x). For this class of operators,
asymptotic formulas for the eigenvalues are derived, which describe the rate of their growth at
infinity.
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INTRODUCTION

In the Hilbert space L2[0,+∞), we consider the Sturm–Liouville operator Lq generated by
the differential expression:

lq(y) = −y′′(x) + q(x)y(x),

and the boundary condition at zero:

y(0) cosα + y′(0) sinα = 0,

where q(x) is a continuous real-valued function on [0,+∞). The domain of the operator Lq:
D(Lq) = {y ∈ L2[0,+∞) : y, y′ are absolutely continuous on any [a, b] ⊂ [0,+∞), −y′′ +
q(x)y ∈ L2[0,+∞) and y(0) cosα + y′(0) sinα = 0}.

If the function (potential) q(x) → +∞, x → +∞, then the operator Lq is semi-
bounded from below and has a purely discrete spectrum {λn}n∈N, λn → +∞, n →
+∞ (E. C. Titchmarsh [1], A. M. Molchanov [4]). Let us numerate the eigenvalues of the
operator Lq in ascending order: λ1 < λ2 < . . . < λn < . . ..

The distribution of the spectrum (E. C. Titchmarsh [1]) in the case of power-law growth of
potential q has been well studied. For example, if q(x) = xk, k > 0, then the eigenvalues λn

of the operator Lq have the asymptotics:

λn ∼
{
πkΓ(3

2
+ 1

k
)

Γ(3
2
)Γ( 1

k
)
n

} 2k
k+2

, n → +∞, (0.1)

where Γ(z) is the Euler’s Gamma function.
The asymptotics of the eigenvalues of the operator Lq in the case α = 0 for potentials

of the form q(x) = xk + V (x), k > 0 was obtained in the works of H. H. Murtazin and
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T. G. Amangil’din [5] for V (x) ∈ C2
0 [0,+∞) and H. K.Ishkin [6] for V (x) ∈ C1

0 [0,+∞),
where functions from the class Cm

0 [0,+∞) are compactly supported functions of the class
Cm[0,+∞).

The distribution of the spectrum of the Airy and Weber operators perturbed by the delta
interaction (Dirac delta function) was found by A.S.Pechentsov [19], [20], [21].

If the potential q increases at infinity faster than any power function, then the eigenvalues
of the operator Lq do not have a power asymptotics (0.1). A. I. Kozko [3] established that for

the potential q(x) = ex the relation λn ∼
(

πn

2 ln(πn)

)2

, n → +∞ holds.

In this paper, we obtain asymptotics of the eigenvalues of the operator Lq for classes of
potentials that increase rapidly at infinity.

1. CLASSES OF RAPIDLY GROWING POTENTIALS.
AUXILIARY STATEMENTS

Let Q denote the class of functions q ∈ C[0,+∞) ∩ C2(0,+∞) satisfying the conditions:

q′′(x) ≥ 0, x ≥ x0, (1.2)

lim
x→+∞

xq′(x)

q(x)
= +∞. (1.3)

In particular, from the last equality it follows that there exists a number x̃ such that for
all the values of the argument x > x̃ the values q(x) are not equal to zero, and the inequality
q′(x)

q(x)
> 0 is also satisfied. Without loss of generality, we will assume that these relations are

satisfied for all the x > 0 (i.e. x̃ = 0).

Lemma 1.1:
Let q be an arbitrary function in the class Q. The following statements are true.

1. The functions q′ and q have only positive values on arguments greater than some x1.
Beyond that, these functions grow at infinity faster than any power function, i.e. for any k ∈ N
we have xk = o(q(x)), x → +∞.

2. Let function p be the inverse of the function q, i.e. q(p(x)) = x for x > x1. Then the
function p grows slower than any power function, i.e. for any δ > 0 we have p(x) = o(xδ),
x → +∞.

1. Let φ(x) = x(ln |q(x)|)′ for x > 0. Then from the equality (1.3) it follows that φ(x) →
+∞ for x → +∞. For any numbers x > x1 > 0 and any given k ∈ N the following is true:(

x1

x

)k

|q(x)| =
(
x1

x

)k

|q(x1)| exp
∫ x

x1

φ(t)

t
dt = |q(x1)| exp

∫ x

x1

φ(t)− k

t
dt.

Since the function φ is infinitely large, we can choose x1 > 0 so that for all numbers x >
x1 the following relations are satisfied:∫ x

x1

φ(t)− k

t
dt >

∫ x

x1

1

t
dt = ln

(
x

x1

)
.

From this and from the chain of equalities obtained earlier it follows that |q(x)|x−k → +∞
for x → +∞ and for any given natural k, that is, the modulus of the function q increases
faster than any power function.
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Since the inequality
q′(x)

q(x)
> 0 holds for x > 0, and hence the values q′(x) and q(x) have

the same sign, it remains to show that they are positive. Let us assume that this is not the
case. Then, by virtue of the relation (1.2), the function |q| is convex upward for values of
the argument x ≥ x0 and its graph lies below the tangent drawn at some point x2 ≥ x0, and
hence |q| cannot grow faster than any power function. The resulting contradiction completes
the proof of the first statement of the lemma.

2. As proved earlier, for any k ∈ N there exists a κk such that for all x > κk the
inequality q(x) > xk+1 holds. Then, due to the strict increase of the function p, we obtain
that p(q(x)) > p(xk+1), and therefore, x > p(xk+1) for x > κk. Thus, for t > κk+1

k the
inequality p(t) < t

1
k+1 holds. From here we obtain the following relations:

0 <
p(t)

t
1
k

<
t

1
k+1

t
1
k

= t
1

k+1
− 1

k → 0, t → +∞.

The obtained relation means that lim
t→+∞

p(t)

t
1
k

= 0, t → +∞, therefore, p(t) = o(t
1
k ) for

any k ∈ N. Since for any number δ > 0 there is a number kδ ∈ N such that δ >
1

kδ
, we obtain

that p(x) = o(xδ), x → +∞.
Further, without loss of generality, we will assume that q(x) > 0, q′(x) > 0 and q′′(x) ≥ 0

for any x > 0.
Example 1.1:
All the entire functions with non-negative Taylor coefficients, other than a polynomial, belong
to the class Q.

Since the logarithm of the maximum absolute value of an entire function q(z) in the disk
|z| ≤ x is a downward convex function of lnx (see [2]), then φ(x) is non-decreasing. The
function φ(x) is not bounded above, otherwise the equality q(x) = O(xm) would hold for
some m ∈ N. As proved earlier, we obtain lim

x→+∞
φ(x) = +∞, that is, relation (1.3) holds,

and hence q(x) ∈ Q.
Let Q̃ denote the subclass of functions q ∈ Q satisfying the following condition for at

least one value 1 < γ < 4/3

q′′(x) ≤ (q′(x))γ, x ≥ x0. (1.4)

Example 1.2:

Entire functions of finite order of the form q(z) =
+∞∑
n=0

anz
n, an ≥ 0, n ∈ N0, other than a

polynomial, lie in the class Q̃.

Let f(z) =
∑+∞

n=0 bnz
n be an entire function of finite order ρ > 0 with non-negative

Taylor series coefficients. The derivative f ′(z) has the same order ρ as f(z) itself. Therefore,
to prove the inequality (1.4) it suffices to show that for any ε > 0:

f ′(x) =
+∞∑
n=0

nbnx
n−1 = o(f(x))1+ε, x → +∞.

Let β > ρ. Then for some constant C > 0 the inequality holds:

max
|z|≤x

|f(z)| = f(x) ≤ C exp(xβ).
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Therefore,

|bn| ≤ inf
x>0

x−nf(x) ≤ C inf
x>0

exp(xβ − n lnx) = C exp
(
− n

β
ln

n

eβ

)
.

From the last inequality for n > eβ+1βxβ we find

|bn|xn ≤ C exp
(
− n

β
ln

n

eβ
+ n lnx

)
≤ C exp

(
− n

β
ln(eβxβ) + n lnx

)
=

= C exp(−n ln(ex) + n lnx) = C exp(n(lnx− ln(ex)) = Ce−n.

It follows that
∑

n>eβ+1βxβ

nbnx
n ≤ C1, C1 > 0. Therefore, for x ≥ 1 we have the inequality

f ′(x) =
∑

n≤eβ+1βxβ

nbnx
n−1 +

∑
n>eβ+1βxβ

nbnx
n−1 ≤

≤ C1 + eβ+1βxβ
∑

n≤eβ+1βxβ

bnx
n−1 ≤ C1 + C2

f(x)

x
xβ.

Since f grows faster than any power function, ∀ε > 0 we get f ′(x) = o(f(x))1+ε, x →
+∞.

For β > 1 and µ > 0 we denote by Qβ,µ the class of functions q ∈ Q̃ such that

ln q(x) = µ lnβ x+ o(lnβ−1 x), x → +∞. (1.5)

The following statement allows us to rewrite this condition for the potential in terms of the
inverse function.
Lemma 1.2:
Let q be an arbitrary function in the class Qβ,µ. Let p be the inverse function to q, δ = µ− 1

β .
Then the relation is satisfied

ln p(x) = δ ln
1
β x+ o(1), x → +∞.

Let us rewrite the expression (1.5) as follows: lnx = µ lnβ p(x) + o(lnβ−1 p(x)), x →
+∞. For some ε(x) = o(1), x → +∞, we obtain the expression:

lnx = µ lnβ p(x)

(
1 +

ε(x)

ln p(x)

)
= µ lnβ p(x) · α(x),

where α(x) = 1 +
ε(x)

ln p(x)
→ 1, x → +∞. From here, expressing ln p(x), we obtain the

equality:

ln p(x) =

(
1

µ

) 1
β

ln
1
β x

(
1 +

ε(x)

ln p(x)

)− 1
β

.

Then, taking into account the notation for δ and according to the binomial expansion, we
obtain the following relationship:

ln p(x) = δ ln
1
β x− δ ln

1
β x · ε(x)

β ln p(x)
· (1 + o(1)), x → +∞.
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Since δ ln
1
β x = ln p(x) · α

1
β (x), the resulting expression can be rewritten as follows:

ln p(x) = δ ln
1
β x− ln p(x) · α

1
β (x) · ε(x)

β ln p(x)
· (1 + o(1)), x → +∞.

This means that ln p(x) = δ ln
1
β x+ o(1), x → +∞, since α(x) → 1 and ε(x) → 0 when

x → +∞.
The expression (1.5) for the parameter β = 1 means a power-law growth of the potential q,

for which E. C. Titchmarsh obtained the asymptotics (0.1). For the parameter β > 2, the
potential q ∈ Qβ,µ satisfies the condition:

ln q(x)

ln2 x
→ +∞, x → +∞.

Under such conditions, the spectrum of the operator Lq has an asymptotics (A. I. Kozko [3])

λn ∼ (πn)2p−2((πn)2), n → +∞,

where p is the inverse function to q. The following result of A. I. Kozko [3] establishes the
asymptotics of the spectrum of the operator Lq for potentials of the class Qβ,µ in the case of
the parameter value β = 2:

λn ∼ (πn)2p−2((πn)2) exp

(
2

µ

)
, n → +∞. (1.6)

Later, A. Yu. Kiseleva (personal communication) found asymptotic expansions for the
eigenvalues of the Sturm–Liouville operator in the problem under consideration for the
potential of class Qβ,µ and values of the parameter β ∈ (3/2, 2]:

λn ∼ (πn)2p−2((πn)2) exp

(
4

µβ
ln2−β p((πn)2)

)
, n → +∞. (1.7)

and β ∈ (4/3, 3/2]:

λn ∼ (πn)2p−2((πn)2) exp

(
4

µβ
ln2−β p((πn)2)− 4

µ2β

(
3

β
− 1

)
ln3−2β p((πn)2)

)
, n → +∞.

(1.8)
The study of the asymptotics of the eigenvalues of the operator Lq was continued by

I. G. Nasrtdinov [7] for values of the parameter β closer to unity. Thus, for potential q ∈ Qβ,µ,
parameter values β ∈ (5/4, 4/3] and ν = δ

1
β the following holds:

λn ∼ (πn)2 exp

(
−
(
2νβ ln

1
β ((πn)2)− 4

β
ν2β ln

2
β
−1((πn)2)+

+
4(3− β)

β2
ν3β ln

3
β
−2((πn)2)− 16(8− 6β + β2)

3β3
ν4β ln

4
β
−3((πn)2)

))
, n → +∞. (1.9)

Using Lemma 1.2, we can rewrite this result in terms of the inverse function p. We obtain the
following form of asymptotics:

λn ∼ (πn)2p−2((πn)2) exp

(
4

µβ
ln2−β p((πn)2)− 4

µ2β

(
3

β
− 1

)
ln3−2β p((πn)2)+

+
16(8− 6β + β2)

3µ3β3
ln4−3β(p(πn)2)

)
, n → +∞.
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2. THE MAIN RESULT AND ITS PROOF

Let us denote cn = (πn)2, n ∈ N. In paper [3] it is proved that in the case of q ∈ Q̃

the asymptotics n ∼ 1

π
λ
1/2
n p(λn), n → +∞ holds. From here we get that λn ∼ cn

p2(λn)
,

n → +∞, that is, for some sequence αn → 1, n → +∞ the following equality holds:

λn = αn
cn

p2(λn)
, n ∈ N.

Then lim
n→+∞

λn

cn
= lim

n→+∞

αn

p2(λn)
= 0 due to the unlimited monotonic growth of the

function p. This means that λn = o(cn), n → +∞. Therefore, starting from some number,
the inequality λn < cn is satisfied.

In the previously adopted notation, we set by definition:

Yn =
cn

p2(cn)
, Zn =

cn
p2(Ynαn)

, Wn =
cn

p2(Znαn)
,

Vn =
cn

p2(Wnαn)
, Fn =

cn
p2(Vnαn)

, Gn =
cn

p2(Fnαn)
.

Lemma 2.1:
For β > 1 and µ > 0, consider an arbitrary function q ∈ Qβ,µ and its inverse function p. Let
us use the notation for the sequences introduced above. Then, in these notation, starting from
some number, the inequalities hold

Ynαn < Wnαn < Fnαn < λn < Gnαn < Vnαn < Znαn < cn.

As has been proved, λn < cn, starting from some number N . Due to the strict increase
of the function p, for all numbers n > N the inequality p2(λn) < p2(cn) is satisfied, and
therefore the following chain of relations holds:

Ynαn = αn
cn

p2(cn)
< αn

cn
p2(λn)

= λn < cn, n > N.

Thus, for all numbers n > N the double inequality Ynαn < λn < cn is proved. The
inequality p2(Ynαn) < p2(λn) for n > N implies that

λn = αn
cn

p2(λn)
< αn

cn
p2(Ynαn)

= Znαn, n > N.

From this and the previously obtained inequalities we can state that Ynαn < λn < Znαn for
n > N .

Let us establish that Znαn < cn, starting from some number. Since by Lemma 1.1 the
function p grows slower than any power function, in particular, p2(cn) = o(cn), n → +∞,
we obtain that Ynαn =

cnαn

p2(cn)
→ +∞, n → +∞. Hence,

Znαn

cn
=

αn

p2(Ynαn)
→ 0, n → +∞.

Thus, Znαn = o(cn), n → +∞, which implies the inequality Znαn < cn from some number.
Without loss of generality, we will assume that this number is equal to N . Thus, we obtain a
chain of inequalities Ynαn < λn < Znαn < cn for n > N .
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With use of the strict increase of the function p and the inequality Znαn < cn established
for n > N we obtain the required inequality

Yn =
cn

p2(cn)
<

cn
p2(Znαn)

= Wn, n > N.

Combining this inequality with the previously obtained relations we get Ynαn < Wnαn <
λn < Znαn < cn for n > N . Next, all necessary inequalities on Vnαn, Fnαn and Gnαn are
established in a similar manner.
Theorem 2.1:
Let q ∈ Qβ,µ, β ∈ (6/5, 5/4]. Then for the spectrum of the operator Lq the following holds:

λn ∼ cn exp

(
−2δ

(
ln

1
β cn −

2δ

β
ln

2
β
−1 cn + (2δ)2

3− β

2β2
ln

3
β
−2 cn−

− (2δ)3
8− 6β + β2

3β3
ln

4
β
−3 cn + (2δ)4

125− 150β + 55β2 − 6β3

24β4
ln

5
β
−4 cn

))
, n → +∞.

Using the formula from lemma 1.2, we can rewrite this result in terms of the inverse
function p. We obtain the following form of asymptotics:

λn ∼ (πn)2p−2((πn)2) exp

(
4
1

µβ
ln2−β p((πn)2)− 4

µ2β

(
3

β
− 1

)
ln3−2β p((πn)2)+

+
16(8− 6β + β2)

3µ3β3
ln4−3β(p(πn)2)− 4(125− 150β + 55β2 − 6β3)

3µ4β4
ln5−4β p((πn)2)

)
,

n → +∞.

To prove the theorem, it suffices to establish that

Fn ∼ Gn ∼ cn exp

(
−2δ

(
ln

1
β cn −

2δ

β
ln

2
β
−1 cn + (2δ)2

3− β

2β2
ln

3
β
−2 cn−

− (2δ)3
8− 6β + β2

3β3
ln

4
β
−3 cn + (2δ)4

125− 150β + 55β2 − 6β3

24β4
ln

5
β
−4 cn

))
, n → +∞.

Then by Lemma 2.1 we will obtain that λn ∼ Fn ∼ Gn, n → +∞. Let us find asymptotic
expansions for the sequences Fn and Gn.

1. We write the relation using the expression for the inverse function from the lemma 1.2:

ln p(Ynαn) = δ ln
1
β (Ynαn) + o(1) = δ(lnYn + lnαn)

1
β + o(1), n → +∞.

Since lnαn = o(1), n → +∞, we obtain

ln p(Ynαn) = δ ln
1
β Yn

(
1 +

o(1)

lnYn

) 1
β

+ o(1), n → +∞.

Taking into account Taylor’s formula and the inequality
1

β
− 1 < 0, the term on the

right-hand side of the equality can be written as

δ ln
1
β Yn

(
1 +

1

β
o(ln−1 Yn)

)
= δ ln

1
β Yn + o(1), n → +∞.
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Thus, the relation ln p(Ynαn) = δ ln
1
β Yn + o(1), n → +∞ is established. By definition

of Yn and in view of Lemma 1.2, we have the following relation

ln
1
β Yn = (ln cn − 2(δ ln

1
β cn + o(1)))

1
β , n → +∞.

We take the multiplier ln
1
β cn out of the brackets and expand the last expression (ln

1
β cn) ·

(1− 1

ln cn

(
2δ ln

1
β cn + o(1)

) 1
β , n → +∞ into a Taylor series. The second factor, using

Taylor’s formula and the Pochhammer symbol (x)n = x(x− 1) . . . (x− (n− 1)), can
be written as follows:

1 +
1

β
(−2δ ln

1
β
−1 cn + o(ln−1 cn)) +

1

2!

(
1

β

)
2

((2δ)2 ln
2
β
−2 cn + o(ln

1
β
−2 cn)+

o(ln−2 cn)) +
1

3!

(
1

β

)
3

(−(2δ)3 ln
3
β
−3 cn + o(ln

2
β
−3 cn) + o(ln

1
β
−3 cn) + o(ln−3 cn))+

+
1

4!

(
1

β

)
4

((2δ)4 ln
4
β
−4 cn + o(ln

3
β
−4 cn) + o(ln

2
β
−4 cn) + o(ln

1
β
−4 cn) + o(ln−4 cn))+

+O(ln
5
β
−5 cn + o(ln

4
β
−5 cn) + o(ln

3
β
−5 cn) + o(ln

2
β
−5 cn) + o(ln

1
β
−5 cn)+

+ o(ln−5 cn)), n → +∞.

After all the transformations, taking into account that parameter values are β ∈
(
6

5
,
5

4

]
,

and therefore the relation O(ln
6
β
−5 cn) = o(1), n → +∞, we obtain that

ln p(Ynαn) = δ(ln
1
β cn −

2δ

β
ln

2
β
−1 cn +

(2δ)2

2!

(
1

β

)
2

ln
3
β
−2 cn−

− (2δ)3

3!

(
1

β

)
3

ln
4
β
−3 cn +

(2δ)4

4!

(
1

β

)
4

ln
5
β
−4 cn) + o(1), n → +∞.

2. Similar to the previous step, we have

ln p(Znαn) = δ ln
1
β Zn + o(1) = δ

(
ln cn − 2 ln p(Ynαn) + o(1)

) 1
β + o(1), n → +∞.

After substituting the expression obtained above for ln p(Ynαn), we obtain that

ln p(Znαn) = δ

(
ln cn − 2δ

(
ln

1
β cn −

2δ

β
ln

2
β
−1 cn +

(2δ)2

2!

(
1

β

)
2

ln
3
β
−2 cn−

− (2δ)3

3!

(
1

β

)
3

ln
4
β
−3 cn +

(2δ)4

4!

(
1

β

)
4

ln
5
β
−4 cn + o(1)

)) 1
β

+ o(1), n → +∞.

To simplify the calculations, we set ξβ,n = 2δ ln
1
β
−1 cn, n ∈ N. Then, using the

introduced notation, we have

ln p(Znαn) = δ ln
1
β cn

(
1−

(
ξβ,n −

1

β
ξ2β,n +

1

2!

(
1

β

)
2

ξ3β,n −
1

3!

(
1

β

)
3

ξ4β,n+

+
1

4!

(
1

β

)
4

ξ5β,n

)
+ o(1)

) 1
β

+ o(1), n → +∞,
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from which, using Taylor’s formula, we obtain

ln p(Znαn) =

= δ ln
1
β cn

(
1− 1

β

(
ξβ,n −

1

β
ξ2β,n +

1

2!

(
1

β

)
2

ξ3β,n −
1

3!

(
1

β

)
3

ξ4β,n +
1

4!

(
1

β

)
4

ξ5β,n

)
+

+
1

2!

(
1

β

)
2

(
ξ2β,n −

2

β
ξ3β,n +

1

β2
ξ4β,n + 2

1

2!

(
1

β

)
2

ξ4β,n

)
− 1

3!

(
1

β

)
3

(
ξ3β,n −

3

β
ξ4β,n

)
+

+
1

4!

(
1

β

)
4

ξ4β,n +O(ln
5
β
−5 cn)

)
+ o(1), n → +∞.

Hence, expanding the Pochhammer symbols and calculating the coefficients, and also
in view of the relation O(ln

6
β
−5 cn) = o(1), n → +∞, we obtain that

ln p(Znαn) = δ ln
1
β cn

(
1− 1

β
ξβ,n +

3− β

2β2
ξ2β,n −

5− 6β + β2

3β3
ξ3β,n+

+
41− 90β + 55β2 − 6β3

24β4
ξ4β,n

)
+ o(1), n → +∞.

3. Next, using similar calculations, we obtain the relation ln p(Wnαn) = δ
(
ln cn −

2 ln p(Znαn) + o(1)
) 1

β + o(1), n → +∞. Using the expression for ln p(Znαn) obtained
in the previous paragraph, we have

ln p(Wnαn) = δ

(
ln cn − 2δ ln

1
β cn

(
1− 1

β
ξβ,n +

3− β

2β2
ξ2β,n −

5− 6β + β2

3β3
ξ3β,n+

+
41− 90β + 55β2 − 6β3

24β4
ξ4β,n

)
+ o(1)

) 1
β

+ o(1), n → +∞.

For convenience, let’s put ln
1
β cn out of brackets again:

ln p(Wnαn)) = δ ln
1
β cn

(
1−

(
ξβ,n −

1

β
ξ2β,n +

3− β

2β2
ξ3β,n −

5− 6β + β2

3β3
ξ4β,n+

+
41− 90β + 55β2 − 6β3

24β4
ξ5β,n + o(ln−1 cn)

)) 1
β

+ o(1), n → +∞.

Then, using Taylor’s formula:

ln p(Wnαn)) = δ ln
1
β cn

(
1− 1

β

(
ξβ,n −

1

β
ξ2β,n +

3− β

2β2
ξ3β,n −

5− 6β + β2

3β3
ξ4β,n+

+
41− 90β + 55β2 − 6β3

24β4
ξ5β,n

)
+

1

2!

(
1

β

)
2

(
ξ2β,n +

1

β2
ξ4β,n −

2

β
ξ3β,n + 2

3− β

2β2
ξ4β,n

)
−

− 1

3!

(
1

β

)
3

(
ξ3β,n −

3

β
ξ4β,n

)
+

1

4!

(
1

β

)
4

ξ4β,n +O(ln
5
β
−5 cn)

)
+ o(1), n → +∞.
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Hence, taking into account the relation O(ln
6
β
−5 cn) = o(1), n → +∞, expanding the

Pochhammer symbols and calculating the coefficients, we obtain that

ln p(Wnαn) = δ ln
1
β cn

(
1− 1

β
ξβ,n +

3− β

2β2
ξ2β,n −

8− 6β + β2

3β3
ξ3β,n+

+
101− 150β + 55β2 − 6β3

24β4
ξ4β,n

)
+ o(1), n → +∞.

4. Similar to the previous step, we have ln p(Vnαn) = δ
(
ln cn − 2 ln p(Wnαn) + o(1)

) 1
β +

o(1), n → +∞. Substituting the resulting expression for ln p(Wnαn), we have

ln p(Vnαn) = δ

(
ln cn − 2δ ln

1
β cn

(
1− 1

β
ξβ,n +

3− β

2β2
ξ2β,n −

8− 6β + β2

3β3
ξ3β,n+

+
101− 150β + 55β2 − 6β3

24β4
ξ4β,n

)
+ o(1)

) 1
β

+ o(1), n → +∞.

We take the multiplier ln
1
β cn out of the brackets and expand the last expression into a

Taylor series. We obtain the following relationship:

ln p(Vnαn) = δ ln
1
β cn

(
1− 1

β

(
ξβ,n −

1

β
ξ2β,n +

3− β

2β2
ξ3β,n −

8− 6β + β2

3β3
ξ4β,n+

+
101− 150β + 55β2 − 6β3

24β4
ξ5β,n

)
+

1

2!

(
1

β

)
2

(
ξ2β,n +

1

β2
ξ4β,n −

2

β
ξ3β,n + 2

3− β

2β2
ξ4β,n

)
−

− 1

3!

(
1

β

)
3

(
ξ3β,n −

3

β
ξ4β,n

)
+

1

4!

(
1

β

)
4

ξ4β,n +O(ln
5
β
−5 cn)

)
+ o(1), n → +∞.

After calculating all the coefficients and taking into account the relation O(ln
6
β
−5 cn) =

o(1), n → +∞, we obtain that

ln p(Vnαn) = δ ln
1
β cn

(
1− 1

β
ξβ,n +

3− β

2β2
ξ2β,n −

8− 6β + β2

3β3
ξ3β,n+

+
125− 150β + 55β2 − 6β3

24β4
ξ4β,n

)
+ o(1), n → +∞. (2.10)

5. Using the same reasoning, we obtain that ln p(Fnαn) = δ
(
ln cn − 2 ln p(Vnαn) +

o(1)
) 1

β + o(1), n → +∞. From where, using the expression found (2.10), we have

ln p(Fnαn) = δ

(
ln cn − 2δ ln

1
β cn

(
1− 1

β
ξβ,n +

3− β

2β2
ξ2β,n −

8− 6β + β2

3β3
ξ3β,n+

+
125− 150β + 55β2 − 6β3

24β4
ξ4β,n

)
+ o(1)

) 1
β

+ o(1), n → +∞.
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We take the multiplier ln
1
β cn out of the brackets again and expand the last expression

into a Taylor series. We obtain the following relationship:

ln p(Fnαn) = δ ln
1
β cn

(
1− 1

β

(
ξβ,n −

1

β
ξ2β,n +

3− β

2β2
ξ3β,n −

8− 6β + β2

3β3
ξ4β,n+

+
125− 150β + 55β2 − 6β3

24β4
ξ5β,n

)
+

1

2!

(
1

β

)
2

(
ξ2β,n +

1

β2
ξ4β,n −

2

β
ξ3β,n + 2

3− β

2β2
ξ4β,n

)
−

− 1

3!

(
1

β

)
3

(
ξ3β,n −

3

β
ξ4β,n

)
+

1

4!

(
1

β

)
4

ξ4β,n +O(ln
5
β
−5 cn)

)
+ o(1), n → +∞.

Having calculated all the coefficients taking into account the relation O(ln
6
β
−5 cn) =

o(1), n → +∞, we obtain that

ln p(Fnαn) = δ ln
1
β cn

(
1− 1

β
ξβ,n +

3− β

2β2
ξ2β,n −

8− 6β + β2

3β3
ξ3β,n+

+
125− 150β + 55β2 − 6β3

24β4
ξ4β,n

)
+ o(1), n → +∞. (2.11)

6. Using the formula (2.10), with the back substitution ξβ,n = 2δ ln
1
β
−1 cn, n ∈ N, we have:

ln p(Vnαn) = δ

(
ln

1
β cn −

2δ

β
ln

2
β
−1 cn + (2δ)2

3− β

2β2
ln

3
β
−2 cn−

− (2δ)3
8− 6β + β2

3β3
ln

4
β
−3 cn+

+ (2δ)4
125− 150β + 55β2 − 6β3

24β4
ln

5
β
−4 cn

)
+ o(1), n → +∞.

By definition Fn = cn exp
(
−2 ln p(Vnαn)

)
, n ∈ N, therefore the relation

Fn = cn exp

(
−2δ

(
ln

1
β cn −

2δ

β
ln

2
β
−1 cn + (2δ)2

3− β

2β2
ln

3
β
−2 cn−

− (2δ)3
8− 6β + β2

3β3
ln

4
β
−3 cn+

+ (2δ)4
125− 150β + 55β2 − 6β3

24β4
ln

5
β
−4 cn

)
+ o(1)

)
, n → +∞.

From here we conclude that

Fn ∼ cn exp

(
−2δ

(
ln

1
β cn −

2δ

β
ln

2
β
−1 cn + (2δ)2

3− β

2β2
ln

3
β
−2 cn−

− (2δ)3
8− 6β + β2

3β3
ln

4
β
−3 cn+

+ (2δ)4
125− 150β + 55β2 − 6β3

24β4
ln

5
β
−4 cn

))
, n → +∞,
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since eo(1) = 1 + o(1), n → +∞.
Similarly, using the formula (2.11) and in view of the definition Gn =
cn exp

(
−2 ln p(Fnαn)

)
, n ∈ N, we have:

Gn = cn exp

(
−2δ

(
ln

1
β cn −

2δ

β
ln

2
β
−1 cn + (2δ)2

3− β

2β2
ln

3
β
−2 cn−

− (2δ)3
8− 6β + β2

3β3
ln

4
β
−3 cn+

+ (2δ)4
125− 150β + 55β2 − 6β3

24β4
ln

5
β
−4 cn

)
+ o(1)

)
, n → +∞.

Therefore,

Fn ∼ Gn ∼ cn exp

(
−2δ

(
ln

1
β cn −

2δ

β
ln

2
β
−1 cn + (2δ)2

3− β

2β2
ln

3
β
−2 cn−

− (2δ)3
8− 6β + β2

3β3
ln

4
β
−3 cn+

+ (2δ)4
125− 150β + 55β2 − 6β3

24β4
ln

5
β
−4 cn

))
, n → +∞,

which completes the proof theorems.
This theorem generalizes previously obtained results for the values of the parameter β

from the segment [5/4, 2].
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