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Abstract: In this paper, we study the asymptotic behavior of the discrete spectrum of the Sturm—
Liouville operator given on R by the expression —y” + ¢(z)y and the zero boundary condition
y(0) cosa + y'(0) sin« = 0, for rapidly growing potentials g(z). For this class of operators,
asymptotic formulas for the eigenvalues are derived, which describe the rate of their growth at
infinity.
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INTRODUCTION

In the Hilbert space Ly[0, +00), we consider the Sturm—Liouville operator L, generated by
the differential expression: ,
l(y) = —y"(2) + q(2)y(x),

and the boundary condition at zero:
y(0) cosa + ¢'(0) sinaw = 0,

where ¢(z) is a continuous real-valued function on [0, +00). The domain of the operator L,:
D(L,) = {y € L3[0,+00) : y,y’ are absolutely continuous on any [a, b] C [0, +00), —y" +
q(x)y € Ly]0,400) and y(0) cosa + y'(0) sinw = 0}.

If the function (potential) ¢(z) — 400, = — +oo, then the operator L, is semi-
bounded from below and has a purely discrete spectrum {\,}.en, Ap — +00, n —
+o0o (E.C. Titchmarsh [1], A. M. Molchanov [4]). Let us numerate the eigenvalues of the
operator L, in ascending order: A\ < Ay < ... < A, < ...

The distribution of the spectrum (E. C. Titchmarsh [1]) in the case of power-law growth of

potential ¢ has been well studied. For example, if ¢(x) = 2%, k > 0, then the eigenvalues )\,
of the operator L, have the asymptotics:

A {Wkr( +5) }f St ©.1)
N~ e ., n 00, .
T(3)T(3)

where I'(2) is the Euler’s Gamma function.
The asymptotics of the eigenvalues of the operator L, in the case o = 0 for potentials

of the form ¢(z) = z* + V(x), k > 0 was obtained in the works of H.H. Murtazin and
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T.G. Amangil’din [5] for V(z) € C2[0, +oc) and H.K.Ishkin [6] for V(z) € C2[0, +00),
whe[re func)tions from the class C{*[0, +00) are compactly supported functions of the class
™0, +00).

The distribution of the spectrum of the Airy and Weber operators perturbed by the delta
interaction (Dirac delta function) was found by A.S.Pechentsov [19], [20], [21].

If the potential ¢ increases at infinity faster than any power function, then the eigenvalues
of the operator I, do not have a power asymptotics (0.1). A.I. Kozko [3] established that for

2
the potential ¢(z) = e” the relation \,, ~ o , n — +00 holds.
21In(mn)

In this paper, we obtain asymptotics of the eigenvalues of the operator I, for classes of

potentials that increase rapidly at infinity.

1. CLASSES OF RAPIDLY GROWING POTENTIALS.
AUXILIARY STATEMENTS

Let 9 denote the class of functions ¢ € C[0, +00) N C?(0, +00) satisfying the conditions:

¢"(x) >0, x>, (1.2)
/
lim 2@ (1.3)
T——+00 Q(CE)

In particular, from the last equality it follows that there exists a number = such that for
all the values of the argument = > 7 the values ¢(z) are not equal to zero, and the inequality
q'(x)
9(z) o
satisfied for all the x > 0 (i.e. x = 0).

Lemma 1.1:
Let q be an arbitrary function in the class Q. The following statements are true.

1. The functions ¢’ and q have only positive values on arguments greater than some .
Beyond that, these functions grow at infinity faster than any power function, i.e. for any k € N
we have 2* = o(q(z)), x — +o0.

2. Let function p be the inverse of the function q, i.e. q(p(x)) = = for x > x;. Then the

function p grows slower than any power function, i.e. for any 6 > 0 we have p(x) = o(x?),
T — +00.

> 0 1s also satisfied. Without loss of generality, we will assume that these relations are

1. Let p(z) = z(In|g(x)|)’ for z > 0. Then from the equality (1.3) it follows that p(z) —
+oo for x — +o0. For any numbers z > x; > 0 and any given k£ € N the following is true:

(%)kmaz)\ - (%)kmwexp [ i~ e [ EO L

z1

Since the function ¢ is infinitely large, we can choose x; > 0 so that for all numbers x >
x1 the following relations are satisfied:

/de/ 1dwt:ln(ﬁ).
1 t 1 t I

From this and from the chain of equalities obtained earlier it follows that |q(x)|z =% — 400
for x — 400 and for any given natural k, that is, the modulus of the function ¢ increases
faster than any power function.
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q(z)
q()
the same sign, it remains to show that they are positive. Let us assume that this is not the
case. Then, by virtue of the relation (1.2), the function |g| is convex upward for values of
the argument = > x( and its graph lies below the tangent drawn at some point x5 > z(, and
hence |g| cannot grow faster than any power function. The resulting contradiction completes
the proof of the first statement of the lemma.

2. As proved earlier, for any k£ € N there exists a sz such that for all x > s the
inequality ¢(z) > 2**1 holds. Then, due to the strict increase of the function p, we obtain

that p(q(z)) > p(2**1), and therefore, x > p(z**1) for z > s¢,. Thus, for t > 5" the
inequality p(t) < #7+1 holds. From here we obtain the following relations:

1
p(t) - tkjl I

Since the inequality > 0 holds for > 0, and hence the values ¢'(z) and ¢(z) have

=

0<

— 0, t— 4o0.

te te
t
The obtained relation means that th+m ]Ll) =0, t = 400, therefore, p(t) = o(t %) for
—+0o0 %
1
any k € N. Since for any number § > 0 there is a number ks € N such that § > o we obtain
5
that p(z) = o(2%), z — +o0. O

Further, without loss of generality, we will assume that ¢(z) > 0, ¢’(z) > 0 and ¢"(z) > 0
for any z > 0.

Example 1.1:
All the entire functions with non-negative Taylor coefficients, other than a polynomial, belong
fo the class Q.

Since the logarithm of the maximum absolute value of an entire function ¢(z) in the disk
|z| <z is a downward convex function of Inz (see [2]), then ¢(x) is non-decreasing. The
function ¢(x) is not bounded above, otherwise the equality ¢(z) = O(z™) would hold for
some m € N. As proved earlier, we obtain lirf () = 400, that is, relation (1.3) holds,

T—r+00

and hence ¢(z) € Q. O

Let 9 denote the subclass of functions ¢ € £ satisfying the following condition for at
least one value 1 < v < 4/3

¢"(x) < (¢'(2))", =0 (1.4)
Example 1.2:
+oo
Entire functions of finite order of the form q(z) = Z apz", ap, > 0, n € Ny, other than a
n=0
polynomial, lie in the class 9.
Let f(2) = Zi% b,z" be an entire function of finite order p > 0 with non-negative

Taylor series coefficients. The derivative f’(z) has the same order p as f(z) itself. Therefore,
to prove the inequality (1.4) it suffices to show that for any € > 0:

+o0
= an,@”’l =o(f(z))'"e, 2 — +oo.

Let 5 > p. Then for some constant C' > 0 the inequality holds:
max|f(z)] = f(z) < C exp(z”).
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Therefore,
. —n . B n n
b, < inf 27" f(z) < Cinfexp(z” —nlnz) = Cexp < ——=In —>
x>0 >0
From the last inequality for n > e#*!32* we find

by |2™ < C’exp(— %ln% —|—nlnx> < C’exp(— %ln(eﬁxﬂ) +nlnx> =

= Cexp(—nln(ex) + nlnz) = Cexp(n(lnz — In(ex)) = Ce™".

It follows that Z nb,x" < C4, C7 > 0. Therefore, for x > 1 we have the inequality

n>eP+1 88
! n—1 n—1
fi(zx) = E nb,x" " + E nb,z" " <
n<ef+13zh n>eb+1pxh

< Cl + €B+IBCC5 E bnxnfl < Cl + C2f(113) xﬁ.
T
n<ef+1pz8

Since f grows faster than any power function, Ve > 0 we get f'(x) = o(f(x))'™, x —
+00. _ ]
For 3 > 1 and p > 0 we denote by Qg , the class of functions ¢ € 9 such that

Ing(z) = pln’ z +o(ln’'z), 2 — +oo. (1.5)

The following statement allows us to rewrite this condition for the potential in terms of the
inverse function.

Lemma 1.2:

1
Let q be an arbitrary function in the class Qg . Let p be the inverse function to q, § = |1 5.
Then the relation is satisfied

1
Inp(z) =dIn% x +o(1), x— +o0.

Let us rewrite the expression (1.5) as follows: Inz = u1n” p(z) + o(In”~! p(z)), 2 —
+00. For some ¢(x) = o(1), z — +00, we obtain the expression:

e(x)
In p(z)

Inz = pln® p(z) (1 +

e(z)
In p(z)

Inp(z) = G) i In? :c(l + 1;(92))_ .

Then, taking into account the notation for ¢ and according to the binomial expansion, we
obtain the following relationship:

) — 0 () - a(a),

where o(z) =1+

— 1, x — +o00. From here, expressing Inp(z), we obtain the

equality:

=

Sln? - e(x)
Blnp(z)
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1 1
Since 6 In? x = Inp(z) - a? (z), the resulting expression can be rewritten as follows:

ST S Inp(x) - a%(a:) e(z)
Inp(z) =01 Bl p(o)

This means that Inp(x) = §In? z + o(1), x — +o0, since a(x) — 1 and e(z) — 0 when
T — 4-00. U

The expression (1.5) for the parameter 5 = 1 means a power-law growth of the potential g,
for which E.C. Titchmarsh obtained the asymptotics (0.1). For the parameter 5 > 2, the
potential ¢ € Qg , satisfies the condition:

(14+0(1)), x— +oc.

Ing(x)
Inz

— +00, T — +00.

Under such conditions, the spectrum of the operator L, has an asymptotics (A. 1. Kozko [3])
Mo~ ()72 ((70)%),  n = oo,

where p is the inverse function to q. The following result of A.I. Kozko [3] establishes the
asymptotics of the spectrum of the operator L, for potentials of the class Qg , in the case of
the parameter value § = 2:

A ~ (mn)?p2((mn)?) exp (%), n — +oo. (1.6)

Later, A. Yu. Kiseleva (personal communication) found asymptotic expansions for the
eigenvalues of the Sturm-Liouville operator in the problem under consideration for the
potential of class Qg , and values of the parameter 3 € (3/2, 2]:

A ~ (mn)2p~%((7n)?) exp(lui/@ lnz_ﬁp((wnf)), n — +o00. (1.7)

and 3 € (4/3,3/2]:
G esp (o () = o (5 1) 8 pl(nf?) ) v,
13 p*B\p
(1.8)
The study of the asymptotics of the eigenvalues of the operator I, was continued by
I. G. Nasrtdinov [7] for values of the parameter /3 closer to unity. Thus, for potential ¢ € Qg ,,
parameter values 5 € (5/4,4/3] and v = 0 7 the following holds:

1 4
A ~ ()2 exp (— (21/6 In? ((7n)?) — Byw lngfl((ﬂn)Q)—F
—B) 35, 22 2 16(8 — 6/ + (7)
TV In?""((mn)*) — 35
Using Lemma 1.2, we can rewrite this result in terms of the inverse function p. We obtain the
following form of asymptotics:

A(3

+ 4P lngS((wn)Q)>>, n — +oo. (1.9)

M~ ()2 2((7n)?) exp(;iﬁ 128 p((wn)?) — = (§ - 1) 102 p((rn))+

p(m)2)), n — +o0.
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2. THE MAIN RESULT AND ITS PROOF

Let us denote ¢, = (mn)?, n € N. In paper [3] it is proved that in the case of ¢ € Q

1
the asymptotics n ~ A\ *p(An), n — +o0 holds. From here we get that A, ~ G
7r

P*(\n)’
n — 400, that is, for some sequence «,, — 1, n — +oo the following equality holds:

M neN

Then lim % = lim o7
n—+oo Cp n—-+oo P ()\n)
function p. This means that \,, = o(c,), n — +oo. Therefore, starting from some number,
the inequality )\, < ¢, is satisfied.
In the previously adopted notation, we set by definition:

=0 due to the unlimited monotonic growth of the

Cp, Cp Cp,
YTL == ) Zn - —7 Wn - —7
p*(cn) P*(Ynan) P*(Znan)
c c c
V=& g% g &
P?(Whay,) p?(Vaou,) P2(Frow,)
Lemma 2.1:

For 8 > 1 and jn > 0, consider an arbitrary function q € Qg ,, and its inverse function p. Let
us use the notation for the sequences introduced above. Then, in these notation, starting from
some number, the inequalities hold

Y, o, < Wya,, < F,a, <\, < Gra, < Vy,a, < Z,0, < c,.

As has been proved, \, < ¢,, starting from some number N. Due to the strict increase

of the function p, for all numbers n > N the inequality p*()\,) < p?(c,) is satisfied, and
therefore the following chain of relations holds:

p*(cn) an()\n)

Thus, for all numbers n > N the double inequality Y,a, < A\, < ¢, is proved. The
inequality p?(Y,a,,) < p?(\,) for n > N implies that

Y, o, = a, =\, <c¢,, n>N.

C, c

— _<apy—— =2y, n>N.
P*(An) P*(Ynan)

An =

From this and the previously obtained inequalities we can state that Y,,a,, < \,, < Z, v, for
n > N.

Let us establish that Z,,«,, < ¢, starting from some number. Since by Lemma 1.1 the

function p grows slower than any power function, in particular, p*(c,) = o(c,), n — +o0,

CnQiy,

p*(cn)

Znin On — 0 — +
= , n 0.
Cn P?(Ynon)

we obtain that Y, «,, = — +00, n — +00. Hence,

Thus, Z,«,, = o(¢,), n — 400, which implies the inequality Z,,a;,, < ¢,, from some number.
Without loss of generality, we will assume that this number is equal to /N. Thus, we obtain a
chain of inequalities Y, o, < A\, < Zpav, < ¢, forn > N.
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102 A.V. KACHKINA

With use of the strict increase of the function p and the inequality 7, «,, < ¢, established
for n > N we obtain the required inequality
Cn Cn
P(e) ~ P2(Zuor)
Combining this inequality with the previously obtained relations we get Y, o, < W, a,, <

An < Zpay, < ¢, for n > N. Next, all necessary inequalities on V,«v,, F,,a,, and G, «,, are
established in a similar manner.

Theorem 2.1:
Let g € Qg ,, 5 € (6/5,5/4]. Then for the spectrum of the operator L, the following holds:

Ap ~ Cp €XP (—2(5 (lnllf Cp — 27? Ins Cn + (25)232;?

. 2, . 2 _ 633
_(25)3%W-3%+(25)412s 15062;;’?% 653 1nﬁ_4cn))’ = too.

Using the formula from lemma 1.2, we can rewrite this result in terms of the inverse
function p. We obtain the following form of asymptotics:

Y, = =W,, n>N.

3
3_9
Ins " ¢,—

An ~ (mn)?p~2((7n)?) exp (4}% In%4 p((7n)?) — 4 (§ = 1) ln3’25p((7m)2)+

pwB\p
B 2 . 2 _ 3
16(8 Sﬂigjﬁm35<p<m>2>—4“25 15%%556 = >1n“6p<<7m>2>),

n — +0o0.

To prove the theorem, it suffices to establish that

1 2 —
F, ~ G, ~ ¢, exp (—25 <1n6 Cp — glné—l cn + (20)? 32525 52 e
8—68+p, 4 125 — 1508 + 5582 — 68° _s_
e (o) PR i ) ) om0

Then by Lemma 2.1 we will obtain that \, ~ F}, ~ G,,, n — +o00. Let us find asymptotic
expansions for the sequences F}, and GG,,.

~ (20)°

1. We write the relation using the expression for the inverse function from the lemma 1.2:

Inp(Y,an,) = §1n? (Yoan) +o(1) =0(InY, +In an)% +o(1), n— +oo.

Since In «v,, = 0(1), n — 400, we obtain

) 1)\ 7
Inp(Y,a,) =607 Y, (1 + %) +o(1), n— +oo.
n n

1
Taking into account Taylor’s formula and the inequality E — 1 <0, the term on the

right-hand side of the equality can be written as
1
§In? Y, (1 + Eo(hq_1 Yn)> = §InF Y, + o(1), n— +oo.
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THE STURM-LIOUVILLE OPERATOR SPECTRUM 103

Thus, the relation In p(Y,a,) = § In? Y, + o(1), n — +o0 is established. By definition
of Y,, and in view of Lemma 1.2, we have the following relation

In?Y, = (Inc, — 2(51n% Cn + 0(1)))%, n — +o0.

We take the multiplier In? ¢y, out of the brackets and expand the last expression (ln% Cn) -
1
1—
( Ine

n

Taylor’s formula and the Pochhammer symbol (z), = z(z — 1)...(x — (n — 1)), can
be written as follows:

1
(26 In? ¢, + 0(1))?, n — oo into a Taylor series. The second factor, using

1 1/1
1+ —(—25ln%_1 cn+o(lnte,)) + = (—> ((20)? 5 2¢, + O(In%_2 )+
2

) 21\ B
o(ln"2¢,)) + % (%) (—(26)3 5% ¢, + o(In? 2 ¢,) + o(In? > ¢,) + o(In % ¢,))+
: 3
+ % (%) ((20)* In# Cn + 0(111%_4 cn) + o(lng_4 cn) + o(ln%_A‘ cn) +o(In"tey))+
: 4

+ O(In%_5 cn + o(ln%_E’ Cn) + 0(111%_5 ) + o(ln%_‘r’ cn) + o(ln%_‘r’ Cn)+

+o(ln"%¢,)),n — 4o0.
6 5
After all the transformations, taking into account that parameter values are 3 € =1

and therefore the relation O(lnB_5 ¢n) = o(1), n — 400, we obtain that

1 20 2, (26)? (1) 3
Inp(Y,a,) =6(Infc, — —1Ins "¢, + — ) Ins " ¢,—
(Yun) = 8 : +(5),

_ (2;!)3 (%)31n§_3c (2;5!)4 (%)4lng_4 cn) + 0(1), 1 — +o0.

. Similar to the previous step, we have

Inp(Z,a,,) = §1n? Zn+o0(1) =6(Inc, — 2Inp(Y,a,) +0(1))5 +o(1), n— +oo.

After substituting the expression obtained above for In p(Y,,cv, ), we obtain that

np(Z,an) = (5(ln Cp — 25( nf ¢, — %Sln/ﬁl c (%) -

_<2;>3(%>31né3c (25!)4(%)4111240”—!—0(1))) foll), oo

1
To simplify the calculations, we set {3, = 20 In?'¢,, n€N. Then, using the
introduced notation, we have

1 1 1/1 1/1
Inp(Z,a,) = d1n? ¢, (1 — (ﬁ,@,n - Eﬁén + 21 (E) ffén 3 (B)ggé,ﬁ'

1

+i! (5) 5ﬂn) o1 ))6 +o(1),n = +o00,
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from which, using Taylor’s formula, we obtain

Inp(Z,a,,) =

1 /1 9 1/1
+2|(6> (5ﬁn_55/§:n+5255” < ) gﬂn) _3_<E) (gﬁn_ﬁgg’n)+
—i—i'(;) fﬁn—i—O( ))+0(1)7 n = +O.

Hence, expanding the Pochhammer symbols and calculating the coefficients, and also
6
in view of the relation O(In%°¢,) = o(1), n — o0, we obtain that

m\m

L L 31 5— 68+
hlp(ZnOén) =d1n? ¢, <1 - Béﬁ’n + 2—B2£§’n - 3—5352’n+
41 — 908 + 55ﬁ2 — 643

245 §é’n) +o(1),n = +o0.

3. Next, using similar calculations, we obtain the relation Inp(W,«a,) =149 (ln Cr —

1
2Inp(Z,0,) + 0(1)) 7 + o(1), n — +oc. Using the expression for In p(Z, ,,) obtained
in the previous paragraph, we have

3-8 _5-604P
232 Bn 333

5§,n) + 0(1)> " o(1), n— too.

1
- Eéﬁ,n +

41 — 908 + 5543% — 633
2434

Inp(Wya,) = 5(111 ¢, —201n? ¢, (1 €&+

1
For convenience, let’s put In? ¢, out of brackets again:

3 1 3 - 5-6 2
inp(WWaan)) = 0105 (1= (610~ 363, + S, - 2202

41 —90 5532 — 63° s
622545 A & +o(ln”! Cn))) +o(1), n— +oo.

Eont

|=

Then, using Taylor’s formula:

)=k —l(fm—%g;nﬁ—ﬁ 5684

5 242 353
41— 908 + 5552 — 633 1 /1 3-8,

311 (5) (fﬂn - %fg,n) + %(%)45?9,” + O(ln§_5 cn)) +o(1), n— +oo.

Copyright © 25 ASSA. Adv Syst Sci Appl (25)
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Hence, taking into account the relation O(ln%_E’ ¢n) = 0(1), n — +o00, expanding the
Pochhammer symbols and calculating the coefficients, we obtain that

3-F., 8-65+p

1 1
lnp(Wnan) =0In? ¢, (1 - Egﬁm + 262 fﬁﬁb 353 fgvn—i_
101 — 1508 + 554% — 632
6454 B B ggyn) + 0(1),71 — +00.

[un

4. Similar to the previous step, we have In p(V,a,) = 6(Inc,, — 2Inp(Wya,) + 0(1)) 7 +
o(1), n — +oc. Substituting the resulting expression for In p(W,,«,,), we have

1 1 3-8 8 — 66 + 32
Inp(Vya) = (5(ln cn — 28107 ¢, (1 — Bgﬁ’n 4 2—ﬁ2€;" - &+
101 — 1508 + 5542 — 633 3
52154 AL @m) +o(l )) +o(1), n—+oo.

We take the multiplier In? ¢, out of the brackets and expand the last expression into a
Taylor series. We obtain the following relationship:

. 1 1 3— 8—6 2
Inp(V,a,) = d1ns ¢, (1 - B (fgyn — Sém + —65[‘2” — ﬂfﬁ,;%

B 24° 33
101 — 1508 + 554% — 633 1/1 2 3-7
24" fg’”) Tl (E>2 (gg’" 5255" St 22_ﬁ253’") -

;' (6) (gﬁn - %fgm) * %(%)453,71 + O(IHE_S Cn)) + 0(1>7 n — +00.

After calculating all the coefficients and taking into account the relation O(ln%*‘r’ Cn) =
o(1), n — 400, we obtain that

: 1, 3-8, 8—6B+p

125 — 1508 + 55532 — 63°
62;;4 oo éé,n> +0(1),n — 4o00. (2.10)

&5t

5. Using the same reasoning, we obtain that Inp(F,«a,) = (5(lncn —2Inp(V,a,) +

0(1))? + o(1), n — +oc. From where, using the expression found (2.10), we have

1 1 3-8, 8—63+p%
Inp(F,a,) = (5(111 ¢ — 20107 ¢, <1 — 55’6’" + 2—525@7] T3 .t
125 — 1508 + 5582 — 687 , 5
245 En | Ho(1) ) +o(l), n—+oo.
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We take the multiplier In? ¢, out of the brackets again and expand the last expression
into a Taylor series. We obtain the following relationship:

1 1 1 3-8 . 8 — 63+ (2
Inp(FLa,) = 01n% ¢, (1 - B (f/gyn - Bfén + 2—ﬁ2£§n - 3—5,52,714‘

125 — 1508 + 55832 — 633 1/1 2 3—0 4
i 245" 5%0'%5(EXK$” zﬁ@”_ﬁﬁm+2357%“>_

;' (ﬁ) (gﬂn - %ggm) * %(%>4€g’n + O(]n3_5 Cn)) + O(1>7 n — +00.

-5

Having calculated all the coefficients taking into account the relation O(ln%

Cn) =
o(1), n — +o00, we obtain that

3-F, 8-65+p"

. 1
lnp(Fnan) =0ln? ¢, (1 - Efﬁ:n + 232 5/3771 333 £g,n+
125 —1 2638
5 5052;;;555 65 £§,n> Fo(l),n — +oo. (2.11)

6. Using the formula (2.10), with the back substitution £z ,, = 20 Ins ! cn,n € N, we have:

20, 2 3_
Inp(V,a,) = 5(lnﬁ Cn — E Ins! Cn + (25) 252 Iné 2¢,—
38— 65+ B L4
(26)? 35 Cnt
2 _ ap3
+ (2012 15052 4*64555 657 13-4 > +o(1), n — oo,

By definition F;, = ¢,, exp (—2 In p(Vnan)), n € N, therefore the relation

F, = cuexp (—25 (mé Cn — %Smﬁl e+ (26) 2525 2 e, —
- (25)3%1 573 et
. (25>4125 - 15052;;5@ —66° 54 Cn) N 0(1))7 s too.
From here we conclude that
Fyy ~ cyexp (—25 (mé Cn — %Smil Cn + (20)° 32B2B In%%c,—
— (26)? %1 573 et
R L N,
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since e?) = 1+ 0(1), n — +oo.
Similarly, using the formula (2.11) and in view of the definition G, =
Cp €XP (—2 1np(Fnan)), n € N, we have:

1 26 2 3 —
G = cnexp (_25 (lnB Cp — E Ins ! Cp + (25)2 2ﬁ2ﬁ ln%72 Ch—
8— 68+ 3%, a_
3 3
_ (26) 3—ﬁ3 lnﬁ Cn+
125 — 150 5582 — 633 s
+ (26)* 324;4 s p Ins—* cn) + 0(1)), n — ~+o0.
Therefore,
1 20 2 3 —
Fy ~ G~ coeXp (_25 (mB Cn — E Inz 'e, + (25)2 2526 Iné 2 Cn—
38 =60+ 5% 4.
3 3
_ (26) 3—ﬁ3 lnﬁ Cn+
125 — 150 5582 — 653 s
which completes the proof theorems. =

This theorem generalizes previously obtained results for the values of the parameter (3

from the segment [5/4, 2.

wN
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