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Abstract: This paper establishes the existence of an entropy solution for a doubly nonlinear
parabolic problem set within the framework of Musielak-Orlicz-Sobolev spaces, without
imposing the A, condition. The problem involves a Leray-Lions operator and a general Lipschitz,
strictly increasing nonlinearity in the time derivative term, with L! source data. Our approach
employs Rothe’s time-semidiscretization method, reducing the evolution problem to a sequence
of elliptic entropy subproblems at discrete time steps. We derive uniform a priori estimates in
the modular topology associated with the Musielak-Orlicz function, which remain valid in the
absence of the A, assumption. Using these estimates, we prove compactness for the Rothe
sequence in Wy * Ly (Qr) and in C([0, T; L*(€2)). The limit is then identified via monotonicity
techniques, confirming that it satisfies the entropy formulation of the original problem. This work
unifies and extends previous existence results from standard Sobolev, variable-exponent, and
Orlicz-Sobolev settings to the fully Musielak-Orlicz case with general nonlinearities and low-
regularity data.

Keywords: Semi-discretization method, Musielak-Orlicz spaces, truncations, parabolic
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1. INTRODUCTION

Let 2 be a bounded open set in R? with d > 2, and let T > 0. Set Q7 = (0,7) x Q. In
this work we prove the existence of an entropy solution u to the doubly nonlinear parabolic
problem

) _ dz’v(a(m,t,Vu)) =f inQr,

at
u=0 on(0,T)x 0%, (1.1)
b(u)(t=0)=0 in{,

posed in the Musielak—Orlicz framework without imposing the A, condition. Our approach
relies on Rothe’s time—semidiscretization: we take f € L'(Qr), consider the Leray-Lions
operator Au = —div(a(z,t, Vu)) acting on W, "Ly(Qr), and assume b:R — R is
Lipschitz, strictly increasing, with b(0) = 0.

Rothe’s scheme, interpreted as a backward Euler discretization in Banach spaces, reduces
the evolution problem to a chain of elliptic entropy problems at discrete times. We derive
estimates in the modular topology associated with ¥, which remain valid beyond the A,
setting, and then pass to the limit to recover an entropy solution of (1.1).
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In standard Sobolev spaces, entropy solutions for problems of type (1.1) with A(u) =
—A, and b(u) = u were obtained in [4]. In the variable—exponent setting, Jamea et al.
established existence for A(u) = —Ap,) with b(u) = u [12]. In Orlicz—Sobolev spaces,
existence and uniqueness for (1.1) with b(u) = u were proved in [11]. Within Musielak
spaces, [3] addressed the obstacle problem (variational case), again with b(u) = u. Broader
context on parabolic problems with nonstandard growth can be found in [6,16-19].

Relative to the above literature, this paper addresses a doubly nonlinear evolution (with
O;b(u) for a general Lipschitz, strictly increasing b) under Musielak—Orlicz growth with

merely L'—data f. Moreover, it develops a Rothe-type discrete entropy formulation and
derives a priori bounds directly in the modular setting, thereby avoiding any A, assumption
on V. Furthermore, it establishes compactness and stability for the Rothe sequence in
Wy* Ly(Qr) and C([0, T]; L'(Q)), which in turn yields the existence of an entropy solution
of (1.1). Finally, it unifies and extends the approaches of [3,4, 11, 12] to the fully Musielak—
Orlicz case with general b(-) and Leray—Lions structure.

Section 2 reviews the necessary material on Musielak—Orlicz—Sobolev spaces. Section 3
states the assumptions and the main theorem. Section 4 implements the Rothe
semidiscretization, proves existence and uniqueness for the discrete problems, derives the
discrete estimates, and gathers the convergence and compactness results to complete the limit
passage and the proof of the main result.

2. PRELIMINARIES

This section gathers the basic notions and tools for Musielak—Orlicz—Sobolev spaces that
will be used later on. For a comprehensive treatment, see the monograph [13]. We also recall
the inhomogeneous (space—time) versions and a few auxiliary lemmas that enter the analysis
below.

Musielak-Orlicz-Sobolev spaces. Let ) C R? be bounded, and let ¥ : Q) x RT — R
satisfy:
(a) for a.e. x € 2, U(z,-) is a generalized N-function (convex, increasing, continuous,
U(z,0) =0, V(x,t) > 0fort > 0,@ %Oast%O,and@ — oo ast — 00);
(b) forevery ¢t > 0, ¥(-,t) is measurable in z.

Any W fulfilling (a)-(b) is called a Musielak—Orlicz function. For convenience we set
U, (t) := U(x,t) and denote by W ! its (nonnegative) inverse in the ¢-variable, so that

U (W (a,t) = U(z, U () =t

x
Given two Musielak—Orlicz functions ¥ and ®, we use the following comparison notation:

(c) If there exist k > 0 and ¢y > O such that U(x,t) < ®(x, kt) fora.e. x € Qandall t > ¢,
we write U < ®; in particular, ¢ globally dominates W when ¢, = 0, and near infinity

when to > 0.
(d) We say @ grows essentially slower than W at O (resp. near 0o), denoted & << W, if for
every k > 0,
, O(x, kt) . O(x, kt)
E S T ST
We will also use Dl t
inf (z,1) —5 00 ast— 00. (2.2)
e t
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Indeed, by the definition of inf,cq ¥ (z,t), for any € > 0 there exists a measurable 2. C )
with
U(y,t) < ingqi(x,t) +¢ forally € (..
xe

Dividing by ¢ and using (a) together with £/t — 0 as t — oo yields (2.2).
Define the modular

ovo(u) = / U(x, |u(x)|) dz,
Q
for measurable u : €2 — R. The Musielak—Orlicz class is
Ly(€2) = {u measurable on 2 : py o(u) < co}.

The Musielak—Orlicz space Ly (£2) is the linear hull of Ly (€2), equivalently

Ly(Q2) = {u measurable : Q\QQ(M> < oo for some o > O}.
«

The Young conjugate of W is

U(z,s) =sup{st — ¥(x,t)}.

t>0

On Lg(2) we use the Luxemburg norm

[ullo.o = inf{)\ >0: /Q\If<x, |u(>\x)|) dr < 1},

and the (Orlicz) dual norm

s = s [ fule)ole)]da,

|U|E,Q§1 Q

where V¥ is the Young conjugate of W. We say u,, — u modularly in Ly () if there exists
h > 0 such that

. Up — U\
Jim gy o ) = 0.

For m € Ny,
WLy (@) = {u € Ly(Q) - D*u € Ly(Q) forall o] < m},

with multi-index o = (a, . . ., aq) and distributional derivatives D“u. The space W™ Ly (£2)
is the Musielak—Orlicz—Sobolev space. Set

— a m . _ u
Oy olu) = Z ow (D), HUH\I/Q = inf {)\ >0: Q\I,Q<X) < 1}-

laj<m

Then 0y is a convex modular and || - [/ a norm. Moreover, if there exists ¢ >
0 with infyeq ¥(z,1) > ¢, the pair (W™Ly (), ||[§o) is a Banach space. One may
regard W™ Ly () as a subspace of the product [], -, Lw(S2), closed for the topology

([T Lw, ][ E5)- Denote by Wi Ly (2) the o(] [ Lw, [ [ Ey)-closure of D(€2) in W™ Ly (Q2).
Likewise, set
WmEg(Q) ={u: u, D% € Eg(Q) for |a| < m},
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and let W[ Ey () be the (norm) closure of D(£2) in W™ Ey ().
For complementary ¥ and ® we recall Young’s and Holder’s inequalities:

ts < U(x,t) + P(x,s) fort,s >0, x €,

| @)eta)lde < ulla ol (e L, v e L),

The conjugates ¥ and & satisfy

7 [
lim essinf (z,8) = and lim essinf (z,¢) _ (2.3)
glmoo e [¢] gl=oo we [¢]
Remark 2.1:
As noted in [15, Remark 2.1], (2.3) implies the local boundedness
sup esssup V¥ (z,&) < oo forall) < R < oo, (2.4)
€€B(0,R) =€Q
and similarly
sup esssup®(x,€) < oo forall) < R < 0. (2.5)

€EB(O,R) z€Q

We say (u,,) converges modularly to u in WLy (2) (resp. in W Ly (€2)) if there exists

h > 0 such that
Uy — U
llmQ\I,Q< . )zO.

n—oo

Lemma 2.1:
[3]1If < V¥ and u,, — u modularly in Ly (S), then u,, — u strongly in Lg(€2).

Lemma 2.2:
[17] Let w,,w € Ly(S2) and v,,v € Lg(Q). If w, — w modularly in Ly (Y) and v, — v
modularly in Ly (Q), then

/wnvnda: — /wvdw as n — oo.
Q Q

Inhomogeneous Musielak—Orlicz—Sobolev spaces. Let 2 C R? be bounded and Q7 =
Q x (0,T) for some T > 0. For a € N%, denote by D2 the distributional derivative with
respect to x. The first-order inhomogeneous spaces are

Wl :BL\I; QT {u I~ Lq; QT) Dg‘u - L\p(QT) for all |Oé| < 1},

W' Ey(Qr) = {u € E¢(Qr) : D2u € Ey(Qr) forall [a| < 1}.
Clearly W'* By (Qr) C Wh* Ly (Qr), and each is a Banach space with
lull = > ID5ullwr
|| <1

We view these as subspaces of the product space IILy(Q7) (with d+ 1 copies) and
use the weak topologies o(IILy(Qr), I1EG(Qr)) and o(IILy(Qr), 1Ly (Qr)). For u €
W Ly (Qr), the map ¢ — u(t) takes values in WLy (Q); if uw € WY Eg(Qr), then
t — u(t) is W1Eg(Q)-valued and strongly measurable. In general W'* Ly (Qr) need not
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be separable, hence ¢ — u(t) need not be (Bochner) measurable; however ¢t — ||u(t)| v

belongs to L' (0, T). Define W, " E¢(Q7) as the (norm) closure of D(Qr) in W Ey(Qr).
As in [13], when 2 is Lipschitz, any « in the o(IILy, [1Eg)-closure of D(Qr) is the

modular limit in W' Ly (Q7) of some subsequence (u,,) C D(Qr): there exists A > 0 such
that, for all |a| < 1,

DCu,, — D°
/ \I’(:E,M> drdt — 0 asn — oo.
- A
Consequently (u,,) — win W Ly (Q7) for the topology o(ITLy, I1 L), and thus

D(Qr) = D(Qr) =: W, Ly (Qr).

Moreover W, Ey(Qr) = Wy* Ly(Qr) NTIEZ(Qr). A Poincaré-type inequality holds in
Wy Ly (Qr) (see [20]): there exists C' > 0 such that, for all u € Wy Ly(Qr),

> IDsuleqr < C ) 1D ullwg, (2.6)

lal<1 jal=1

o(LyLg)  w=~—0o(lLy,1Bg)

We will use the dual pair
(WOLIL\II(QT) F)
Wy " Ey(Qr) Fy)’

where F' = (W, " Ey(Qr))’ can be identified with
W Lg(Qr) = {f = Y Difa: fa€ Ly(Qn)},
|| <1

endowed with the usual quotient norm

IFI=inf D [l fallgqp-

o<1
Similarly
Fo =W Eg(Qr) = {f = 3 Difu fu€ By(@Qr)}.
lal<1
Lemma 2.3:

[3] Let Qr = [0,T] x Q, ¥ a Musielak—Orlicz function, Ey(2) the Musielak—Orlicz space
on ), and Ey(Qr) the inhomogeneous Musielak—Orlicz space on Qr. Then

Ew(Qr) € L'(0,T; Eg(Q)). 2.7)

Lemma 2.4:
[3] Let Qr = [0, T] x , U a Musielak—Orlicz function, W' Ey(Q) the Sobolev space on (),
and W' Eg(Qr) its inhomogeneous counterpart on Qr. Then

W'E(Qr) € LY0, T; W'Eg(Q)), (2.8)
W™ Eg(Qr) C L0, T; W™ Eg(Q), (2.9)

and both embeddings are continuous.
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Theorem 2.1:
[7] Let ¥ be a Musielak function. If F C VVO1 * Ly (Qr) is bounded and, for each u € F, O;u
is bounded in W~ Lg(Qr), then F is relatively compact in L' (Qr).

Corollary 2.1:
[3] Let ¥ be a Musielak—Orlicz function and (u,,) C W% Ly (Q7) satisfy
u, —u in WLy (Qr) for o(IlLy, 11Eg)
and
Ouy,
ot

with (h,,) bounded in W% Lg(Qr) and (k,) bounded in the space L*(Qr) of measures on
Q7. Then

- hn + kn in D,(QT)a

U, —u  strongly in L}, .(Qr).
If in addition u,, € WOLmL\I/(QT); then u, — win Ll(QT)-

3. FRAMEWORK AND MAIN EXISTENCE THEOREM

For the analysis of (1.1), we collect here the structural hypotheses on the data. Throughout,
Q) C R? is a bounded open set with Lipschitz boundary 99, T > 0, and Q7 = (0,7T) x Q.

Let U and ® be N-functions with ® < W. We work with the Leray—Lions operator
A(u) = —div(a(z,t,Vu)) on Wy*Ly(Qr),

where a : Q7 x R? — R?is a Carathéodory vector field (measurable in (z,t) and continuous
in €) satisfying, for a.e. (z,t) € Qr and all £, ¢* € R? with € # £*:

afe,t, ) < y[elw,t) + T (w(le))] (3.10)
(a(z,t,€) = a(z,t,£7)) - (€ =€) >0, (3.11)
a(z,1,€)-€ > a¥(z,[¢]), (3.12)
with ¢(+,-) € Eg(Qr) and constants o,y > 0." We assume furthermore
f e Li(@Qr), (3.13)
and
b: R — R is Lipschitz, strictly increasing, with b(0) = 0. (3.14)

We adopt the following notion of entropy solution for (1.1).

Definition 3.1:
A measurable u : Q7 — R is an entropy solution of (1.1) if:

¢ b(u) € L>([0,T]; L*(2));
o Ti(u) € Wy Ly (Qr) for every k > 0;

TCompared with the draft, (3.12) corrects a typographical slip: since & € R?, one must use a(z, t,£) - € and U (z, |€|) rather
than U (z, |[VE|).
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e for all k>0 and every ¢ € L®(Qr) N Wy " Ly(Qr) with o(T) =0 and d,p €
W1 Lg(Qr) + L (Qr), one has

T 0p “ob(z) ..,
|G | S it = pa)is + [ atwt V) VT p)deds

< fTe(u—)drds.
Qr

Our main result is the following existence theorem.

Theorem 3.1:
Under assumptions (3.10)—(3.14), the nonlinear parabolic problem (1.1) admits an entropy
solution in the sense of Definition 3.1.

4. PROOF OF THE MAIN RESULT

We now prove the main theorem through a sequence of standard steps. First, we replace the
evolution (1.1) by a family of elliptic problems obtained via time semi—discretization (Rothe’s
method) and show existence/uniqueness of discrete entropy solutions. Next, we construct the
Rothe interpolants and derive stability estimates that are uniform in the time step. Finally, we
pass to the limit along the Rothe sequence and recover an entropy solution of the nonlinear
degenerate parabolic problem (1.1).

4.1. The Rothe Problem

To apply the semi—discretization in time, fix n € N and partition [0,7] into equidistant
nodes t; = j7 for j = 0,...,n, where 7 = T'/n. Replacing the time derivative 0,b(u) by the

backward difference (b(u;) — b(u;_1)) /7 leads to

b(uj) — TdiV(CL(I,tJ’,VUj)> = Tfj + b(uj—l) in Q7 j = 17 sy Ny (415)
u; =0 on €.

Here .
BO=1 [ feds f= 1)

For brevity we will sometimes write a(z, Vu;) to denote a(z,t;, Vu;) when no confusion
can arise.

We first formulate the discrete entropy notion and then establish existence/uniqueness for
(4.15).

Definition 4.1:
A measurable function u; on ) is an entropy solution of (4.15) if Tx(u;) € Wy Ly (Q) for

every k > 0 and, for all o € W} Ly(Q) N L>=(Q2) and every k > 0, one has
/ b(u;) Tp(u; — @) dr + 7‘/ a(z,Vu;) - VT (u; — ) dx
Q

@ (4.16)
< /(Tfj + b(uj,l)) Tk(uj — (p) dx.
Q
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Lemma 4.1:
Forallk >0,5=1,....,nand h > 0,

b(u;) € L'(Q), (4.17)
/ U(z, |Vuj|)dz — 0 ash — +oo. (4.18)
{h<lu;|<h-+k}

Proof
Taking ¢ = 0 in (4.16) with 7 = 1 gives

/Qb(ul)Tk(ul)dx+7'/Qa(x,Vu1)-VTk(ul)dx < /(Tfl)Tk(ul)dx. (4.19)

Q
Since .
Y rllfile@ < 1 leen
j=1
and
/ a(x,Vuy) - VI (uy) dx = / a(z,Vuy) - Vuy de > 04/ U(z, |[Vus|) dz >0,
Q {lur|<k} {lua|<k}

(4.19) yields 0 < [, b(u1)Tx(u1) do < kC, with C independent of k. Hence

T,
0< / b(uy) ) g <
Q k
and by Fatou’s lemma ||b(u1 )10y < C.
Assume by induction that b(u;) € L*(Q) for all ¢ < j; this gives (4.17). Now take
¢ = Tj(u;) in (4.16). We obtain

/Q b(uy) Tilu, — Th(uy)) do + 7 /Q a(e, Vuy) - VTi(u; — Th(uy)) de

(4.20)
S / (Tfj + b(Uj_l)) Tk(uj — Th(uj)) dx.
0
Using that Tj(u; — h sgnu;) has the same sign as u; on {|u;| > h}, we get
/b(uj)Tk(uj — Ty(u;)) dz > 0. (4.21)
0
Moreover,
/ a(z, Vu;) - VI uj — Ty(uy)) do = / a(z, Vuy) - Vu; dz. (4.22)
Q {h<]uj|<h+k}

Combining (4.20)—(4.22) gives
7‘/ a(z,Vu;) - Vujdr < k/ T|fi| dx + k/ |b(w;—1)| dx.
{h<]u;|<h+k} {luj|=n} {luj|=h}
Since f;, b(u;—1) € L'(Q) and [{|uj| > h}| — 0 as h — oo, we conclude that
/ U(z,|Vu,|)dz — 0 ash — +oo,
{h<|uj|<h+k}

which proves the lemma. ]
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We now prove existence and uniqueness for the discrete problem (4.15).

Theorem 4.1:
Under (3.10)-(3.14), for each j =1,...,n the problem (4.15) admits a unique entropy
solution u;.

Proof
Fix j € {1,...,n}. By (3.13), (3.14) and Lemma 4.1, the functions

F:=f+ %b(uj_l) € LY(Q), g(s) = %b(s)

satisfy the hypotheses of Theorem (1) in [1, 2]; hence the elliptic problem (4.15) has an
entropy solution u;.

For uniqueness, let u, v solve (4.15) with 5 = 1 (the general case is identical). Testing
the inequality for v with ¢ = T},(v) and the one for v with ¢ = T} (u), summing, and letting
h — oo (using the Lipschitz continuity of b and the dominated convergence theorem) yield

/ (bw) — b(v) Tulu —v) dz + 7 lim I, < 0,
[¢) — 00
where
Iy = /Qa(x, Vu) - VT, (u — Ty(v)) dz + /Q a(z, Vv) - VI (v — Ty(u)) dz.

As in the proof of Theorem (4.6) in [3], limj,_,oc I, > 0, sO

/Q(b(U) —b(v)) Ty(u —v)dz < 0.

Letting & | 0 and using +7%(-) — sgn(-) gives [|b(u) — b(v)||11(@) < 0, hence b(u) = b(v)
a.e., whence u = v by strict monotonicity of b. An induction in j completes the proof. [
We next derive estimates that are uniform in n.

Proposition 4.1:
Under (3.10)—(3.14), there exists C = C(f) > 0, independent of j,h,n, such that for all
7=1...,n,

[6(w;)]| L) < C(f), (4.23)
J

D llb(us) = b(ui—)l| @) < C(f), (4.24)
=1

ZT/\II(x,VTk(ui)) dr < C(f). (4.25)
i=1 Q

Proof
Fix i € {1,...,7} and take ¢ = 0 in (4.16):

/Qb(ui)Tk(ui)dx—i—T/Qa(x,Vui)-VTk(ui) dr < /

Q(sz') T (u;) dx + / b(wi—1) Ty (u;) dz.

Q
Since

/ a(z, Vu;) - VT (u;) do = / a(xz,Vu;) - Vu;dr > 0,
Q {lui <k}
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we get
[ ) Tutw) do < b illsgoy + Kbl o
Q

Because sgn(b(u;)) = sgn(u;) by (3.14),

. Ti(ug)
lﬁg b(u;) = |b(w;)| ae.

(4.26)

so by Fatou’s lemma
[b(ui)llrr0) < 7l fill i) + 16(uwi-1) |10

Summing (4.26) from ¢ = 1 to j yields (4.23).
For (4.24), test (4.16) with p = T}, (u;) — sgn (Th(ui) — Th(ui_l)) to obtain
/ (b(ul) — b(ui_l)) Tk<ui — Th(u;) + sgn(Th(ui) — Th(ui_l))) dx
Q

+ T/Qa(x, V) - VTk(Ui — T (u;) + sgn (T (u;) — Th(uz‘—l))> dx

< / T f; Tk<ui — Th(u;) + Sgn(Th(ui) — Th(ui_l))> dx.
Q
The second term is nonnegative since it reduces to

/ a(z,Vu;) - Vu;de > 0, Q)= {‘ul — Th(u; — sgn(u; — ui,l))} < k} N {|wi| > h}.
Q.

Letting h — oo and taking k = 1 gives
(4.27)

[0(wi) = b(ui—)zr ) < Tl fill o)

Summing (4.27) from ¢ = 1 to j yields (4.24).
Finally, to obtain (4.25), test (4.16) with ¢ = 0 and rewrite as

/Q (b(ul) — b(ui,l)) Ty (u;) dx + 7'/9@(3:, Vu;) - VIi(w;)de < /Q

Hence,

(1fi) Tie(u;) dex.

(4.28)

aT/‘ (e, [Vail) de < 7k [filla + k1b(us) — b lzre.
{lui| <k}
U]

Summing (4.28) over ¢ = 1, ..., 7 and invoking (4.24) gives (4.25).

We now introduce the Rothe interpolants built from the discrete solutions ;.

(4.29)

b(u™)(0) := 0, .
{ b(u)(t) = blujr) + (b(uy) = b(wj1)) —*=, L€ (ti, 1], in,

and the piecewise constant companion
b(w")(0) := 0,
. 4.
{b@ﬂ@y:bmﬁ, £ (t; 1,1, in Q. (4.30)
By Theorem 4.1, each u; is uniquely determined; hence u" and u" are well defined. Using

Proposition 4.1 we infer the following uniform estimates for the Rothe functions.
Adv Syst Sci Appl (25)
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Proposition 4.2:
For every n € N* there exists C = C(T, f), independent of n, such that

1)~ b lesiany < @31)

[o(u") | < C, (4.32)

| 6@") (|20 < C, (4.33)

‘&:b(vﬁ) < C, (4.34)
LY(Qr)

/ U (2, VI (@) dedt < kC. (4.35)

T

Proof
From (4.29)—(4.30),

") () — b (1) = (bus) = by 1)) (1= 1) = B bany) = by ),

T T

whence

16(T") = b(u") |1 (@r) = Z/ 16(e5) = buj—1)l| 21 ()~
j=1 Jti—1

T n
=3 D lIb(us) = bl )| o),
j=1
and (4.31) follows from (4.24). Next, using (4.29),

n (Y tp—t t—tj1
o orian = [ (Il o+ ) sy =)
j=1“ti—1

= T3 (sl + bl

j=1
which gives (4.32) by (4.23). Estimate (4.33) follows directly from (4.30) and (4.23).
For (4.34), observe that on (¢;_1, ],
b(u;) — b(u;_
atb<un) (U’]) (uj 1)

T

Y

SO
n y n
n ! 1
10| 1 g, < Z/t - 16(u;) = buj—1) |y dt = > [1b(u;) = b(uj1) || 1) < C.
7=1 j—1 J=1

Finally, for (4.35),

/ U(z, VT,(u")) dvdt = Zi; /:1/Q U(z, VTi(u;)) dz dt

T

= TZ/ U(z, VTi(u;)) dv < kC
j=1"¢
by (4.25). This completes the proof. [
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4.2. Convergence Results

Proposition 4.3:
Assume that (3.10)—(3.14) hold. Then there exists a measurable function u such that, for every
k>0,

T (@) — Ti(u) weakly in Wy ™" Ly (Qr), (4.36)
Vu" — Vu a.e. in Qr, (4.37)
a(x,t, VTp(@")) — a(z,t,VTi(u))  weakly in (Lg(Qr))*, (4.38)
Uz, VT (@")|) = Yz, |VTi(w)|)  strongly in L'(Qr), (4.39)
b(u") — b(u) in C([0,T]; L'(2)) . (4.40)
asn — oo.
Proof

Proof of (4.36). From (4.32) and (3.14) we know that {b(u")} is bounded in L'(Q7);
combining this with standard truncation estimates and the boundedness of ()7 yields uniform
integrability for {u"}. Hence, up to a subsequence,

L1, L . .
u "Dy in LY(Qr) and " — wae.in Qr.

Next we prove tail control for the piecewise constant interpolant %". Using (3.12) and (4.35)
we obtain

inf U(z, k) meas{(z,t) € Qr: [u"| > k} < / U(z, VT (u")]) d dt
{lun >k}

2eQ
< (T, )k,
whence, by (2.2),
meas{(z,t) € Q7 : [u"| >k} — 0 ask — oo, uniformly in n.
For any v > 0,
meas{|w’ — u!| > v} < meas{|w"| > k} + meas{|u?| > k}
+meas{|T, (@) — Tp,(u?)| > v} (4.41)

Since T},(w") is bounded in W, Ly (Qr) for each fixed k > 0, there is v, € W, Ly (Qr) and

a subsequence (not relabeled) with T}, (@") — ), weakly in W, * Ly (Qr). Hence {T}, (")} is
Cauchy in measure. Using (4.41) and the uniform tail bound, we infer that {@"} is Cauchy in
measure, thus ©"” — v a.e. in ()1 for some v.

We now show v = u. By (4.31) and the Lipschitz property of b,

v — u||L1(QT) < hnlninf " _un”Ll(QT) =0,

hence v = u. Therefore Ty (@") — T} (u) weakly in Wy Ly (Qr), which proves (4.36).

Proofs of (4.37)—(4.39). These follow by the standard Minty—Browder/monotonicity
argument for Leray—Lions operators in the Musielak—Orlicz setting applied to the truncations,
exactly as in Proposition (5.5) of [3]; we omit the repetition.

Proof of (4.40). Let f" be the piecewise constant in time reconstruction of f:
fn(t,]f) = f](ilf) fort € (tjfl,tj}, j = 1,...,n.
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The discrete entropy inequality (4.16) for (u;) rewrites, for the interpolants, as

T
/ <8tb(u”), Ti(u" — g0)>dt + / a(xz,t,Vu")- VI (u" — @) dxdt
0 T (4.42)

< [T (a" — ) dxdt,
Qr

for all ¢ € L>®°(Qr) N Wy Ly(Qr) with o(T) = 0.
Fix n, m € N and choose in (4.42) for (u",u") the test o = T, (u™), and for (u™,u™) the
test o = T3, (u"). Summing the resulting inequalities gives

T
/ <8t(b(u") —b(u™)), Tp(@" —ﬂm)>dt+ Jim I < If" = Mo, (443)
0 o
where

1y = / a(z,t, V) VTL(@ — Th(@™) + a(z, t, VA™) - VI, — Ty(@")) da dt.
Qr
Adding and subtracting Tj,(b(u") — b(u™)) in the duality term, we obtain

/0 T<8t(b(u”) — b(u™)), Ty(b(u") — b(um))>dt + lim 1I35" (4.44)

<= P len + [ (0007) = b)), T = b)) = Tufar — ) )t

Let J, : R — R, be the convex primitive Ji(s) = [; Ti(c) do. Then

(o, Tu)) = % /Q Ju(v)dz in L}(0,T)

forv € LY(0,T; L (Q)) with 9,v € L' (0, T; M(Q)). Applying this to v = b(u™) — b(u™) in
(4.44) and integrating in time yields

/QJk(b(un)(t) - b(um)(t)) dr + lim ]IIZ}T

h—o0

< / (Db(u) = b(u™), T(b(u") — b(u™)) —Tkm“—am)}dt\ 1= P won-

Since 9,b(u") is uniformly bounded in L'(Q7) by (4.34), Tj,(u" — ¢) — Ti(u — ) in
L>(Qr) asn — oo, and f" — f in L'(Qr), it follows that

lim ' /0 T<8t(b(u”) — b(u™)), T(b(u™) — b(u™)) — Ty(@" — ﬂm)>dt' — 0,

n,Mm—00

im £ = fln = 0.

Moreover, by the same monotonicity argument used in the uniqueness part of Theorem 4.1,
limy, oo I1;7" > 0. Hence, letting n, m — oo gives

lim Ju(b(u™)(t) — b(u™)(t)) dz =0  forallt € [0,T]. (4.45)

n,m—oo [
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Standard properties of .J. (see, e.g., the proof of Theorem 1.1 in [10]) then yield
lim ‘b(u")(t) — b(um)(t)} dz =0,

so {b(u™)} is Cauchy in C([0,T]; L'(€)). Since b(u™) — b(u) in L'(Qr), we conclude
b(u") — b(u) in C([0,T); L'(Q)), i.e., (4.40). O

4.3. Passage to the Limit

We now show that the limit function u obtained in Proposition 4.3 is an entropy solution of

(1.1).
Letv € WH Ly (Qr) N L>®(Qr) with dv € W Lg(Qr) + L (Qr). By Lemma 5 and
Theorem 3 of [9], there exists an extension T to {2 x R such that

TEWWLy(QAxR)NLHQ x R)NL®(Q x R), 8;7€ W Lg(Q x R) + LY(Q x R),
and there exists a sequence (w;),jen C D(€2 x R) with w;(-,T") = 0 such that
w; = Tin Wy Ly(Q x R),  Ow; — 00in W L5(Q x R) + L (2 x R).  (4.46)

Fix k£ > 0 and j € N. In the discrete entropy inequality (4.42) for (u",u™), choose as test
function
o =1u"—Tp(u" — wj).

Since w;(-,T) = 0, we have ¢(T) = 0 and ¢ € L®(Qr) N W, Ly(Qr). Denote k := k +
c|lw;leo (with ¢ > 0 independent of n, j). We obtain, for every ¢ € [0, 77,

T
/ (Bb(u™), Tl — w) Yt + / d(,t, V(@) - VIL@ — w;) da dt
0 T (4.47)

T
Adding and subtracting 7}, (u" — w;) in the time—duality term gives
T

/0 T<0tb(u"), To(u — wj)>dt + /0 <8tb(u"), T(@ — w;) — To(u" — wj)>dt

+/ a(z,t, VIR@")) - VI (" — w;) dodt < / [Ti(T" — w;) dz dt. (4.48)

T T

Limit in the first term. Using the chain rule in duality (as in the proof of (4.40)) we can
write

/0 T<8tb(u”), Tl — wy) Y
:/OT<atwj, /u b'(z)T,;(z—wj)dz>dt+/g/ounm b (s) T (s — w;(T)) ds da.

0

Since O >0 and w;(-,7) =0, the terminal term is nonnegative. Let M :=Fk + (d +
2)||w;|leo- By the strong convergence Ty (u") — Th(u) in Egy(Qr) (Proposition 4.3) and
(4.46), we pass to the limit:

T

lim <6twj, / V(2) Th(z — wj) dz>dt = / <8tw]‘, / V(z) (2 — w;) dz>dt.
0 0 0

n—o0 0
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Limit in the second term. From (4.34) we have ||0;b(u")||11(g,) < C. Moreover, T, (u" —
w;) = Tp(u — w;) and Ty, (u" — w;) = Ti(u — w;) in L=(Qr) (by (4.40) and (4.36)). Hence

lim
n—oo

T
/ <0tb(u”), TW(@" — w;) — Th(u" — wj)>dt’ —0. (4.49)
0

Limit in the operator term. Write

/ a(z,t, VITz([W")) - VI, (u" — w;) dv dt
Qr

= / a(:z:,t, VT,;(H”)) -Vu" dx dt — / a(x,t, VT,;(H”)) - Vw; dz dt,
Dn,;

Dn j

where D,, ; == {(z,t) € Qr : |u" —w;| < k}. Using (4.37)-(4.39), Fatou’s lemma and the
standard Minty argument for Leray—Lions operators in Musielak—Orlicz spaces (applied to
the truncations), we obtain

lim inf/ a(z,t, VTi([@")) - VI,(T" — w;) dx dt
n— oo
’ (4.50)
> / a(z,t, VTi(u)) - VI (u — w;) da dt.

T

Limit in the right-hand side. ~Since f* — fin L'(Qr) and Ty (7" — w;) — Ti(u — w;) in
L=(Qr),

[T —w;)dedt — fTi(u —wj)dedt. (4.51)
Qr Qr

Combining (4.48), the lower semicontinuity (4.50), the time—duality limits, and (4.51),
and then letting n — oo, we arrive at

T Ths(u)
/ <8twj, / V()T (2 — wy) dz>dt + / a(z,t, VTi(u)) - VI (u — w;) dx dt
0 0

T

< [ Ti(u — wj) dedt.
Qr

Finally, sending j — oo and using (4.46) (together with the density of D(Qr) in the class of
admissible tests) yields, for every admissible v,

T u
/ <0tv, / V' (2)T(z — v) dz>dt + / a(z,t,Vu) - VI (u—v)dedt < [ Ti(u—v)dxdt.
0 0 T QT

This is precisely the entropy inequality of Definition 3.1. Therefore, u is an entropy solution
of (1.1), which completes the proof of Theorem 3.1.
5. CONCLUSION AND PERSPECTIVES

We have proved the existence of an entropy solution to the doubly nonlinear parabolic
problem (1.1) in the full Musielak—Orlicz setting without assuming the A, condition. The
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proof is built on a Rothe-type semidiscretization, a discrete entropy formulation, and a
priori bounds derived in the modular topology. These ingredients yield compactness of the

Rothe sequence in W, "* Ly (Q7) and C([0, T]; L'(Q)), and allow for the identification of the
limit via monotonicity methods for Leray—Lions operators. The result encompasses general
Lipschitz, strictly increasing nonlinearities b(-) and merely L' data, thereby unifying and
extending earlier contributions obtained in Sobolev, variable—exponent, and Orlicz—Sobolev
frameworks.

Beyond offering a streamlined existence theory in a nonstandard growth context,
the approach is robust and suggests several directions for future research. On the
analytical side, one may investigate conditions ensuring uniqueness and L'—contraction
at the continuous level, finer regularity (e.g., local higher integrability of gradients), or
stability under lower—order perturbations. On the modeling and numerical side, the discrete
entropy structure lends itself to fully discrete schemes and error analysis; extending the
method to inhomogeneous boundary conditions, obstacle problems, measure—valued data, or
anisotropic/fractional operators in Musielak—Orlicz spaces also appears within reach. These
perspectives highlight the versatility of the Rothe framework for nonlinear evolutions with
generalized growth.
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