
Adv Syst Sci Appl 2025; 3; 74-95
Published online at https://ijassa.ipu.ru.

A Word-Oriented Substitution–Permutation Network
Cipher with Security Evaluation based on Active

S-Box Bounds and a Dynamic Advanced Encryption
Standard-Based Variant

Nguyen Van Long1, Tran Thi Luong1*,

Nguyen Bui Cuong2, Truong Minh Phuong2

1) Academy of Cryptography Techniques, Hanoi, Vietnam
2) Institute of Cryptographic Science and Technology, Hanoi, Vietnam

Abstract: The Substitution–Permutation Network (SPN) serves as a foundational structure in the
design of modern block cipher algorithms due to its effective realization of two essential properties:
confusion and diffusion. Currently, the security of SPNs is actively studied, with the S-box
structure and the diffusion layer being key components analyzed to enhance resistance against
attacks. In this paper, we propose a generalized SPN-based cipher model inspired by the Advanced
Encryption Standard (AES) structure. We then present a novel theoretical approach to evaluating
the security of this SPN cipher, based on a lower bound of the number of active S-boxes. This
forms the basis for identifying the roles and cryptographic properties required of the component
transformations in this type of cipher. Next, we propose a dynamic block cipher algorithm based
on the AES cipher, which not only ensures the required level of security but also inherits the
implementation advantages of the original AES. The dynamic AES block cipher demonstrates
higher security compared to the original AES, passes randomness evaluation standards, and is
efficiently implementable. These results are significant in guiding the design of secure and flexible
block cipher algorithms, while also providing a theoretical foundation for the selection and
evaluation of secure cryptographic components in modern cryptosystems.

Keywords: Dynamic block cipher, active S-box, SPN block cipher, AES.

1. INTRODUCTION

Block ciphers serve as fundamental building blocks in numerous modern network security
protocols. Typically, these ciphers are designed using an iterative round-based structure, where
each round comprises two primary layers [1]: a confusion layer and a diffusion layer. Among
various designs, the SPN architecture is widely adopted for symmetric encryption due to its
effective combination of nonlinear substitution (via S-boxes) and permutation (P-layer) to
achieve both confusion and diffusion. In most SPN-based block ciphers [2–5], the diffusion
layer is implemented using a linear transformation, while the confusion layer relies on small
nonlinear substitution boxes, commonly 4 or 8 bits in size. Given their small size, these S-
boxes offer limited nonlinearity, which highlights the importance of the diffusion layer in
propagating the S-box nonlinearity across the entire cipher block. As emphasized in Shannon’s
seminal work [1], strong cryptographic security depends on the joint and inseparable use of
both confusion and diffusion mechanisms.

Among the class of algorithms based on the above principle, AES [2] is arguably the most
prominent representative of SPN block ciphers and has attracted the most extensive research
in this field. From a security perspective, the designers of AES demonstrated that the algorithm
achieves at least 25 active S-boxes after four rounds of operation [2]. This issue was later

* Corresponding author: luongtranhong@gmail.com

 A WORD-ORIENTED SUBSTITUTION–PERMUTATION NETWORK CIPHER 75

Copyright ©2025 ASSA. Adv. in Systems Science and Appl. (2025)

revisited and extended in [6] to the case involving an 8×8 MDS matrix. However, the analysis
in [6] is based on certain specific differential trails. As a result, the lower bounds on the number
of active S-boxes for 3, 7, 11, ... rounds proposed in that study are not entirely accurate (see
Table 1 and Table 3 in [6]).

Thanks to its widespread adoption and long-established security, AES has become the
focus of numerous studies aimed at enhancing and developing more optimized variants. One
prominent research direction involves the construction of dynamic AES versions, in which
core components and transformations within the round function are designed to be key-
dependent or time-varying. From a design philosophy standpoint, the concept of dynamic
block cipher security was introduced by L. Knudsen in [7], and this viewpoint was later
supported by the original designers of AES, also in [7].

For dynamic versions of the AES block cipher, numerous research studies have been
published, each proposing different dynamicization methods. Some approaches focus on
making the AES S-boxes key-dependent [8–14], while others emphasize generating key-
dependent MixColumn transformations [15–18]. Notably, there are studies that explore the
dynamicization of both the S-box and MixColumn components of AES [19], and even the
dynamicization of all three transformations—S-box, MixColumn, and ShiftRow—has
garnered attention [20–22]. Another ongoing research direction involves making the XOR
operation dynamic within AES [23–27]. Additionally, the authors in [28] proposed a dynamic
AES approach where the number of encryption rounds varies for each plaintext block.

In the context of dynamic S-box techniques for AES, Al-Dweik and colleagues [9]
proposed a way to create key-dependent S-boxes that exhibit desirable algebraic characteristics
such as nonlinearity, BIC, and SAC. However, other crucial cryptographic attributes of these
S-boxes were not addressed in their study. Another approach to generating key-based S-boxes
for AES was introduced in [10], which involves rearranging the S-box structure by employing
a simulated key expansion algorithm. Additionally, the authors in [11] presented a technique
to produce modified S-boxes by permuting the original AES S-box. These adaptable S-boxes
depend on a secret key and incorporate affine constants and an unconventional polynomial.
With each additional bit of the key, a newly rearranged S-box is generated, thereby enhancing
the cipher’s complexity. In [12], an S-box generation algorithm based on the Playfair cipher
was examined. The authors evaluated and compared criteria such as balance and avalanche
standards between the modified block cipher with dynamic S-boxes and the original AES.
However, similar to [9], other important cryptographic properties were not addressed. In [13],
the authors proposed a key-dependent dynamic S-box generation algorithm for AES, utilizing
a pseudo-random number generator (PRNG) based on three linear feedback shift registers
(LFSRs). In [14], a completely different approach was explored, where dynamic S-boxes are
generated based on Epoch time or Unix time during each encryption cycle. However, the
method proposed in [14] lacks a clear explanation of the S-box generation mechanism when
using Epoch or Unix time as input, which makes it difficult for readers to understand. Notably,
the cryptographic properties of the resulting dynamic S-boxes were not mentioned at all.

Returning to the problem of dynamic AES block cipher design at the MixColumns
transformation layer, Murtaza et al. [15] proposed a key-dependent MixColumns
transformation based on scalar multiplication, where the scalar multiplication is performed on
the rows of the MDS matrix. Similar approaches were also applied in [16]. Additionally, the
authors in [16] explored dynamic MixColumns transformations using exponentiation. Along
the same lines, the authors in [17] utilized Self-Reciprocal Recursive MDS matrices to
introduce dynamism into the MixColumns layer. Meanwhile, in [18], a collection of n×n
binary matrices was presented that can be used to generate dynamic matrices resembling both
the AES matrix and recursive MDS matrices.

Regarding the dynamic modification of multiple transformation components within the
AES round function, a notable example is presented in [19]. The authors introduced dynamic
S-boxes and new MixColumns matrices that retain favorable cryptographic properties while

76 N.V. LONG, T.T. LUONG, N.B. CUONG, T.M. PHUONG

Copyright ©2025 ASSA Adv. in Systems Science and Appl. (2025)

developing a dynamic version of AES. Beyond the SubBytes and MixColumns components,
the ShiftRows component was also made dynamic in the study by the authors in [20], where
the dynamic approach is similarly key-dependent. The approach of constructing key-
dependent, randomly generated dynamic transformation components was proposed in [21],
where all three transformations—SubBytes, ShiftRows, and MixColumns—within the AES
round function are made dynamic. However, no security evaluations were provided in this
study. Continuing with the dynamic modification of these three cryptographic components,
[22] introduced a new, efficient, key-dependent AES algorithm.

For the AddRoundKey transformation in the AES round function, the authors in [23, 24]
introduced improved techniques using key-dependent XOR tables generated through 3D
chaotic maps. These XOR tables are based on initial secret parameters, resulting in a dynamic
AES version where the AddRoundKey layer follows the rules of the new XOR tables. This
approach was further investigated and developed by T. T. Luong et al. in [25-27], employing
different XOR table generation techniques.

Recently, in 2024, Adamu et al. published a study on dynamic AES [28]. In their approach,
the number of encryption rounds for each data block is made dynamic and key-dependent.
While this represents a novel method, we assess that it may not be fully reasonable from a
security standpoint, since the number of rounds—such as 10 for AES-128—is a threshold
chosen based on known cryptanalysis attacks. Randomizing the number of rounds without
ensuring the necessary security bounds could compromise the entire system.

Our observations are as follows: According to the philosophy of dynamic cryptosystems
proposed by Knudsen in [7], introducing dynamism is meaningful from a security perspective.
However, to the best of our understanding, dynamic methods must comply with minimal
security principles. For example, cryptographic components such as the MDS property of the
matrix in AES’s MixColumns transformation must be preserved, the cryptographic properties
of the generated dynamic S-boxes should not be inferior to the original version, and the new
ShiftRow operation must still ensure effective diffusion of active bytes, among others.
Secondly, dynamic methods need to consider the potential significant impact on the
implementation of the proposed solution. The research works we reviewed above seem to have
overlooked these issues. In particular, those dynamic approaches fail to leverage AES’s table
lookup implementation for optimizing speed. Some studies mention recalculating these tables
after each dynamic change. However, for applications requiring frequent key changes, this
recalculation can be even more complex than the encryption operations themselves for a single
data block. This is likely a limitation affecting the practical applicability of dynamic block
ciphers.

Our contributions. In this study, we first propose a generalized AES-like SPN cipher model.
Then, we introduce a novel approach to evaluate the security of these ciphers based on
estimating a lower bound on the number of active S-boxes. Accordingly, we present a
generalized AES-like SPN cipher model and provide a theoretical proof for the results obtained.
From these results, we identify the crucial cryptographic roles and properties that each
component of the cipher’s round function must possess. Building on this foundation, we
propose an improved dynamic AES version with dynamic components that satisfy the
necessary security requirements. Notably, our dynamic method does not require recomputing
lookup tables in the optimized table-based implementation. This is a significant distinction
compared to previous works, as it effectively addresses the practical implementation
challenges of dynamic block ciphers. The dynamic AES cipher is carefully evaluated,
demonstrating higher security than the original AES, meeting randomness standards, and
enabling efficient implementation.

Based on this, the remainder of the paper is organized as follows. Preliminary knowledge
and notation are presented in Section 2. Section 3 introduces a generalized SPN block cipher
model along with theoretical results on the lower bound of active S-boxes for four rounds of
this cipher. A dynamic AES block cipher algorithm is proposed in Section 4. Section 5

 A WORD-ORIENTED SUBSTITUTION–PERMUTATION NETWORK CIPHER 77

Copyright ©2025 ASSA. Adv. in Systems Science and Appl. (2025)

provides a security analysis of the dynamic AES cipher. Section 6 evaluates the randomness
properties of the dynamic AES cipher. Section 7 analyzes the implementation efficiency of the
dynamic AES cipher on a software platform. The conclusion is in Section 8.

2. PRELIMINARIES

Some notations used in this paper include:
𝔽ଶ: the binary field consisting of two elements, 0 and 1.
𝔽ଶ೙: the Galois field containing 2௡ elements, with addition denoted by XOR (⊕) and
multiplication denoted by (⊗).

ℤା: the set of positive integers.
𝑥 ∥ 𝑦: the concatenation of bit string 𝑦 to bit string 𝑥.
{𝑥}ௗ: a bit string 𝑥 of length 𝑑 bits.
𝑤𝑡(𝑥): the Hamming weight of the binary vector 𝑥.

Given a vector 𝑥 represented as 𝑥 = 𝑥ଵ ∥ 𝑥ଶ ∥ ⋯ ∥ 𝑥௠ with 𝑥௜ ∈ {0,1}௡ , the quantity
𝑤𝑡௡(𝑥) is called the bundle weight of the vector 𝑥 and is defined as follows:

𝑤𝑡௡(𝑥) = #{𝑥௜|𝑥௜ ≠ 0}.

Let 𝐴 be a linear transformation: 𝔽ଶ೙
௠ ⟶ 𝔽ଶ೙

௠ , we define the branch number of 𝐴, denoted
by 𝐵𝑟௡(𝐴), as follows:

𝐵𝑟௡(𝐴) = 𝑚𝑖𝑛
௫∈𝔽

మ೙
೘ ,௫ஷ଴

(𝑤𝑡௡(𝑥) + 𝑤𝑡௡(𝐴(𝑥)))

Here, ⌈𝑥⌉ denotes the smallest integer 𝑞 such that 𝑞 ≥ 𝑥.

3. PROPOSE A GENERALIZED SPN CIPHER MODEL AND EVALUATE
A LOWER BOUND ON THE NUMBER OF ACTIVE S-BOXES.

In this section, we first introduce a generalized word-oriented SPN cipher model. We then
present some theoretical results on the lower bound of the number of active S-boxes for this
type of cipher. The security of this block cipher structure against linear and differential
cryptanalysis is typically based on the lower bound of the number of active S-boxes.

3.1. Propose a Generalized SPN Cipher Model Inspired by the AES Structure

In this section, we present a word-oriented SPN block cipher model based on three
transformations that play roles similar to the SubBytes, ShiftRows, and MixColumns
operations in AES.

First, we define an 𝑚-diffuse linear transformation as follows:

Definition 1. Let 𝜋 be a word-oriented linear transformation from {0,1}௠×௧ to {0,1}௠×௧,
where 𝑚, 𝑡 ∈ 𝑍ା, and 𝑡 = 𝑚 × 𝑙ᇱ × 𝑛. Then, 𝜋 is called an 𝒎-diffuse transformation if each
input and output state (belonging to {0,1}௠×௧) is partitioned into 𝑚 disjoint consecutive
subsets of {0,1}௧, satisfying the following property: in each output subset, there exist 𝑙ᇱ distinct
𝑤-bit words originating from all the input subsets of the transformation.

For each string 𝑥 ∈ {0,1}௠×௧ with 𝑚, 𝑡 ∈ 𝑍ା, and 𝑡 = 𝑚 × 𝑙ᇱ × 𝑛 , besides the
representation as 𝑛-bit words (in which case we can compute the bundle weight 𝑤𝑡௡(𝑥)), 𝑥
can also be represented as 𝑡-bit words, where 𝑡 = 𝑚 × 𝑙ᇱ × 𝑛. Let 𝑥 = 𝑥ଵ ∥ ⋯ ∥ 𝑥௠, with 𝑥௜ ∈
{0,1}௧, 1 ≤ 𝑖 ≤ 𝑚. In this representation, we can also compute the bundle weight 𝑤𝑡௧(𝑥). In
this form, each 𝑥௜ is called a substate, and the transformation 𝜋 can be illustrated in Figure 3.1.

78 N.V. LONG, T.T. LUONG, N.B. CUONG, T.M. PHUONG

Copyright ©2025 ASSA Adv. in Systems Science and Appl. (2025)

Fig. 3.1. Illustration of the transformation π, where the black arrows represent

the transfer of l′ n-bit words from each input state to the output substates

We present some properties related to the 𝑚-diffuse transformation as follows:

Lemma 3.1. Let 𝜋 be an 𝑚 -diffuse transformation from the set {0,1}௠×௧ to {0,1}௠×௧ ,
where 𝑚, 𝑘 ∈ 𝑍ା, and 𝑡 = 𝑚 × 𝑙ᇱ × 𝑛. Then:

1. 𝜋ିଵ is also m-diffuse.

2. 𝑤𝑡௧൫𝜋(𝑥଴)൯ × 𝑙ᇱ ≥ 𝑤𝑡௡൫𝑥଴,௝൯ for all 𝑗 = 1, … , 𝑚,

where 𝑥଴ = 𝑥଴,ଵ ∥ 𝑥଴,ଶ ∥ ⋯ ∥ 𝑥଴,௠ , and 𝑥଴,௜ ∈ {0,1}௧.
Proof.
It is straightforward to verify this from the definition of an 𝑚-diffuse permutation.
Consider the weight of 𝑥଴ as follows:

 When 𝑤𝑡(𝑥଴) = 0, we have 𝑤𝑡௧(𝑥଴) = 𝑚𝑖𝑛
௝ୀଵ,…,௠

𝑤𝑡௡(𝑥଴,௝) = 0.

 When 𝑤𝑡(𝑥଴) > 0 , there exists some 𝑗 such that 𝑥଴,௝ ≠ 0 ∈ {0,1}௧ . Suppose

𝑤𝑡௡൫𝑥଴,௝൯ = 𝑑 , where 1 ≤ 𝑑 ≤ 𝑡 . Then, ቒ
ௗ

௟ᇲ
ቓ 𝑛 -bit blocks in 𝑥(଴,௝) have nonzero bundle

weight. Since the permutation 𝜋 has the 𝑚 -diffuse property, these ቒ
ௗ

௟ᇲ
ቓ 𝑛 -bit blocks in 𝑥(଴,௝)

will be diffused into ቒ
ௗ

௟ᇲ
ቓ 𝑡-bit substate blocks in 𝜋(𝑥଴). Thus,

𝑤𝑡௧(𝜋(𝑥଴)) ≥ ඄
𝑑

𝑙′
ඈ = ቜ

𝑤𝑡௡(𝑥଴,௝)

𝑙′
ቝ

Therefore, 𝑤𝑡௧(𝜋(𝑥଴)) × 𝑙ᇱ ≥ 𝑤𝑡௡(𝑥଴,௝) for all 𝑗 = 1, … , 𝑚. ■
Next, we consider the local diffusion transformation 𝜃: {0,1}௧×௠ → {0,1}௧×௠, constructed

from smaller-dimensional diffusion transformations 𝜃௜: {0,1}௧ → {0,1}௧ for 1 ≤ 𝑖 ≤ 𝑚 ,
defined as follows:

𝜃(𝑥) = 𝜃ଵ(𝑥ଵ) ∥ 𝜃ଶ(𝑥ଶ) ∥ ⋯ ∥ 𝜃௠(𝑥௠) (1)
where 𝑥 = 𝑥ଵ ∥ 𝑥ଶ ∥ ⋯ ∥ 𝑥௠, 𝑥௜ ∈ {0,1}௧.

In this case, we obtain the following result about a transformation composed of 𝜋 and 𝜃 to
achieve an optimally diffusive transformation with a higher dimension.

Theorem 3.1. Let 𝜋, 𝜋ᇱ: {0,1}௧×௠ → {0,1}௧×௠ be two 𝑚 -diffuse permutations, and let
𝜃: {0,1}௧×௠ → {0,1}௧×௠ be a transformation defined by (1) based on 𝑚 n-bit-oriented
transformations 𝜃௜: {0,1}௧ → {0,1}௧ satisfying 𝐵𝑟(𝜃௜) = 𝑡௜. Then, the transformation 𝜎 = 𝜋 ∘
𝜃 ∘ 𝜋ᇱ satisfies:

𝑚𝑖𝑛௫∈{଴,ଵ}೟×೘,௫ஷ𝟎{𝑤𝑡௧(𝑥) + 𝑤𝑡௧(𝜎(𝑥))} × 𝑙′ ≥ 𝑚𝑖𝑛௜∈{ଵ,..,௠} {𝑡௜}
Proof.
Consider the input to the transformation 𝜎 of the form 𝑥଴ = (𝑥ଵ

଴, . . , 𝑥௧×௠
଴), where 𝑥௝

଴ ∈

{0,1} for 𝑗 = 1, … , 𝑡 × 𝑚 . Let 𝑥ଵ, 𝑥ଶ, 𝑦 ∈ {0,1}௧×௠ satisfy 𝑥ଵ = 𝜋(𝑥଴), 𝑥ଶ = 𝜃(𝑥ଵ) , and
𝑥ଷ = 𝜋ᇱ(𝑥ଶ). Then, we have:

 A WORD-ORIENTED SUBSTITUTION–PERMUTATION NETWORK CIPHER 79

Copyright ©2025 ASSA. Adv. in Systems Science and Appl. (2025)

𝑚𝑖𝑛௫బ∈{଴,ଵ}೟×೘,௫బஷ𝟎൛𝑤𝑡௧(𝑥଴) + 𝑤𝑡௧൫𝜎(𝑥଴)൯ൟ = 𝑚𝑖𝑛௫∈{଴,ଵ}೟×೘,௫ஷ𝟎{𝑤𝑡௧(𝑥଴) + 𝑤𝑡௧(𝑥ଷ)}

= 𝑚𝑖𝑛௫భ∈{଴,ଵ}೟×೘,௫ஷ𝟎 ቄ𝑤𝑡௧(𝜋ିଵ(𝑥ଵ)) + 𝑤𝑡௧ ቀ𝜋൫𝜃(𝑥ଵ)൯ቁቅ.

Since 𝑥ଵ ≠ 𝟎 (where 0 is the all-zero vector), there exists a subset in the partition of 𝑥ଵ
into 𝑚 disjoint consecutive subsets of the form 𝑥ଵ,௝ = (𝑥(௝ିଵ)×௧ାଵ

ଵ , … , 𝑥௝×௧
ଵ) satisfying

𝑤𝑡௡൫𝑥ଵ,௝൯ = 𝑑 with 1 ≤ 𝑑 ≤ 𝑙ᇱ × 𝑚, 1 ≤ 𝑗 ≤ 𝑚. Then, since 𝐵𝑟൫𝜃௝൯ = 𝑡, we have:

𝑤𝑡௡൫𝑥ଵ,௝൯ + 𝑤𝑡௡ ቀ𝜃௝൫𝑥ଵ,௝൯ቁ ≥ 𝑡௝.

From Lemma 3.1 and the fact that 𝜋 and 𝜋ିଵ are 𝑚-diffuse transformations, we have:

𝑤𝑡௧(𝜋ିଵ(𝑥ଵ)) × 𝑙′ ≥ 𝑤𝑡௡൫𝑥ଵ,௝൯ và 𝑤𝑡௧൫𝜋(𝜃௝൫𝑥ଵ,௝൯)൯ × 𝑙′ ≥ 𝑤𝑡௡ ቀ𝜃௝൫𝑥ଵ,௝൯ቁ

It follows that:

൬𝑤𝑡௧(𝜋ିଵ(𝑥ଵ)) + 𝑤𝑡௧ ቀ𝜋൫𝜃(𝑥ଵ)൯ቁ൰ × 𝑙′ ≥ 𝑡௝, ∀𝑥ଵ ∈ {0,1}௧×௠\{0}, 𝑗 = 1, … , 𝑚.

𝑚𝑖𝑛௫∈{଴,ଵ}೟×೘,௫ஷ𝟎{𝑤𝑡௧(𝑥) + 𝑤𝑡௧(𝜎(𝑥))} × 𝑙′ ≥ 𝑚𝑖𝑛௜∈{ଵ,..,௠} {𝑡௜}. ■

Fig. 3.2. Description of the round function of the proposed generalized SPN cipher

From the two diffusion transformations above, we propose a specific iterative block cipher
with an SPN structure and an 𝑙-bit word-oriented round function, where the block size is 𝑛
bits, with 𝑙 = 𝑚ଶ × 𝑙ᇱ × 𝑤. The input and output states of the round function of the block
cipher are strings represented as states consisting of 𝑚ଶ × 𝑙ᇱ blocks of 𝑛 bits, denoted by 𝑥 =
(𝑥ଵ, 𝑥ଶ, … , 𝑥௠మ×௟ᇲ) , where each 𝑥௜ is an 𝑛 -bit block. These are transformed through the
following four basic operations:

The round key addition: 𝐾௜ with the input state 𝑥. However, this addition does not affect
the number of active S-boxes for different fault patterns, so we can omit it from consideration.

The nonlinear transformation 𝛾: uses a 𝑤-bit S-box 𝑠, which is applied in parallel across
the state as follows:

𝛾(𝑥) = 𝛾(𝑥ଵ, 𝑥ଶ, … , 𝑥௟ᇲ×௠మ) = 𝑠(𝑥ଵ) ∥ 𝑠(𝑥ଶ) ∥ ⋯ ∥ 𝑠(𝑥௟ᇲ×௠మିଵ) ∥ 𝑠(𝑥௟ᇲ×௠మ)

The permutation 𝜋: provides full diffusion, permuting the 𝑛-bit words within each state as
follows:

𝜋(𝑥ଵ, … , 𝑥௧×௠) = 𝑥ఘ(ଵ) ∥ 𝑥ఘ(ଶ) ∥ ⋯ ∥ 𝑥ఘ(௧×௠), where 𝜌 is a permutation of the set
{1, … , 𝑙′ × 𝑚ଶ} such that 𝜋 s an 𝑚-diffuse from {0,1}௧×௠ → {0,1}௧×௠, with 𝑡 = 𝑙′ × 𝑚 × 𝑛.

80 N.V. LONG, T.T. LUONG, N.B. CUONG, T.M. PHUONG

Copyright ©2025 ASSA Adv. in Systems Science and Appl. (2025)

The mixing step 𝜃: is applied in parallel to substates of size (𝑚 ⋅ 𝑙ᇱ) × (𝑚 ⋅ 𝑙ᇱ) over the field
GF(2௡) , based on a matrix 𝑀 with branch number Br(𝑀) . The state is divided into 𝑚
substates, each of which is transformed through this mixing step.

We refer to the SPN cipher with this proposed structure as 𝛾𝜋𝜃_𝑆𝑃𝑁. This structure is
illustrated in Figure 3.2.

Based on the proposed generalized SPN cipher (𝛾𝜋𝜃_𝑆𝑃𝑁), we describe several existing
SPN block ciphers in terms of the transformations and parameters of the proposed generalized
SPN structure.

Table 3.1 lists several word-oriented block ciphers that use this structure with a block size
of 128 bits and their corresponding transformations. For the case of 128-bit byte-oriented block
ciphers, Table 3.1 includes all existing SPN ciphers whose transformations satisfy the
properties and conditions we analyzed above. Note that for 𝑚 = 8, there is no permutation 𝜋
that satisfies the 𝑚-diffuse property.

Table 3.1. Some specific instances of the proposed generalized SPN structure
Cipher 𝒏 𝒎 𝒍′ 𝜸 𝝅 𝜽 Source

AES 8 4 1 SubBytes ShiftRows
MixColumns

(4 × 4 MDS matrix over 𝔽ଶఴ)
[2]

Kalyna128 8 2 4 𝜋௟
ᇱ 𝜏௟

𝜓௟
(8 × 8 MDS matrix over 𝔽ଶఴ)

[4]

Kuznyechik 8 1 16 𝜋′ Identity mapping
𝐿

(16 × 16 MDS matrix over 𝔽ଶఴ)
[5]

3.2. Lower Bound Evaluation of the Number of Active S-Boxes in the Proposed
Generalized SPN Cipher Model

In this section, we present the lower bound on the number of active S-boxes over four rounds
of the proposed generalized SPN cipher 𝛾𝜋𝜃_𝑆𝑃𝑁.

Theorem 3.2. Four consecutive rounds of a block cipher using a round function structured

in the form of 𝛾𝜋𝜃_𝑆𝑃𝑁 will have a number of active S-boxes no less than ቒ
஻௥(ெ)

௟ᇲ
ቓ × 𝐵𝑟(𝑀).

Proof.
For the convenience of presentation, we denote the input difference of a transformation—

such as the transformation 𝜃 —at round 𝑖 as Δ𝑖𝑛ఏ,௜ = (Δ𝑖𝑛ଵ
ఏ,௜, … , Δ𝑖𝑛௟

ఏ,௜) , where Δ𝑖𝑛௝
ఏ,௜ ∈

{0,1}, 1 ≤ 𝑗 ≤ 𝑙. Then, the total number of active S-boxes over rounds 1, 2, 3, and 4 is:

𝑛ଵ + 𝑛ଶ + 𝑛ଷ + 𝑛ସ = 𝑤𝑡௡(Δ𝑖𝑛ఊ,ଵ) + 𝑤𝑡௡(Δ𝑖𝑛ఊ,ଶ) + 𝑤𝑡௡(Δ𝑖𝑛ఊ,ଷ) + +𝑤𝑡௡(Δ𝑖𝑛ఊ,ଷ).

Since the 𝑛-bit S-boxes only shuffle within 𝑛-bits, and the transformations 𝜋 and 𝜋ିଵ are
word-oriented 𝑚-diffuse transformations over 𝑤-bit words, it is easy to prove that:

𝑤𝑡௡(Δ𝑖𝑛ఊ,௥) = 𝑤𝑡௡(Δ𝑜𝑢𝑡ఊ,௥), ∀𝑟 ∈ {1, … ,4}

𝑤𝑡௧(𝑥) = 𝑤𝑡௧ ൬𝜋 ቀ𝜃൫𝜋ିଵ(𝑥)൯ቁ൰ , ∀𝑥 ∈ {0,1}௠×௧.

To facilitate the calculation of the number of active S-boxes, we add two transformations,
𝜋 and 𝜋ିଵ, to the output of the 𝜃 transformation in the second round. Then, by applying the
result of Theorem 3.1 to the inputs of the three transformations—𝜋 (of the second round), 𝜃
(of the second round), and the added 𝜋 transformation—we obtain:

ቆ𝑤𝑡௧(Δ𝑖𝑛గ,ଶ) + 𝑤𝑡௧ ൬𝜋 ቀ𝜃൫𝜋(Δ𝑖𝑛గ,ଶ)൯ቁ൰ቇ × 𝑙′ ≥ 𝐵𝑟(𝑀)

Since: 𝜋 ቀ𝜃൫𝜋(Δ𝑖𝑛గ,ଶ)൯ቁ = 𝜋൫Δ𝑖𝑛ఏ,ଷ൯, therefore, we obtain:

 A WORD-ORIENTED SUBSTITUTION–PERMUTATION NETWORK CIPHER 81

Copyright ©2025 ASSA. Adv. in Systems Science and Appl. (2025)

൬𝑤𝑡௧(Δ𝑖𝑛గ,ଶ) + 𝑤𝑡௧ ቀ𝜋൫Δ𝑖𝑛ఏ,ଷ൯ቁ൰ × 𝑙′ ≥ 𝐵𝑟(𝑀)

Thus, the input differences of the substitution-diffusion-substitution structures in rounds

(1, 2) and (3, 4) will activate a number of S-boxes equal to ቒ
஻௥(ெ)

௟ᇲ
ቓ (see illustration in Figure

3). Since in each of these patterns, the number of active S-boxes is no less than 𝐵𝑟(𝑀), the

total number of active S-boxes for any input difference will be no less than ቒ
஻௥(ெ)

௟ᇲ
ቓ × 𝐵𝑟(𝑀).■

Fig. 3.3. Illustration of difference propagation through four rounds of the block cipher γπθ_SPN

From Theorem 3.2, we derive the following corollary.

Corollary 3.1. Four consecutive rounds of iterative block ciphers using a round function
structured like 𝛾𝜋𝜃_𝑆𝑃𝑁 , where the transformation 𝜃 employs MDS matrices of size
(𝑚 ⋅ 𝑙ᇱ) × (𝑚 ⋅ 𝑙ᇱ) over the field 𝔽ଶ೙, will have a number of active S-boxes no less than (𝑚 +
1) × (𝑚 ⋅ 𝑙ᇱ + 1).

Indeed, this follows directly from the fact that 𝐵𝑟(𝑀) = (𝑚 ∙ 𝑙′ + 1).
By applying Corollary 3.1, we can recover known results for practical SPN block ciphers

(see Table 2.2). This further confirms the validity of our Theorem 3.2and Corollary 3.1.

Table 3.2. Lower bounds on the number of active S-boxes over 4 rounds for several SPN ciphers
Cipher 𝒏 𝒎 𝒍′ Lower bound on the number of active S-boxes

AES 8 4 1 25
Kalyna 8 2 4 27

Kuneztik 8 1 16 34

Remark 3.1. A natural question arises: if we remove the 𝑚-diffuse condition from the
ShiftRows-type transformation such as 𝜋 in 𝛾𝜋𝜃 − 𝑆𝑃𝑁, will the lower bound on the number
of active S-boxes over four rounds be affected? The answer is yes. We examined a specific

82 N.V. LONG, T.T. LUONG, N.B. CUONG, T.M. PHUONG

Copyright ©2025 ASSA Adv. in Systems Science and Appl. (2025)

case with AES, where its ShiftRows transformation does not satisfy the 𝑚-diffuse property,
and the result shows that for its four-round transformation, the number of active S-boxes is
always less than 25.

Thus, the role of the transformation 𝜋 in the generalized SPN cipher model is truly
significant. Its design not only directly impacts the security level but also affects the
implementation efficiency of the block cipher algorithm. Based on the theoretical foundation
presented in this section, in the next section, we propose a modification to the ShiftRows layer
in AES to obtain a key-dependent dynamic version of AES, which maintains the required level
of security without significantly compromising the high-speed implementation capability of
the original AES algorithm.

4. PROPOSAL OF A SECURE AND EFFICIENT
KEY-DEPENDENT DYNAMIC AES ALGORITHM

The original AES algorithm is not only secure but also achieves high execution speed on many
platforms. The implementation method using lookup tables for this type of block cipher has
become popular and familiar within the cryptographic community. It is regarded as a “must-
have property” of a byte-oriented SPN block cipher. Many dynamic AES algorithm
approaches have been proposed, but it seems that they do not maintain the flexible
implementation using the lookup tables of the original AES. This may be a limitation in the
applicability of the dynamic algorithm. To overcome this issue, we propose a modification in
the ShiftRows transformation of the original AES to obtain a secure and efficient key-
dependent dynamic AES variant.

As we know, the AES algorithm processes a 128-bit data block divided into 16 bytes
arranged into a 4 × 4 two-dimensional state matrix.

We name the proposed dynamic AES algorithm AES_DST, which includes the following
basic transformations:

 The AddRoundKeys operation is the same as in the original AES
 The SubBytes operation is the same as in the original AES
 The MixColumns operation is the same as in the original AES
 The key schedule is the same as in the original AES

The byte permutation consists of two key-dependent transformations: ShiftRows and
TranBytes. Among them, the ShiftRows operation is the same as in the original AES, while
TranBytes is a transpose of the 4 × 4 data state matrix. These two transformations are selected
based on a secret key.

The steps performed in the dynamic block cipher algorithm AES_DST are described as in
Algorithm 4.1.

Algorithm 4.1. The dynamic block cipher algorithm AES_DST
INPUT:
- A 128-bit input data block (in) is organized into a 4 × 4 state matrix state.
- The master key (masterKey) has a length of 𝑘 bits (𝑘 = 128, 192, 256 bits

corresponding to the dynamic AES-128, AES-192, and AES-256 versions with 𝑛௥ =
10, 12, 14 rounds, respectively).

- The dynamic key 𝑘𝑑 has a length of 𝑛௥ bits.
OUTPUT: 128-bit ciphertext block.

Step 1. From the master key (masterKey) compute the array of round keys (𝑤) through

the key schedule.
Step 2. Encryption process – Procedure 𝐶𝑖𝑝ℎ𝑒𝑟(𝑖𝑛, 𝑑𝐾𝑒𝑦, 𝑛௥ , 𝑤):
1. 𝑠𝑡𝑎𝑡𝑒 ← 𝑖𝑛
2. 𝑠𝑡𝑎𝑡𝑒 ← 𝐴𝑑𝑑𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦(𝑠𝑡𝑎𝑡𝑒, 𝑤[0. .3])

 A WORD-ORIENTED SUBSTITUTION–PERMUTATION NETWORK CIPHER 83

Copyright ©2025 ASSA. Adv. in Systems Science and Appl. (2025)

3. for round from 1 to 𝑛௥ − 1 do
4. 𝑠𝑡𝑎𝑡𝑒 ← 𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠(𝑠𝑡𝑎𝑡𝑒)
5. if 𝑘𝑑[𝑟𝑜𝑢𝑛𝑑 − 1] = 1 then
6. 𝑠𝑡𝑎𝑡𝑒 ← 𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠(𝑠𝑡𝑎𝑡𝑒)
7. else
8. 𝑠𝑡𝑎𝑡𝑒 ← 𝑇𝑟𝑎𝑛𝐵𝑦𝑡𝑒𝑠(𝑠𝑡𝑎𝑡𝑒)
9. end if
10. 𝑠𝑡𝑎𝑡𝑒 ← 𝑀𝑖𝑥𝐶𝑜𝑙𝑢𝑚𝑛𝑠(𝑠𝑡𝑎𝑡𝑒)
11. 𝑠𝑡𝑎𝑡𝑒 ← 𝐴𝑑𝑑𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦𝑠(𝑠𝑡𝑎𝑡𝑒, 𝑤[4 ⋅ 𝑟𝑜𝑢𝑛𝑑. .4 ⋅ 𝑟𝑜𝑢𝑛𝑑 + 3])
12. end for
13. 𝑠𝑡𝑎𝑡𝑒 ← 𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠(𝑠𝑡𝑎𝑡𝑒)
14. if 𝑘𝑑[𝑛௥] = 1 then
15. 𝑠𝑡𝑎𝑡𝑒 ← 𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠(𝑠𝑡𝑎𝑡𝑒)
16. else
17. 𝑠𝑡𝑎𝑡𝑒 ← 𝑇𝑟𝑎𝑛𝐵𝑦𝑡𝑒𝑠(𝑠𝑡𝑎𝑡𝑒)
18. end if
19. 𝑠𝑡𝑎𝑡𝑒 ← 𝐴𝑑𝑑𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦𝑠(𝑠𝑡𝑎𝑡𝑒, 𝑤[4 ⋅ 𝑟௥ . .4 ⋅ 𝑟௥ + 3])
20. return 𝑠𝑡𝑎𝑡𝑒.

Here, we only describe the procedure for the encryption process; the decryption process
can be performed similarly but in reverse order.

5. SECURITY EVALUATION OF THE DYNAMIC BLOCK CIPHER AES_DST

First, we can observe that the TranBytes operation is a transposition of the state matrix. It can
be easily verified that it satisfies Definition 1, or in other words, it possesses the 𝑚-diffusion
property. This means that four encryption rounds of our dynamic AES variant still conform to
the results stated in Corollary 3.1.

Figure 4 illustrates the encryption/decryption diagram of the dynamic block cipher
AES_DST.

In the field of block cipher analysis, several attack techniques have been developed,
including differential cryptanalysis [29, 30, 31], linear cryptanalysis [32, 33], and algebraic
attacks [31, 34], among others. This section concentrates on two of the most influential and
widely studied methods: linear and differential cryptanalysis. These techniques play a key role
in assessing the robustness of block cipher designs. Linear cryptanalysis seeks to uncover
approximate linear correlations between input bits, output bits, and key bits, which can then
be exploited to infer parts of the secret key. In contrast, differential cryptanalysis examines
how specific differences in input values affect the output, allowing attackers to detect high
probability patterns that can aid in key recovery. Together, these methods serve as critical
benchmarks for measuring the cryptographic strength of modern block ciphers.

5.1. Preservation of the Wide Trail Strategy in AES_DST

By incorporating key-dependent dynamic byte permutation transformations (including
ShiftRows and TranBytes) based on the bits of the key 𝑘𝑑, we obtain the dynamic block cipher
AES_DST without compromising the wide trail strategy used in the design of the original AES
[2]. To clarify this point, we analyze the diffusion level of active bytes as they pass through
two consecutive rounds in the AES_DST algorithm.

84 N.V. LONG, T.T. LUONG, N.B. CUONG, T.M. PHUONG

Copyright ©2025 ASSA Adv. in Systems Science and Appl. (2025)

Fig. 5.1. Round Structure Diagram of the AES_DST Encryption/Decryption Process

Figures 5.1 and Figures 5.2 illustrate the role of the ShiftRows transformation in
propagating active bytes.

Input State

After SubByte

After ShiftRow

After Mixcolumn

Fig. 5.2. Distribution of active bytes during the first round
of the AES_DST dynamic block cipher using ShiftRows

Figure 5.1 demonstrates the diffusion behavior during the first round of AES, beginning
with a state matrix that contains only one active byte. After the SubBytes and ShiftRows
operations, the state still has a single active byte; however, the MixColumns transformation,
thanks to the diffusion characteristics of the MDS matrix, expands this to four active bytes.
This number remains unchanged after the AddRoundKey step. Therefore, a single active byte
at the start of the round propagates to four active bytes by the end of the first round. Active
bytes are highlighted as black squares.

 A WORD-ORIENTED SUBSTITUTION–PERMUTATION NETWORK CIPHER 85

Copyright ©2025 ASSA. Adv. in Systems Science and Appl. (2025)

Input State

After SubByte

After ShiftRow

After Mixcolumn

Fig. 5.2. Spread of active bytes during the second round
of the AES_DST dynamic block cipher using ShiftRows

Figure 5.2 illustrates the key role of ShiftRows in distributing active bytes from one column
across all four columns of the state matrix. Consequently, following the MixColumns
operation, the active bytes spread to cover all 16 bytes in the state matrix.

Figure 5.3 and Figure 5.4 demonstrate how the TranBytes transformation contributes to the
diffusion of active bytes.

Input State

After SubByte

After TranBytes

After Mixcolumn

Fig.5.3. Spread of active bytes during the first round of the AES_DST dynamic block cipher using TranBytes

Input State

After SubByte

After TranBytes

After Mixcolumn

Fig. 5.4. Distribution of active bytes during the second round
of the AES_DST dynamic block cipher using TranBytes

Similar to the ShiftRows transformation, thanks to the TranBytes transformation, starting
from a single active byte, the number of active bytes expands to the maximum of 16 bytes
across the entire state matrix after two rounds.

From the above illustrations, it is evident that both ShiftRows and TranBytes
transformations enable the dynamic block cipher AES_DST to adhere to the wide trail strategy
used in the design of the original AES.

According to the philosophy of dynamic block ciphers proposed by Knudsen in 2015 [7],
our dynamic AES version not only inherits the security properties of the original AES but, in
some respects, also increases the complexity of cryptanalysis. In differential cryptanalysis and
its variants, when differential trails depend on the key, the complexity of attacks rises. This is
because the attacker must consider all possible cases—on the order of 2௡ೝ, where 𝑛௥ is the
number of encryption rounds—to determine which differential path the data follows.
Furthermore, the security of the dynamic block cipher is also supported by Vincent Rijmen
[8], one of the two principal designers of the AES block cipher.

We will provide a more detailed analysis of this in the following sections.

5.2. Analysis of Linear Cryptanalysis on the Dynamic Block Cipher AES_DST

To perform linear cryptanalysis on the block cipher, one needs to build a linear approximation
covering 𝑛௥ − 1 rounds, along with a corresponding linear expression for the full 𝑛௥-round
cipher. The procedure involves the following steps:

Develop a linear approximation spanning 𝒏𝒓 − 𝟏 rounds along with an associated linear
equation for the 𝒏𝒓-round block cipher.

Step 1: Generate the linear approximation matrix for the S-box.

86 N.V. LONG, T.T. LUONG, N.B. CUONG, T.M. PHUONG

Copyright ©2025 ASSA Adv. in Systems Science and Appl. (2025)

Step 2: Determine which S-boxes are active (with non-zero input and output masks) in the
rounds and assign suitable linear approximations from the matrix created in Step 1 to these S-
boxes.

Step 3: Develop the overall linear equation for the block cipher and assess its deviation
from uniform probability.

Fig. 5.5. The final round of the AES_DST dynamic block cipher

AES_DST, the dynamic block cipher, performs 𝑛௥ rounds on a 128-bit input block and
employs 8 × 8 substitution boxes. Let 𝐾 represent the secret key for AES_DST, from which
the round keys 𝐾ଵ, 𝐾ଶ, … , 𝐾௡ೝ

, 𝐾௡ೝାଵ are generated.
Denote by 𝑃 the plaintext and by 𝐶 the ciphertext produced by the AES_DST dynamic

block cipher.
For the 𝑖-th round, let 𝐴௜ and 𝐵௜ be the inputs and outputs of the S-boxes, respectively. The

bit 𝐴௜,௝ refers to the 𝑗-th bit of 𝐴௜, where 𝑖 ranges from 1 to 𝑛௥ and 𝑗 ranges from 1 to 128.
In AES_DST, the permutation is represented by 𝐷்.
It is important to note that the linear approximation of AES depends solely on the plaintext,

the input bits to the last round (𝑛௥-th round), and the bits of the subkeys 𝐾ଵ, 𝐾ଶ, … , 𝐾௡ೝ
.

In AES_DST, the permutation 𝐷் —encompassing both the ShiftRows/TranBytes and
MixColumns steps—is transformed from a fixed operation into a dynamic one. Specifically,
unlike the original static ShiftRows, this version employs a key-dependent dynamic
ShiftRows/TranBytes.

The ShiftRow/TranBytes operation works on a 4 × 4 byte state array. Let 𝑆 denote the
input state array for ShiftRow/TranBytes, with its bytes numbered from 1 to 16 as follows:

𝑆 = ൮

𝑠ଵ 𝑠ହ 𝑠ଽ 𝑠ଵଷ

𝑠ଶ 𝑠଺ 𝑠ଵ଴ 𝑠ଵସ

𝑠ଷ 𝑠଻ 𝑠ଵଵ 𝑠ଵହ

𝑠ସ 𝑠଼ 𝑠ଵଶ 𝑠ଵ଺

൲

The ShiftRow transformation works by keeping the first row of the state array intact, while
the second row is shifted left by one byte, the third row by two bytes, and the fourth row by
three bytes.

 A WORD-ORIENTED SUBSTITUTION–PERMUTATION NETWORK CIPHER 87

Copyright ©2025 ASSA. Adv. in Systems Science and Appl. (2025)

Hence, ShiftRow can be described as a specific permutation of bytes as follows:

𝑆 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤(𝑆) 1 6 11 16 5 10 15 4 9 14 3 8 13 2 7 12

The inverse of the ShiftRow transformation, denoted as 𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤ିଵ, can likewise be
expressed through a byte permutation as shown below:

𝑆 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤ିଵ (𝑆) 1 14 11 8 5 2 15 12 9 6 3 16 13 10 7 4

TranBytes functions by rearranging the state matrix, and as such, it can be represented as
a byte-level permutation as follows:

𝑆 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
𝑇𝑟𝑎𝑛𝐵𝑦𝑡𝑒𝑠(𝑆) 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

The inverse TranBytes operation, 𝑇𝑟𝑎𝑛𝐵𝑦𝑡𝑒𝑠ିଵ , can similarly be expressed as a byte
permutation as follows:

𝑆 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
𝑇𝑟𝑎𝑛𝐵𝑦𝑡𝑒𝑠ିଵ (𝑆) 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

In the AES_DST dynamic block cipher, a major obstacle for attackers lies in forming a
linear approximation over 𝑛௥ − 1 rounds and deriving a linear expression for the full cipher.
While the initial step of cryptanalysis is carried out normally, difficulties arise in the next step
when choosing active S-boxes in each round, due to the unknown nature of the permutation.
This uncertainty complicates correlating S-boxes between rounds, forcing attackers to select
them randomly. Even if by chance an attacker succeeds in constructing a linear approximation
spanning 𝑛௥ − 1 rounds and a corresponding expression for the entire AES_DST, the process
remains highly challenging.

Assume that this linear expression takes the following form:
𝐴௡ೝ,௜ ⊕ 𝐴௡ೝ,௝ ⊕ … ⊕ 𝐴௡ೝ,௧ ⊕ ((𝑃௟ ⊕ 𝑃௛ ⊕ … ⊕ 𝑃௞) ⊕

൫𝐾ଵ,௚ ⊕ … 𝐾ଵ,௘ ⊕ 𝐾ଶ,௙ ⊕ … .⊕ 𝐾ଷ,௨ ⊕ … ⊕ 𝐾௡ೝ,௩൯) = 0
 (2)

Referring to the last round (see Fig. 9), let’s assume the attacker can extract certain bits of
the subkey 𝐾௡ೝାଵ, which correspond to the active S-boxes identified in round 𝑛௥. Additionally,
the attacker can derive some essential bits of 𝐴௡ೝ

.
𝐴௡ೝ

= 𝐷்൫𝐵௡ೝିଵ൯ ⊕ 𝐾௡ೝ
(3)

Using equation (3) as a starting point, the attacker continues by making guesses on the
associated key bits of 𝐾௡ೝ

, subsequently trying to derive the required bits of 𝐵௡ೝିଵ following
equation (4).

𝐵௡ೝିଵ = 𝐷்
ିଵ൫𝐴௡ೝ

⊕ 𝐾௡ೝ
൯ (4)

In dynamic AES block ciphers, the diffusion-layer permutation 𝐷் varies depending on the
key. This means the attacker cannot identify the exact 𝐷் used in the cipher, preventing them
from calculating the required bits of 𝐵௡ೝିଵ based on equation (4). As a result, the attacker is
unable to extract the corresponding key bits of 𝐾௡ೝ

, and faces similar obstacles with the other
subkeys as well.

Therefore, under these circumstances, the attacker is limited to obtaining some bits of the
subkey 𝐾௡ೝାଵ and is unable to deduce any further key bits from the remaining subkeys.

To perform standard linear cryptanalysis, the attacker needs to determine the specific
permutation 𝐷் applied within the dynamic AES block cipher before they can continue with
the attack.

Initially, it is assumed that during the process of forming a linear approximation for the
dynamic AES block cipher, the attacker encounters more difficulties in Step 2 than with the
original AES. Because the permutation used in AES_DST varies dynamically and is unknown,
the attacker is forced to pick S-boxes randomly across rounds. These selections may lack
correlation, which hampers the construction of 𝑛௥ − 1-round linear approximations and the
overall linear expression for the dynamic AES_DST cipher.

88 N.V. LONG, T.T. LUONG, N.B. CUONG, T.M. PHUONG

Copyright ©2025 ASSA Adv. in Systems Science and Appl. (2025)

By introducing key-dependent ShiftRow/TranBytes operations that make the permutation
layer dynamic in the AES_DST block cipher, the difficulty of carrying out linear cryptanalysis
rises considerably compared to the conventional static AES cipher.

5.3. Analysis of Differential Cryptanalysis on the Dynamic Block Cipher AES_DST

To conduct differential cryptanalysis on the block cipher, it is necessary to develop a
differential characteristic spanning 𝑛௥ − 1 rounds, as well as the associated differential for the
full 𝑛௥-round cipher. The process for building these is outlined below:

Develop a differential characteristic covering 𝒏𝒓 − 𝟏 rounds along with the matching
differential applicable to the entire 𝒏𝒓 -round block cipher.

Step 1*: Create the differential distribution table for the S-box.
Step 2*: Identify specific active S-boxes in each round (i.e., those exhibiting non-zero

differentials) and assign corresponding differentials from the table developed in Step 1*.
Step 3*: Calculate the overall differential characteristic of the block cipher and evaluate

its probability.
It is important to highlight that the block cipher’s differential is linked to a differential

characteristic spanning 𝑛௥ − 1 rounds. This differential is denoted by (∆𝐴, ∆𝐵) , with ∆𝐴
representing the input difference at the plaintext stage, and ∆𝐵 indicating the input difference
at the final round. The overall differential characteristic encompasses the individual
differentials of the chosen S-boxes across the rounds.

AES_DST, the dynamic block cipher, performs 𝑛௥ rounds on a 128-bit input block and
employs 8 × 8 substitution boxes. Let 𝐾 represent the secret key for AES_DST, from which
the round keys 𝐾ଵ, 𝐾ଶ, … , 𝐾௡ೝ

, 𝐾௡ೝାଵ are generated.
Denote by 𝑃 the plaintext and by 𝐶 the ciphertext produced by the AES_DST dynamic

block cipher.
For the 𝑖-th round, let 𝐴௜ and 𝐵௜ be the inputs and outputs of the S-boxes, respectively. The

bit 𝐴௜,௝ refers to the 𝑗-th bit of 𝐴௜, where 𝑖 ranges from 1 to 𝑛௥ and 𝑗 ranges from 1 to 128.
Let Δ𝐴௜ = 𝐴௜ ⊕ 𝐴௜ᇲ and Δ𝐵௜ = 𝐵௜ ⊕ 𝐵௜ᇲ represent the input and output differences of the

S-boxes at round 𝑖. Here, ∆𝐴௜,௝ denotes the 𝑗-th bit of Δ𝐴௜, with 1 ≤ 𝑖 ≤ 𝑛௥ and 1 ≤ 𝑗 ≤ 128.
The permutation operation in AES_DST is still represented by 𝐷்.
For the AES_DST dynamic cipher, a significant obstacle encountered by attackers lies in

forming an 𝑛௥ − 1-round differential characteristic along with the matching differential for the
complete cipher. Although Step 1* proceeds as usual, Step 2*, which involves choosing active
S-boxes in various rounds, proves problematic since the permutation is unknown. This
uncertainty complicates the task of correlating S-boxes across rounds, forcing the attacker to
select these S-boxes randomly. Assuming the attacker is fortunate enough, they might still
construct a valid differential characteristic for the entire AES_DST cipher.

Assuming the attacker manages to recover specific bits of the subkey 𝐾௡ೝାଵ, particularly
those associated with the selected active substitution boxes in the final round, they may also
be capable of deriving some necessary bits from both inputs 𝐴௡ೝ

 and 𝐴௡ೝ
ᇱ of that round.

Using equation (3), the cryptanalyst can infer 𝐵௡ೝିଵ based on equation (4) (𝐵௡ೝିଵ =

𝐷்
ିଵ൫𝐴௡ೝ

⊕ 𝐾௡ೝ
൯).

Following this, the attacker attempts to estimate the key bits of the subkey 𝐾௡ೝ
 that

influence the output of the round. With these guesses, they reconstruct 𝐵௡ೝିଵ, and do the same
to get 𝐵௡ೝିଵ

ᇱ . The bitwise difference is then calculated as:
Δ𝐵௡ೝିଵ = 𝐵௡ೝିଵ ⊕ 𝐵௡ೝିଵᇲ

Then, if the derived bits of Δ𝐵௡ೝିଵ match those in the differential characteristic previously
constructed, the guessed key bits are likely correct for 𝐾௡ೝ

.

 A WORD-ORIENTED SUBSTITUTION–PERMUTATION NETWORK CIPHER 89

Copyright ©2025 ASSA. Adv. in Systems Science and Appl. (2025)

In contrast to static designs, the AES_DST cipher employs a key-dependent, dynamically
changing permutation 𝐷். This uncertainty prevents the attacker from identifying the exact
permutation applied during encryption. Without knowing 𝐷், they are unable to accurately
compute the critical bits of 𝐵௡ೝିଵ, making it impossible to verify whether the guessed subkey
bits for 𝐾௡ೝ

 — or any other round keys — are valid.
In this case, the attacker can only retrieve a limited number of key bits from the subkey

𝐾௡ೝାଵ, with no feasible way to uncover additional key bits from the remaining round keys.
Moreover, as mentioned earlier, developing a differential characteristic for AES_DST

proves more challenging than for the standard AES, particularly in Step 2*. The core issue
stems from the fact that the internal permutation used in AES_DST varies with the key and is
not known to the attacker. This forces the attacker to select active S-boxes at random across
rounds, reducing the likelihood that those S-boxes are meaningfully connected. As a result,
constructing a coherent 𝑛௥ − 1-round differential characteristic and a complete differential
trail becomes nearly impossible in the context of AES_DST.

To apply traditional differential cryptanalysis to the AES_DST cipher, an attacker must
first identify the specific permutation 𝐷் employed within the cipher. Without this
information, the attack cannot effectively proceed.

By introducing dynamic, key-dependent transformations in the diffusion stage—
specifically through the ShiftRow and TranBytes operations—the AES_DST cipher
substantially raises the difficulty level for differential attacks. This added complexity marks a
significant departure from the more predictable structure of standard, static AES, thereby
enhancing resistance against such cryptanalytic techniques.

6. EVALUATION OF THE RANDOMNESS OF AES_DST

This section presents a randomness analysis of the AES_DST dynamic block cipher, based
on statistical tests recommended by the NIST framework [35].

Our evaluation integrates the randomness testing strategy outlined in NIST SP 800-22 [35]
with the structured plaintext generation approach introduced by Sulak [36]. This allows us to
investigate how AES_DST behaves under controlled, non-random plaintext conditions across
different encryption rounds. Specifically, we construct several deterministic input sets—such
as Low Weight (LW), High Weight (HW), 1-bit difference (AV1), and rotated plaintexts
(Rot)—as test vectors. We then apply the two-tiered testing strategy from NIST SP 800-22 to
assess the pseudorandomness of the resulting ciphertexts. Notably, the evaluation is limited to
test cases optimized for short data sequences, by the guidance from [37].

Based on the analysis (Table 6.1 and Table 6.2), it is evident that employing random keys
necessitates at least three rounds of encryption in the dynamic block cipher AES_DST to
generate output data exhibiting adequate randomness for the HW, AV1, and LW datasets. This
implies that for the AES_DST system to maintain essential randomness in its encrypted output,
a minimum of three rounds must be executed when random keys are used. Additionally, the
findings reveal that the randomness level produced by AES_DST matches that of the
conventional AES cipher.

Table 6.1. Outcomes of second-level p-value assessments for AES_DST
based on statistical tests applied to short data sequences

No. of
rounds

Freq.
Test

Runs
Test

Test for longest
run of ones

Serial
Test

AppEn.
Test

CuSum.
Test

Bit AutoCorr.
Test

Byte
Autocor.

Test
AV1 Input Data

1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2 0.004821 0.000000 0.000000 0.000001 0.000000 0.000001 0.000000 0.023187
3 0.388140 0.690279 0.296774 0.360755 0.113957 0.492432 0.560673 0.009957
4 0.925600 0.526663 0.773360 0.996072 0.965937 0.265690 0.917013 0.909591
5 0.969725 0.359059 0.562529 0.691677 0.590030 0.337997 0.255215 0.770595
6 0.001659 0.357359 0.867525 0.277019 0.118567 0.250200 0.739263 0.051301

90 N.V. LONG, T.T. LUONG, N.B. CUONG, T.M. PHUONG

Copyright ©2025 ASSA Adv. in Systems Science and Appl. (2025)

No. of
rounds

Freq.
Test

Runs
Test

Test for longest
run of ones

Serial
Test

AppEn.
Test

CuSum.
Test

Bit AutoCorr.
Test

Byte
Autocor.

Test
7 0.715970 0.965837 0.099518 0.856579 0.752517 0.815556 0.335218 0.858150
8 0.915977 0.620556 0.255037 0.102592 0.255590 0.781520 0.087702 0.853995
9 0.677561 0.058897 0.926591 0.799319 0.733049 0.206479 0.023996 0.299263
10 0.190943 0.907337 0.907299 0.506631 0.375749 0.641292 0.409264 0.060240

HW Input Data
1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
3 0.672962 0.790742 0.956944 0.507715 0.767315 0.557299 0.063931 0.932396
4 0.971935 0.713995 0.569726 0.130933 0.555359 0.712793 0.715195 0.717960
5 0.550656 0.016966 0.930257 0.000669 0.000229 0.193905 0.009111 0.157356
6 0.712010 0.125157 0.269899 0.169880 0.103291 0.611226 0.226911 0.551235
7 0.738873 0.075857 0.790729 0.239091 0.108675 0.953965 0.978852 0.955501
8 0.785150 0.693697 0.305570 0.595033 0.762953 0.777388 0.288855 0.572716
9 0.597013 0.525833 0.287850 0.365215 0.378768 0.837909 0.252725 0.007599
10 0.162613 0.932569 0.722379 0.636367 0.716321 0.316012 0.670659 0.005735

LW Input Data
1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
3 0.815197 0.936996 0.896293 0.907959 0.950627 0.915199 0.591385 0.256157
4 0.059672 0.760510 0.263700 0.597756 0.657905 0.999708 0.352198 0.628523
5 0.721655 0.928550 0.502976 0.997965 0.995961 0.530596 0.275560 0.769510
6 0.360959 0.275531 0.770137 0.099165 0.095005 0.999728 0.389153 0.370810
7 0.821301 0.850561 0.223176 0.729395 0.728277 0.529035 0.703023 0.110923
8 0.906001 0.922559 0.926138 0.963057 0.931601 0.875985 0.571562 0.035327
9 0.959171 0.162170 0.737297 0.155859 0.356525 0.599980 0.323053 0.565623
10 0.060375 0.297092 0.636063 0.621519 0.537975 0.505325 0.657715 0.266918

Rot Input Data
1 0.357559 0.526258 0.200096 0.750682 0.925820 0.029858 0.526090 0.565327
2 0.595618 0.667512 0.615079 0.635559 0.350689 0.535297 0.951519 0.115702
3 0.779571 0.528596 0.569855 0.506580 0.112316 0.089115 0.093269 0.369525
4 0.690950 0.144490 0.229079 0.297999 0.236025 0.194579 0.215946 0.203690
5 0.199359 0.901740 0.279104 0.979264 0.975541 0.951572 0.769115 0.743401
6 0.355609 0.419073 0.377150 0.647660 0.523603 0.963475 0.929479 0.315552
7 0.057450 0.965519 0.491526 0.749116 0.957566 0.229471 0.961226 0.410902
9 0.298895 0.059195 0.771945 0.507281 0.758229 0.148971 0.509822 0.511561
9 0.751565 0.815415 0.560448 0.877156 0.869469 0.405955 0.789552 0.552502
10 0.207595 0.158116 0.659577 0.752650 0.480489 0.850594 0.124907 0.122742

Table 6.2. Outcomes of proportion tests for AES_DST conducted on short sequence datasets
No. of
Rouns

Freq.
Test

Runs
Test

Test for longest
run of ones

Serial
Test

AppEn.
Test

CuSum.
Test

Bit AutoCorr.
Test

Byte Autocor.
Test

AV1 Input Data
1 98.98 98.92 99.08 98.99 98.95 99.09 99.29 99.16
2 99.92 99.95 99.07 98.95 98.91 98.98 99.24 99.22
3 99.00 99.96 99.09 99.04 99.95 99.09 99.25 99.22
4 99.99 99.96 99.08 99.01 98.95 99.08 99.25 99.21
5 99.00 98.95 99.09 99.01 98.94 99.08 99.26 99.24
6 99.99 99.94 99.09 99.01 98.94 99.06 99.24 99.21
7 98.98 98.97 99.07 99.01 98.95 99.06 99.25 99.21
8 98.98 99.95 99.08 99.01 98.94 99.06 99.25 99.22
9 98.99 98.95 99.09 99.04 98.95 99.07 99.25 99.22
10 98.99 98.95 99.08 99.00 98.94 99.07 99.25 99.21

HW Input Data
1 98.74 98.96 99.24 98.65 99.67 98.82 99.01 99.44
2 98.91 99.11 99.29 99.01 99.05 99.04 99.41 99.20
3 98.99 99.94 99.06 99.00 99.94 99.07 99.24 99.22
4 98.98 98.95 99.10 99.02 98.94 99.06 99.25 99.20
5 99.00 98.94 99.10 99.01 98.95 99.08 99.26 99.21
6 98.96 98.95 99.09 98.99 98.91 99.05 99.22 99.21
7 98.99 98.94 99.10 99.02 98.94 99.06 99.25 99.21
8 99.00 98.95 99.09 99.04 98.96 99.06 99.25 99.21
9 99.00 98.96 99.08 99.02 98.95 99.06 99.26 99.21
10 99.00 98.95 99.09 99.02 98.95 99.06 99.25 99.21

LW Input Data
1 99.14 99.16 99.40 99.12 99.04 99.15 99.46 99.46
2 99.14 99.04 99.18 99.11 99.12 99.06 99.25 99.25
3 99.01 98.94 99.09 99.02 98.95 99.09 99.25 99.21
4 99.00 98.94 99.08 99.01 98.94 99.08 99.24 99.22
5 98.99 98.96 99.08 99.02 98.94 99.06 99.25 99.20
6 99.00 98.96 99.08 99.05 98.96 99.06 99.26 99.22

 A WORD-ORIENTED SUBSTITUTION–PERMUTATION NETWORK CIPHER 91

Copyright ©2025 ASSA. Adv. in Systems Science and Appl. (2025)

7 98.99 98.95 99.08 99.01 98.94 99.06 99.25 99.22
8 98.99 98.96 99.09 99.04 98.95 99.08 99.26 99.20
9 98.99 98.95 99.08 99.01 98.94 99.07 99.25 99.20
10 98.99 98.95 99.07 99.04 98.95 99.07 99.25 99.22

Rot Input Data
1 98.98 98.95 99.08 99.02 98.94 99.07 99.25 99.21
2 98.99 98.95 99.09 99.02 98.94 99.07 99.25 99.21
3 98.97 98.97 99.09 99.02 98.94 99.06 99.26 99.20
4 98.99 98.96 99.10 99.01 98.94 99.07 99.25 99.22
5 99.00 98.96 99.09 99.04 98.96 99.08 99.26 99.24
6 98.98 98.94 99.09 99.02 98.94 99.06 99.24 99.22
7 98.99 98.95 99.07 99.01 98.94 99.07 99.24 99.21
8 98.99 98.95 99.08 99.01 98.94 99.06 99.25 99.21
9 99.00 98.94 99.09 99.02 98.94 99.06 99.24 99.24
10 98.99 98.94 99.07 99.02 98.94 99.06 99.25 99.24

7. ANALYSIS OF THE IMPLEMENTATION EFFICIENCY OF THE DYNAMIC
BLOCK CIPHER AES_DST ON A SOFTWARE PLATFORM

Unlike previously published versions of dynamic AES block ciphers, our dynamic AES block
cipher maintains implementation efficiency on 32-bit software platforms. Before analyzing the
approach to handling the dynamic byte permutation layer, we briefly review the lookup table
implementation technique of the original AES [2].

Let 𝑒 denote the data state after the MixColumns transformation, 𝑎 be the input data state
to the SubBytes transformation, 𝑏 be the input data state to the ShiftRows transformation, and
𝑐 be the input data state to the MixColumns transformation. Then, we have:

൦

𝑒଴,௝

𝑒ଵ,௝

𝑒ଶ,௝

𝑒ଷ,௝

൪ = ቎

2 3
1 2

1 1
3 1

1 1
3 1

2 3
1 2

቏ ⊗ ൦

𝑐଴,௝

𝑐ଵ,௝

𝑐ଶ,௝

𝑐ଷ,௝

൪,

with

൦

𝑐଴,௝

𝑐ଵ,௝

𝑐ଶ,௝

𝑐ଷ,௝

൪ =

⎣
⎢
⎢
⎢
⎡

𝑏଴,௝

𝑏ଵ,௝ିଵ

𝑏ଶ,௝ିଶ

𝑏ଷ,௝ିଷ⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡

𝑆ൣ𝑎଴,௝൧

𝑆ൣ𝑎ଵ,௝ିଵ൧

𝑆ൣ𝑎ଶ,௝ିଶ൧

𝑆ൣ𝑎ଷ,௝ିଷ൧⎦
⎥
⎥
⎥
⎤

, (5)

where 𝑆 is the S-box of the original AES, the operation " − " is defined modulo 4, and 𝑗 =
0,1,2,3. Thus, we have

൦

𝑒଴,௝

𝑒ଵ,௝

𝑒ଶ,௝

𝑒ଷ,௝

൪ = 𝑆ൣ𝑎଴,௝൧ ⊗ ቎

2
1
1
3

቏ ⊕ 𝑆ൣ𝑎ଵ,௝ିଵ൧ ⊗ ቎

3
2
1
1

቏ ⊕ 𝑆ൣ𝑎ଶ,௝ିଶ൧ ⊗ ቎

1
3
2
1

቏ ⊕ 𝑆ൣ𝑎ଷ,௝ିଷ൧ ⊗ ቎

1
1
3
2

቏ (6)

Then, if we compute the following four tables:

𝑇଴[𝑎] = ൦

𝑆[𝑎] ⊗ 2
𝑆[𝑎]

𝑆[𝑎]

𝑆[𝑎] ⊗ 3

൪, 𝑇ଵ[𝑎] = ൦

𝑆[𝑎] ⊗ 3

𝑆[𝑎] ⊗ 2
𝑆[𝑎]

𝑆[𝑎]

൪,

𝑇ଶ[𝑎] = ൦

𝑆[𝑎]

𝑆[𝑎] ⊗ 3

𝑆[𝑎] ⊗ 2

𝑆[𝑎]

൪, 𝑇ଷ[𝑎] = ൦

𝑆[𝑎]

𝑆[𝑎]

𝑆[𝑎] ⊗ 3

𝑆[𝑎] ⊗ 2

൪,

where 𝑎 ∈ 𝔽ଶఴ , and the operation " ⊗ " represents multiplication in 𝔽ଶఴ . Each table
consists of 256 entries, each of which is 32 bits long. Thus, the 𝑗-th column of the state 𝑒 is
calculated as follows:

𝑒௝ = 𝑇଴ൣ𝑎଴,௝൧ ⊕ 𝑇ଵൣ𝑎ଵ,௝ିଵ൧ ⊕ 𝑇ଶൣ𝑎ଶ,௝ିଶ൧ ⊕ 𝑇ଷൣ𝑎ଷ,௝ିଷ൧ (7)

92 N.V. LONG, T.T. LUONG, N.B. CUONG, T.M. PHUONG

Copyright ©2025 ASSA Adv. in Systems Science and Appl. (2025)

Now, if we replace ShiftRows with TranBytes, then equation (5) becomes:

൦

𝑐଴,௝

𝑐ଵ,௝

𝑐ଶ,௝

𝑐ଷ,௝

൪ =

⎣
⎢
⎢
⎢
⎡
𝑏௝,଴

𝑏௝,ଵ

𝑏௝,ଶ

𝑏௝,ଷ⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝑆ൣ𝑎௝,଴൧

𝑆ൣ𝑎௝,ଵ൧

𝑆ൣ𝑎௝,ଶ൧

𝑆ൣ𝑎௝,ଷ൧⎦
⎥
⎥
⎥
⎤

, (8)

Equation (6) becomes:

൦

𝑒଴,௝

𝑒ଵ,௝

𝑒ଶ,௝

𝑒ଷ,௝

൪ = 𝑆ൣ𝑎௝,଴൧ ⊗ ቎

2
1
1
3

቏ ⊕ 𝑆ൣ𝑎௝,ଵ൧ ⊗ ቎

3
2
1
1

቏ ⊕ 𝑆ൣ𝑎௝,ଶ൧ ⊗ ቎

1
3
2
1

቏ ⊕ 𝑆ൣ𝑎௝,ଷ൧ ⊗ ቎

1
1
3
2

቏ , (9)

And equation (7) becomes:
𝑒௝ = 𝑇଴ൣ𝑎௝,଴൧ ⊕ 𝑇ଵൣ𝑎௝,ଵ൧ ⊕ 𝑇ଶൣ𝑎௝,ଶ൧ ⊕ 𝑇ଷൣ𝑎௝,ଷ൧ (10)

From (7) and (10), we see that it is sufficient to use only 4 tables 𝑇௝ , 𝑗 = 0,1,2,3 to compute
the output after the MixColumns transformation. To eliminate the “if-else” branching in the
encryption procedure described in the dynamic AES_DST block cipher algorithm in section
4.1, we calculate the 𝑗-th column in state 𝑒 at round 𝑟 based on the dynamic key bit 𝑘𝑑௥ as
follows:

𝑒௝ = 𝑇଴ൣ𝑘𝑑௥ ⋅ 𝑎଴,௝ ⊕ 𝑘𝑑௥
തതതതത ⋅ 𝑎௝,଴൧ ⊕ 𝑇ଵൣ𝑘𝑑௥ ⋅ 𝑎ଵ,௝ିଵ ⊕ 𝑘𝑑௥

തതതതത ⋅ 𝑎௝,ଵ൧ ⊕

𝑇ଶൣ𝑘𝑑௥ ⋅ 𝑎ଶ,௝ିଶ ⊕ 𝑘𝑑௥
തതതതത ⋅ 𝑎௝,ଶ൧ ⊕ 𝑇ଷൣ𝑘𝑑௥ ⋅ 𝑎ଷ,௝ିଷ ⊕ 𝑘𝑑௥

തതതതത ⋅ 𝑎௝,ଷ൧,
 (11)

where the symbol " ⋅ " denotes multiplication in the decimal system, and 𝑘𝑑௥
തതതതത represents the

negation of the bit 𝑘𝑑௥.
In this way, we have eliminated branching in the encryption procedure. Moreover, the

implementation using precomputed lookup tables can be fully applied to our proposed dynamic
AES_DST block cipher. The only difference lies in how the addresses are obtained to access
the tables 𝑇௝ , 𝑗 = 0,1,2,3.

To evaluate the execution speed, we implemented the proposed dynamic AES_DST block
cipher in C++ using the precomputed lookup table method. Below are some statistical results
on execution performance along with comparisons to other commonly used block ciphers
(compiled and run on the same platform). All tests were conducted on a single-core machine
equipped with an Intel® Core™ i5-7200U CPU @ 2.50GHz (2.471GHz effective), 12GB
RAM, running Windows 10 64-bit, using Visual Studio 2019 compiler in Release mode (x64).
The block cipher implementations did not use any assembly instructions and operated in ECB
mode. The performance evaluation and speed comparison results are presented in Table 7.1.

Table 7.1. Performance evaluation and comparison of the dynamic AES_DST block cipher execution speed

No. Block Cipher
Block/Key

Size

Number

of

Rounds

Lookup Table Size

(Encryption +

Decryption)

KBytes

Encryption/

Decryption

Speed (Mb/s)

Implementation

Source

1 Kalyna
128/128 10 128 1598

Oliynykov† 128/256 14 128 1186

2 Kuznyechik 128/256 10 128 640

3 AES

128/128 10 8 1696
Gladman‡ (on a

32-bit platform)
128/192 12 8 1510

128/256 14 8 1302

4 AES_DST
128/128 10 8 1402 Ours

 128/192 12 8 1210

† https://github.com/Roman-Oliynykov/ciphers-speed
‡ http://brg.a2hosted.com//oldsite/cryptography_technology/rijndael/index.php

 A WORD-ORIENTED SUBSTITUTION–PERMUTATION NETWORK CIPHER 93

Copyright ©2025 ASSA. Adv. in Systems Science and Appl. (2025)

128/256 14 8 1087

From Table 7.1, it can be observed that with our dynamic approach, the encryption speed
of the AES_DST dynamic block cipher decreases only slightly compared to the original AES
version (about a 20% reduction). Compared to several other block ciphers, the dynamic AES
version still maintains a comparable encryption speed. This means that the dynamic AES
version we propose can meet the demands of building high-speed cryptographic applications
while also enhancing security compared to the original AES block cipher.

8. CONCLUSION

The paper provides a different perspective on the security of byte-oriented AES-style block
ciphers. To do this, we propose a general SPN cipher model. Then, we prove using number
theory the minimal number of active S-boxes after 4 rounds of encryption in this cipher. Our
method is generalized and can be applied to evaluate AES-like ciphers such as Kalyna, LED,
Kuznyechik, and block ciphers used in hash functions like GOST R 34.11-2012, Whirlpool,
and others. From this analysis, we observe that the role of the byte permutation layer—such
as ShiftRows in AES—is especially critical. This layer must ensure the 𝑚-diffusion property
to preserve the block cipher’s design based on the wide trail strategy. Based on these findings,
we introduce a key-dependent dynamic variant of the AES block cipher (AES_DST). Unlike
earlier methods, our approach leverages table lookup implementations without the need for
pre-calculated lookup tables. Practical tests demonstrate that the dynamic AES cipher’s
performance is comparable to well-established block ciphers globally. This dynamic version
offers enhanced security over the standard AES while maintaining efficient software
implementation. The insights gained here are valuable for the development of secure and
adaptable block ciphers, as well as for providing a theoretical basis to assess cryptographic
components in current encryption systems. Moving forward, we plan to analyze the dynamic
AES cipher’s resilience against different types of attacks and estimate its quantum security,
particularly considering attacks using Grover’s algorithm.

ACKNOWLEDGEMENTS

Funding: No funding was received for conducting this study.
Financial interests: We declare that we have no financial interests.
Data availability: Data sharing does not apply to this article as no datasets were used,
generated, or analyzed during this study
Declarations Competing interests : We declare that we have no competing interests.

REFERENCES

[1] Shannon, C.E. (1949) Communication theory of secrecy systems, The Bell System
Technical Journal, 28(4), 656–715.
[2] Daemen, J., Rijmen, V. (2002) The design of Rijndael, Vol. 2. New York, NY: Springer-
Verlag.
[3] Guo, J., Peyrin, T., Poschmann, A. & Robshaw, M. (2011) The LED block cipher, Proc.
of 13th International Workshop (Nara, Japan), pp. 326–341.
[4] Oliynykov, R., Gorbenko, I., Kazymyrov, O., Ruzhentsev, V., Kuznetsov, O., (2015) A
new encryption standard of Ukraine: The Kalyna block cipher, Cryptology ePrint Archive,
[Online]. Available: https://eprint.iacr.org/2015/650
[5] Dolmatov, V. (2016) GOST R 34.12-2015: Block Cipher "Kuznyechik", [Online].
Available: https://www.rfc-editor.org/rfc/rfc7801

94 N.V. LONG, T.T. LUONG, N.B. CUONG, T.M. PHUONG

Copyright ©2025 ASSA Adv. in Systems Science and Appl. (2025)

[6] Phuong, T.M. & Luong, T.T. (2023) Evaluating the number of active S-boxes in dynamic
AES block ciphers using MDS matrices of size 4×4 and 8×8, TNU Journal of Science and
Technology, 228(15), 190–199, doi: 10.34238/tnu-jst.9053
[7] Knudsen, L.R. (2014) Dynamic encryption, Journal of Cyber Security and Mobility, 3,
357–370.
[8] Rijmen, V. (2017) Opinion on dynamic encryption, [Online]. Available:
https://www.dencrypt.dk/wp-content/uploads/2017/05/Dencrypt-Vincent-Rijmen-opinion-
on-Dynamic-Encryption.pdf (2017)
[9] Al-Dweik, A.Y., Hussain, I., Saleh, M. & Mustafa, M.T. (2022) A novel method to
generate key-dependent S-boxes with identical algebraic properties, Journal of Information
Security and Applications, 64, 103065.
[10] Kazlauskas, K. & Kazlauskas, J. (2009) Key-dependent S-box generation in AES block
cipher system, Informatica, 20(1), 23–34.
[11] Agarwal, P., Singh, A. & Kilicman, A. (2018). Development of key-dependent dynamic
S-boxes with dynamic irreducible polynomial and affine constant, Advances in Mechanical
Engineering, 10(7), doi: 10.1177/1687814018781638.
[12] Abdulrazaq, N.N. (2024). Generating of a dynamic and secure S-box for AES block
cipher system based on modified hexadecimal Playfair cipher, Zanco Journal of Pure and
Applied Sciences, 36(5), 82–94.
[13] Mahmoud, E.M., Hafez, A.A., Elgarf, T.A. & Zekry, A.H. (2013) Dynamic AES-128
with key-dependent S-box, International Journal of Engineering Research and Applications,
3(1), 1662–1670.
[14] Assafli, H.T. & Hashim, I.A. (2020) Generation and evaluation of a new time-dependent
dynamic S-box algorithm for AES block cipher cryptosystems, IOP Conference Series:
Materials Science and Engineering, 978(1), 012042.
[15] Murtaza, G., Khan, A.A., Alam, S.W. & Farooqi, A. (2011) Fortification of AES with
dynamic mix-column transformation, Cryptology ePrint Archive [Online]. Available:
https://eprint.iacr.org/2011/184
[16] Luong, T.T. (2022) Building the dynamic diffusion layer for SPN block ciphers based on
direct exponent and scalar multiplication, Journal of Science and Technology on Information
Security, 1(15), 38–45.
[17] Luong, T.T. (2023) A dynamic algorithm for the linear layer of SPN block ciphers based
on self-reciprocal recursive MDS matrices, Proc. of 2023 15th International Conference on
Knowledge and Systems Engineering (Hanoi, Vietnam), pp. 1–6.
[18] Shamsabad, M.R.M. & Dehnavi, S.M. (2020) Dynamic MDS diffusion layers with efficient
software implementation, International Journal of Applied Cryptography, 4(1), 36–44
[19] Xu, T., Liu, F. & Wu, C. (2018) A white-box AES-like implementation based on key-dependent
substitution-linear transformations, Multimedia Tools and Applications, 77, 18117–18137.
[20] Altigani, A., Hasan, S., Barry, B., Naserelden, S., Elsadig, M.A., et al. (2021). A
polymorphic advanced encryption standard–a novel approach, IEEE Access, 9, 20191–20207.
[21] Freyre, P., Cuellar, O., Díaz, N. & Alfonso, A. (2020) From AES to dynamic AES,
Journal of Science and Technology on Information Security, 1(11), 11–22.
[22] Manoj Kumar, T. & Karthigaikumar, P. (2020) A novel method of improvement in
advanced encryption standard algorithm with dynamic shift rows, sub byte and mixcolumn

 A WORD-ORIENTED SUBSTITUTION–PERMUTATION NETWORK CIPHER 95

Copyright ©2025 ASSA. Adv. in Systems Science and Appl. (2025)

operations for the secure communication, International Journal of Information Technology,
12(3), 825–830.
[23] Salih, A.I., Alabaichi, A. & Abbas, A.S. (2019) A novel approach for enhancing security
of advance encryption standard using private XOR table and 3D chaotic regarding to software
quality factor, An International Journal of Research and Surveys, 10(9), 823–832.
[24] Salih, A.I., Alabaichi, A.M. & Tuama, A.Y. (2020) Enhancing advance encryption
standard security based on dual dynamic XOR table and mixcolumns transformation,
Indonesian Journal of Electrical Engineering and Computer Science, 19(3), 1574–1581.
[25] Luong, T.T. (2023) Strengthening AES security through key-dependent ShiftRow and
AddRoundKey transformations utilizing permutation, International Journal of Advanced
Computer Science & Applications, 14(11).
[26] Luong, T.T., Cuong, N.N. & Vo, B. (2024) AES security improvement by utilizing new
key-dependent XOR tables, IEEE Access, PP(99), 1–1.
[27] Luong, T.T. (2025) Improving block cipher resilience with dynamically generated XOR
matrices using the Fisher-Yates shuffle method, Cryptogr. Commun., 17(4), 1051–1074,
doi: 10.1007/s12095-025-00802-w
[28] Adamu, M., Oyefolahan, O. I., Ojerinde, O. A. & Abdulmalik, M. D. (2024). Dynamic
randomized advanced encryption standard (DR-AES): a solution to enhance the security of
mobile learning system, ATBU Journal of Science, Technology and Education, 12(2), 191–202.
[29] Kang, J.S., Hong, S., Lee, S., Yi, O., Park, C., et al. (2001) Practical and provable security
against differential and linear cryptanalysis for substitution-permutation networks, ETRI
Journal, 23(4), 158–167.
[30] Lai, X., Massey, J.L. & Murphy, S. (1991) Markov ciphers and differential cryptanalysis,
Proc. of the Workshop on the Theory and Application of Cryptographic Techniques (Brighton,
UK), pp. 17–38.
[31] Dobraunig, C., Rotella, Y. & Schoone, J. (2020) Algebraic and higher-order differential
cryptanalysis of Pyjamask-96, IACR Transactions on Symmetric Cryptology, 2020(1), 289–312.
[32] Keliher, L. T. (2003) Linear cryptanalysis of substitution-permutation networks. PhD
thesis, Queen's University.
[33] Matsui, M. (1993) Linear cryptanalysis method for DES cipher, Proc. of Workshop on
the Theory and Application of Cryptographic Techniques (Lofthus, Norway), pp. 386–397.
[34] Jakobsen, T. & Knudsen, L. R. (2001) Attacks on block ciphers of low algebraic degree,
Journal of Cryptology, 14, 197–210.
[35] Bassham, L. E., Rukhin, A. L., Soto, J., Nechvatal, J. R., Smid, M. E., et al. (2010) A
statistical test suite for random and pseudorandom number generators for cryptographic
applications, NIST Special Publication No. 800-22.
[36] Sulak, F. (2011). Statistical analysis of block ciphers and hash functions. PhD thesis,
Middle East Technical University.
[37] Sulak, F., Doğanaksoy, A., Ege, B. & Koçak, O. (2010). Evaluation of randomness test
results for short sequences, Proc. of Sequences and Their Applications–SETA 2010: 6th
International Conference (Paris, France), pp. 309–319.

