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Abstract: The paper considers periodic selector-linear difference inclusions. Lyapunov functions
from the parametric class of homogeneous forms of even degree are constructed. These functions
establish necessary and sufficient conditions of asymptotic stability and can be used in the
development of numerical methods for investigating the stability of systems equivalent to the
considered difference inclusions. Using piecewise linear Lyapunov functions, an algebraic
criterion of asymptotic stability is obtained. An example of a mechanical system leading to
periodic selector-linear difference inclusion is considered.
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1. INTRODUCTION. STATEMENT OF THE PROBLEM

The study of discrete control systems in a number of cases leads to difference inclusions. In
[9] a brief review of publications on this topic is given, see for example [1-3,5]. In [9] for
periodic difference inclusions a necessary and sufficient condition of uniform asymptotic
stability in the form of some limit relation is obtained on the basis of the variational
approach. In [10], for periodic selector-linear difference inclusions, a class of time-periodic
Lyapunov functions of quasi-quadratic form, as well as parametric classes of piecewise
quadratic and piecewise linear Lyapunov functions were distinguished. With the help of
these functions the necessary and sufficient conditions for asymptotic stability were obtained.
This paper is a continuation of [9,10] and is devoted to obtaining new asymptotic stability
criteria for periodic selector-linear difference inclusions based on the method of Lyapunov
functions.
Consider periodic selector-linear difference inclusion
x(s+1)eF(s,x), s=0,1,..., xeR", (1.1)

where the set-valued map F :R"" — R" has the form
F(s,x)={y1y = B(s)x, B(s) € Qs)}

here Q(s), Q(s+ N)=Q(s) (s =0,1,..., N isa natural number) is a convex, compact set of
real (nxn) - matrices B. The sequence of vectors {x(s)}, satisfying for all s=0,1,...

inclusion (1.1), is the solution of inclusion (1.1). The definitions of asymptotic stability,
uniform asymptotic stability and uniform exponential stability of inclusion (1.1) are given in
[9]. The equivalence of these properties for inclusion (1.1) is proved there. Keeping this in
mind, further we will speak about asymptotic stability of inclusion (1.1).

The problem is to construct stability criteria for inclusion (1.1) wusing the discrete
analogue of the direct Lyapunov method [4].
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2. RESULTS
In [10] parametric classes of piecewise quadratic
. 2 . .
— J J —7]J
V., (s,x)= lrgnjgﬁ{z ().x) , U(s+N)=1'(s) 2.1)

and piecewise linear

<zf(s),x>, F(s+N)=1(s) (2.2)

Lyapunov functions were considered. In (2.1) and further we denote by <,> a scalar

Vi (s,x) = max

product of vectors. In [10] it was proved that for asymptotic stability of inclusion (1.1) it is
necessary and sufficient that for some integer M > n there exists periodic on s (period N )
Lyapunov function (2.1) or (2.2) satisfying the condition

rankL(s)=n<M, L(s)=(I'(s),...,I" (5)) (2.3)
and the inequality
max v, (s+1,y) <&, (s,x) (2.4)
yeF (s,x) °

forall xe R", s>0 and some 8 (0<8<1).

Consider periodic on s Lyapunov functions from the class of homogeneous forms of
degree 2r ( hereafter » is natural)

VM’,(s,x)=i<lf(s),x>2r, PV(s+N)=1'(s), s=0,1,.. (2.5)

The condition of positive definiteness of function (2.5), as well as for functions (2.1),
(2.2), is condition (2.3). If this condition is fulfilled, the function V,, .(s,x) will be strictly

convex on x € R" for every s > 0.
Theorem 2.1:

Inclusion (1.1) is asymptotically stable iff there exists Lyapunov function (2.5) periodic
in s (of period N ), its vectors I’(s) (I’(s+N)=1'(s)), j=1,M satisfy for all s>0
condition (2.3), for the function inequality (2.4) is satisfied for some r >1.

Proof. Sufficiency. The sufficiency of the conditions of Theorem 2.1 is proved by using
inequality (2.4) and estimates

771||x||2r SV, (8,X) < 772||x|
for the positively homogeneous strictly convex function (2.5), which were obtained in
Lemma [8].

Necessity. To prove the necessity, we will use the statement of Theorem 3.2 in [10],
according to which for asymptotically stable inclusion (1.1) there exists a piecewise
quadratic Lyapunov function (2.1) satisfying (2.3) and the inequality

max V,, (s+1,y) <6V, (s,x) (2.6)

yeF (s,x)

2r
, 1,21, >0

for some 6, (0< 6, <1).
We construct the function V,, ,(s,x) by choosing as vectors [/(s), j=1,M in (2.5) the
vectors defining the Lyapunov function V), (s,x).

Since the inequalities are true

. 2
max<l’ (s),x> <
1< j<M

2r

(F(s)x)" <M max (1/(s),x)

R

~.
]
—_

then the estimates

Vi (s,0) <V, (5,x) <MV} (s,x), xeR", s=0,L,.. (2.7)
The inequality follows from (2.6) and (2.7)

Copyright ©2025 ASSA Adv. in Systems Science and Appl. (2025)
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max V, (s+1,y) <MV, (s,x).

yeF (s,x)

Choosing a positive integer r >r,, where 7, =[InM /(—In6,)]+1, we obtain that the

inequality H}a(lx Vi, (s+1,y)<6,v,, ,(s,x) is satisfied for the constructed function
yeF (s,x

)
vy, (s,x), since for r>r, the number 8, = M satisfies the condition 0< 6, <1. The

periodicity of the function v, (s,x) implies the fulfillment of the equality
Vi.(s+N,x)=V, (s,x). Theorem 2.1 is proved. []

Lyapunov function (2.5) can be represented in the form

N/‘
Vi (8,0)=) a()w(x), a(s+N)=a,(s), s=0L.., i=LN, (2.8)
i=1

where y,(x), i=LLN, — all possible elementary monomials of degree 2r

r

=

w(x)=x".x", Y m,=2r) N, =C,  —the total number of such monomials.

n+2r-1
=

In accordance with the discrete analog of the direct Lyapunov method [4], the construction
of Lyapunov function (2.8) for difference inclusion (1.1) is reduced to the search of the

parameter vector  =(a,(x)), i=1,N,, defining the solution of the set of inequalities

Oy(a,s,x)=V, (s +1,B(s)x)=V, . (5,x)<0, x#0, B(s)<Q(s). (2.9)
Equation (2.9) specifies the conditions of strict monotonic decreasing of the function
V\r,(s,x) on the solutions of inclusion (1.1).

Considering (2.8) and (2.9) we obtain the inequalities

0y(a,s,x) = Zp:(al. (s+ Dy, (B(s)x)—a,(s)y,(x)) <0, x#0, B(s)es). (2.10)

Let ||x||0o = max xl.| be cubic norm of vector x. Consider the problem of mathematical

1<i<n

programming

aeG  0<s<N-1 Hwa:I B(s)eQ(s)

NV
B=min max max max A,(a,s,x), G:{a:Zafél}. (2.11)
i1

Using the scheme of the proof of Theorem 1 in [11], it can be shown that for existence of
Lyapunov function (2.8), satisfying condition (2.10), it is necessary and sufficient that the
solution of the problem (2.11) satisfies the inequality £ < 0. To solve the minimax problem

(2.11), known methods of numerical solution can be used. The periodic components of the
vector «, a,;(x), i=1,N,_, can be searched, for example, in the form of Fourier series

segments [11].
M

Through ||D(s)||w = maXZ‘dU‘ denote the cubic norm of the square matrix D = (di/)M

1<i<M “ iy=1
Jj=1

of order M. With Lyapunov functions (2.2) we obtain the criterion of asymptotic stability of
inclusion (1) in algebraic form.
Theorem 2.2:

For asymptotic stability of inclusion (1.1) it is necessary and sufficient that the following
conditions are satisfied.:

1.  For some p2=1 there exist periodic (nxn)- matrices  B;(s)
(B,(s+N)=B.(s), i=1,p), satisfying the condition CX(s) < co(B,(5s),...,B,(s)), s=0,1,...
Copyright ©2025 ASSA. Adv. in Systems Science and Appl. (2025)
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2. There exist a number M >n, periodic (nxM)- matrix L(s) (L(s+ N)=L(s))
of rank n, and periodic (M xM)-matrices D,(s) (D,(s+N)=D,.(s)), i= G, satisfying
the conditions ||Di (s)”w <1 (i= G, s =0,1,...), such that the matrix relations are satisfied
B/(s)L(s+1)= L(s)D!(s), i=1,p, s=0,],. (2.12)

In (2.12) and further the dash denotes the transpose operation.

Proof. Necessity. By Theorem 3.3 [10], for asymptotically stable inclusion (1.1), there
exists piecewise linear Lyapunov function (2.2) satisfying condition (2.3) and inequality
(2.4) for some € (0< @ <1). It follows from Theorem 20.4 [12] that any non-empty closed

bounded set can be approximated by a polyhedral convex set. Thus, for the set )(s) there
exists a natural number p2>1 and such periodic (nxn)- matrices B (s)

( B(s+N)=B(s), i= G ), that Q(s) < co(B,(s),...,B,(s)), and the sets Q(s) and
co(B,(s),....,B,(s)) will differ from each other as little as possible. Also, the vectors
y.(s)=B.(s)x, i=1,p, s>0 will be as close as desired to the elements of the set F(s,x) in
(1.1). Therefore, from (2.2) and (2.4) follow the inequalities

<lf (s+1), x>,Bi(s)x‘ < 6 max <lj (s), x>

1<j<M

max
1<f<M

hence the inequalities

, i=lLp, s=0l,.., xeR",

KBZ.'(s)lf (s+1), x>,Bj(S)x‘ < max <qu (s), x>

forall f,i ands (f=1,M,i=1p, s=0,1,...). Applying Lemma [7] to (2.13) we obtain that

, xeR", (2.13)

for each fandi (f=1M, i=1lp) there exist periodic (period N) functions
@, (s), j=L,M, s=0,1,.., such that

B (s+1D) =2 qpy () (5), D|ey(s) <.

Introducing the periodic functions d}/ (s)= qq)_;/. (s5), we come to the following equations

B (s+1)=Y dy((s), f=1,M,i=1,p, s=0],.. (2.14)
j=1

M ) . ._1 _01
Since Z‘dj’_,j(s)‘ﬁq for any foius (f=LM, i=Lp, s=0L..). then cach of the
Jj=1

(MxM)- matrices D,(s)=(d ;7 (s))% i =1P. gatisfies the condition ||Dl.(s)||m <g<1 for all

$=0.L-.. 1 matrix notation, vector equations (2.14) are equivalent to (2.12). The periodicity

L(s)

S
of the matrices and D,(s)1in (2.12) follows from the periodicity of the vectors I (s),

f=LMin (2.2). The necessity is proved.
Sufficiency. According to the conditions of the theorem €(s) < co(B,(5),...,B,(s)),

y e F(s,x)

therefore, any vector in (1.1) can be represented as

)2 . )4
y=Y A()B(s)x, A(s)=0, i=Lp, D A(s)=L.
i=1 i=1
Determining by the matrix L(s) in (2.12), satisfying condition (2.3), Lyapunov function
(2.2), we obtain
max v, (s+1,y)=maxV, (s+1,B.(s)x(s)) = (2.15)
1<i<p :

yeF (s,x)
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= max max

max max (B (s +1), x(s)>‘.

Since matrix equalities (2.12) are equivalent to vector equalities (2.14), for any £, i, s

(f=1LM,i=1,p, s=0]1,...) the following relations are true

(B (s +1),x)| = ‘id}j OUAGEY E i‘d; @1 ().x)| <, (s,x)i‘dj? )|

Hence

max (B/(s)1/ (s+1),x)| <D, (5)], Vi s ), i=1p.

Therefore, the equality is valid
! f <
max max|(B/()1" (s +1),x)| < OV, (s..), 2.16)

D,(s)|, <1.

where @ = max max
0<s<N-1 1<i<p

It follows from (2.15) and (2.16) that the function V,,(s,x) satisfies inequality (2.4).

Therefore, by Theorem 3.3 [9] inclusion (1.1) will be asymptotically stable. Theorem 2.2 is
proved. []

4. EXAMPLE

Consider a pendulum of length /, whose suspension axis makes vertical harmonic
oscillations with small amplitude « and frequency w. The differential equation of motion of
the pendulum is [6]

d’z ao’ .
i :_lf)z (1+ s smtjz:O, (3.1)
where g is acceleration of free fall. As for a pendulum with a fixed pendulum axis, the
vertical is the equilibrium position. But in contrast to the case of a pendulum with a fixed
axis, this equilibrium position can be either stable or unstable, depending on the value of @.
Equation (3.1) is a special case of an equation of the more general form [6]
2

d—ZZ+ bf (t)z=0, (3.2)

dt
where f(¢) is a periodic function of time (with period 7 >0), and bel, I=[b,b,] is a
certain parameter. Just as in the examples in [9,10], it can be shown that equation (3.1) can
be represented as a second-order system of differential equations with periodic coefficients,
depending on the parameter b € I. The discrete analog of this system is equivalent to
inclusion (1.1).

4. CONCLUSION

For periodic selector-linear difference inclusion (1.1) the asymptotic stability criterion is
obtained using Lyapunov functions (2.5). Such functions can be used in the development of
numerical methods for investigating the stability of systems equivalent to difference
inclusion (1.1). It is shown that the construction of Lyapunov functions (2.5) reduces to the
solution of the minimax problem (2.11). The algebraic criterion of asymptotic stability is
established using piecewise linear Lyapunov functions. The example of a mechanical
problem leading to the consideration of a periodic difference inclusion is given.

Copyright ©2025 ASSA. Adv. in Systems Science and Appl. (2025)
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