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Abstract: The paper considers periodic selector-linear difference inclusions. Lyapunov functions 
from the parametric class of homogeneous forms of even degree are constructed. These functions 
establish necessary and sufficient conditions of asymptotic stability and can be used in the 
development of numerical methods for investigating the stability of systems equivalent to the 
considered difference inclusions. Using piecewise linear Lyapunov functions, an algebraic 
criterion of asymptotic stability is obtained. An example of a mechanical system leading to 
periodic selector-linear difference inclusion is considered.  
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1. INTRODUCTION. STATEMENT OF THE PROBLEM 

The study of discrete control systems in a number of cases leads to difference inclusions. In 
[9] a brief review of publications on this topic is given, see for example [1-3,5]. In [9] for 
periodic difference inclusions a necessary and sufficient condition of uniform asymptotic 
stability in the form of some limit relation is obtained on the basis of the variational 
approach. In [10], for periodic selector-linear difference inclusions, a class of time-periodic 
Lyapunov functions of quasi-quadratic form, as well as parametric classes of piecewise 
quadratic and piecewise linear Lyapunov functions were distinguished. With the help of 
these functions the necessary and sufficient conditions for asymptotic stability were obtained. 
This paper is a continuation of [9,10] and is devoted to obtaining new asymptotic stability 
criteria for periodic selector-linear difference inclusions based on the method of Lyapunov 
functions. 

Consider periodic selector-linear difference inclusion 
 ),,()1( xsFsx  ,   ,...,1,0 nRxs   (1.1) 

where the set-valued map nn RRF 1:  has the form 

 ,)()(  ,)(:),( ssBxsByyxsF   

here ),(s )()( sNs  )number natural a is   ,...,1,0 ( Ns   is a convex, compact set of 

real )( nn - matrices .B  The sequence of vectors  ,)(sx  satisfying for all ,...1,0s  
inclusion (1.1), is the solution of  inclusion (1.1). The definitions of asymptotic stability, 
uniform asymptotic stability and uniform exponential stability of inclusion (1.1) are given in 
[9]. The equivalence of these properties for inclusion (1.1) is proved there. Keeping this in 
mind, further we will speak about asymptotic stability of inclusion (1.1).  

The problem is to construct stability criteria for inclusion (1.1)  using the discrete 
analogue of the direct Lyapunov method [4]. 
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2. RESULTS 

In [10] parametric classes of piecewise quadratic 

 ,),(max),(
2

1
xslxsV j

Mj
M 

    )()( slNsl jj   (2.1) 

and piecewise linear 

 ,),(max),(
1

xslxsV j

Mj
M 

    )()( slNsl jj   (2.2) 

Lyapunov functions were considered. In (2.1) and further we denote by ,  a scalar 

product of vectors. In [10] it was proved that for asymptotic stability of inclusion (1.1) it is 
necessary and sufficient that for some integer nM   there exists periodic on s  (period N ) 
Lyapunov function  (2.1) or (2.2) satisfying the condition 
 ,)( MnsrankL   ))(),...,(()( 1 slslsL M  (2.3) 
and the inequality 

 ),(),1(max
),(

xsvysv MM
xsFy




 (2.4) 

for all ,nRx 0s  and some ).10(   

Consider periodic on s  Lyapunov functions from the class of homogeneous forms of 
degree r2 ( hereafter r  is natural) 

 ,),(),(
1

2

 , 



M

j

rj
rM xslxsV    ),()( slNsl jj    ,...1,0s  (2.5) 

The condition of positive definiteness of function (2.5), as well as for functions (2.1), 
(2.2), is condition (2.3). If this condition is fulfilled, the function ),( , xsV rM  will be strictly 

convex on nRx for every .0s   
Theorem 2.1:  

Inclusion (1.1) is asymptotically stable iff there exists Lyapunov function (2.5) periodic 
in s  (of period N ), its vectors )),()((  )( slNslsl jjj  Mj ,1  satisfy for all 0s  
condition (2.3), for the function inequality (2.4) is satisfied for some 1r . 
Proof. Sufficiency. The sufficiency of the conditions of Theorem 2.1 is proved by using 
inequality (2.4) and estimates  

0   ,),( 12

2

2 ,

2

1   r

rM

r
xxsvx  

for the positively homogeneous strictly convex function (2.5), which were obtained in 
Lemma [8]. 

Necessity. To prove the necessity, we will use the statement of Theorem 3.2 in [10], 
according to which for asymptotically stable inclusion (1.1) there exists a piecewise 
quadratic Lyapunov function (2.1) satisfying (2.3) and the inequality 

 ),(),1(max 1
),(

xsVysV MM
xsFy




 (2.6) 

for some 1 ).10( 1    

We construct the function ),( , xsV rM  by choosing as vectors ),(sl j  Mj ,1  in (2.5) the 

vectors defining the Lyapunov function  ).,( xsVM  
Since the inequalities are true 


 


M

j

rjrjrj

Mj
xslMxslxsl

1

2

Mj1

22

1
,),( max ),(),(max  

then the estimates 

 ),,(),(),( , xsMVxsVxsV r
MrM

r
M    ,nRx  ,...1,0s  (2.7) 

The inequality follows from (2.6) and (2.7) 
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),(),1(max ,1,
),(

xsVMysV rM
r

rM
xsFy




. 

Choosing a positive integer ,0rr   where ,1)]ln/([ln 10  Mr  we obtain that the 

inequality ),(),1(max ,2,
),(

xsvysv rMrM
xsFy




 is satisfied for the constructed function 

),( , xsv rM , since for 0rr  the number 2
12  M  satisfies the condition .10 2    The 

periodicity of the function ),( xsvM  implies the fulfillment of the equality 

).,(),( , , xsVxNsV rMrM   Theorem 2.1 is proved.  

Lyapunov function (2.5) can be represented in the form 

 ,)()(),(
1

 , 



rN

i
iirM xsxsV     ),()( sNs ii     ,,1   ,...,1,0 rNis   (2.8) 

where    ,1   ),( ri Nix  all possible elementary monomials of degree r2  





n

j

r
rnrji

m
n

m
i CNrmxxx nii

1

2
121    )2   ,...)(( 1  – the total number of such monomials. 

In accordance with the discrete analog of the direct Lyapunov method [4], the construction 
of Lyapunov function (2.8) for difference inclusion (1.1) is reduced to the search of the 

parameter vector ,,1   )),(( ri Nix    defining the solution of the set of inequalities 

 ,0   ,0),())(,1(),,( ,,  xxsVxsBsVxs rMrMB   ).()( ssB   (2.9) 
Equation (2.9) specifies the conditions of strict monotonic decreasing of the function 

),(, xsV rM on the solutions of inclusion (1.1). 

Considering (2.8) and (2.9) we obtain the inequalities 

 ,0   ,0))()())(()1((),,(
1




xxsxsBsxs
pN

i
iiiiB   ).()( ssB   (2.10) 

Let i
ni

xx



1
max  be cubic norm of vector .x  Consider the problem of mathematical 

programming  

 ),,,(max  max  max  min
)()(110

xsB
ssBxNsG









    .1:
1

2









 


rN

i
iG   (2.11) 

Using the scheme of the proof of Theorem 1 in [11], it can be shown that for existence of 
Lyapunov function  (2.8), satisfying condition (2.10), it is necessary and sufficient that the 
solution of the problem (2.11) satisfies the inequality .0  To solve the minimax problem 
(2.11), known methods of numerical solution can be used. The periodic components of the 

vector , ,,1   ),( ri Nix   can be searched, for example, in the form of  Fourier series 

segments [11]. 

Through 





M

j
ij

Mi
dsD

1
1
max)(  denote the cubic norm of the square matrix M

jiijdD 1,)(   

of order .M  With Lyapunov functions (2.2) we obtain the criterion of asymptotic stability of 
inclusion (1) in algebraic form. 

Theorem 2.2:  

For asymptotic stability of inclusion (1.1) it is necessary and sufficient that the following 
conditions are satisfied: 

1. For some 1p  there exist periodic -)( nn matrices )(sBi  

(   ),()( sBNsB ii  pi ,1 ), satisfying the condition )),(),...,(()( 1 sBsBcos p  ,...1,0s   



78            M. MOROZOV 

Copyright ©2025 ASSA                                                                                    Adv. in Systems Science and Appl. (2025) 

2. There exist  a number   ,nM      periodic -)( Mn  matrix  )(sL  ))()(( sLNsL     

of rank ,n  and periodic -)( MM  matrices )(sDi )),()(( sDNsD ii   ,,1 pi    satisfying 

the conditions 1)( 


sDi  ( ,,1 pi  ,...1,0s ), such that the matrix relations are satisfied 

 ),()()1()( sDsLsLsB ii      ,,1 pi     ,...1,0s  (2.12) 

In (2.12) and further the dash denotes the transpose operation. 
Proof. Necessity. By Theorem 3.3 [10], for asymptotically stable inclusion (1.1), there 

exists piecewise linear Lyapunov function  (2.2) satisfying condition (2.3) and inequality 
(2.4) for some ).10(    It follows from Theorem 20.4 [12] that any non-empty closed 
bounded set can be approximated by a polyhedral convex set. Thus, for the set )(s there 

exists a natural number 1p  and such periodic -)( nn  matrices )(sBi  

(   ),()( sBNsB ii  pi ,1 ), that )),(),...,(()( 1 sBsBcos p and the sets )(s and 

))(),...,(( 1 sBsBco p  will differ from each other as little as possible. Also, the vectors 

,)()( xsBsy ii   ,,1 pi   0s  will be as close as desired to the elements of the set ),( xsF  in 

(1.1). Therefore, from (2.2) and (2.4) follow the inequalities 

,),(max)(,),1(max
11

xslxsBxsl j

Mj
i

f

Mf 
     ,,1 pi     ,...,1,0s   ,nRx  

hence the inequalities 

 ,),(max)(,),1()(
1
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Mj
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f
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  ,nRx  (2.13) 

for all sif  and   , ,,1( Mf  ,,1 pi  ,...).1,0s  Applying Lemma [7] to (2.13) we obtain that 

for each i  and f ,,1( Mf  ),1 pi   there exist periodic (period )N  functions 

),(si
fj ,,1 Mj  ,...,1,0s  such that 
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1




M

j

ji
fj

f
i slsqslsB    
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i
fj s
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.1)(  

Introducing the periodic functions ),()( sqsd i
fj

i
fj  we come to the following equations 

 ,)()()1()(
1




M

j

ji
fj

f
i slsdslsB ,,1 Mf  ,,1 pi  ,...1,0s  (2.14) 

Since 



M

j

i
fj qsd

1

)(  for any sif  и , ,,1( Mf  ,,1 pi  ,...),1,0s  then each of the 

-)( MM  matrices ,))(()( ,
M

jf
i
fji sdsD  ,,1 pi   satisfies the condition 1)( 


qsDi  for all 

,...1,0s  In matrix notation, vector equations (2.14) are equivalent to (2.12). The periodicity 

of the matrices )(sL and )(sDi in (2.12) follows from the periodicity of the vectors ),(sl f

 

Mf ,1 in (2.2). The necessity is proved. 
Sufficiency. According to the conditions of the theorem )),(),...,(()( 1 sBsBcos p  

therefore, any vector ),( xsFy  in (1.1) can be represented as 

,)()(
1




p

i
ii xsBsy    ,0)( si    ,,1 pi     .1)(

1




p

i
i s  

Determining by the matrix )(sL in (2.12), satisfying condition (2.3), Lyapunov function 
(2.2), we obtain 

 ))()(,1(max),1(max
1),(

sxsBsVysv iM
pi

M
xsFy




= (2.15) 
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Since matrix equalities (2.12) are equivalent to vector equalities (2.14), for any ,f ,i s  

( ,,1 Mf  ,,1 pi  ,...1,0s ) the following relations are true   
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Therefore, the equality is valid 

 ),,(),1()(maxmax
11

xsVxslsB M
f

i
Mfpi
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 (2.16) 

where .1)(maxmax
110




sDi
piNs

  

It follows from (2.15) and (2.16) that the function ),( xsVM  satisfies inequality (2.4). 
Therefore, by Theorem 3.3 [9] inclusion (1.1) will be asymptotically stable. Theorem 2.2 is 
proved.  

4. EXAMPLE 

Consider a pendulum of length l , whose suspension axis makes vertical harmonic 
oscillations with small amplitude  and frequency .  The differential equation of motion of 
the pendulum is [6] 

 ,0sin1
2

22

2









 zt

gl

g

dt

zd 


 (3.1) 

where g  is acceleration of free fall. As for a pendulum with a fixed pendulum axis, the 
vertical is the equilibrium position. But in contrast to the case of a pendulum with a fixed 
axis, this equilibrium position can be either stable or unstable, depending on the value of .  

Equation (3.1) is a special case of an equation of the more general form [6] 

 ,0)(
2

2

 ztbf
dt

zd
 (3.2) 

where )(tf  is a periodic function of time (with period 0T ), and  , Ib ],[ 21 bbI   is a 
certain parameter. Just as in the examples in [9,10], it can be shown that equation (3.1) can 
be represented as a second-order system of differential equations with periodic coefficients, 
depending on the parameter  .Ib The discrete analog of this system is equivalent to 
inclusion (1.1). 

4. CONCLUSION 

For periodic selector-linear difference inclusion (1.1) the asymptotic stability criterion is 
obtained using Lyapunov functions (2.5). Such functions can be used in the development of 
numerical methods for investigating the stability of systems equivalent to difference 
inclusion (1.1). It is shown that the construction of Lyapunov functions (2.5) reduces to the 
solution of the minimax problem (2.11).  The algebraic criterion of asymptotic stability is 
established using piecewise linear Lyapunov functions. The example of a mechanical 
problem leading to the consideration of a periodic difference inclusion is given.  
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