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Abstract: In this paper, we consider the Cauchy problem for functional inclusions containing
the sum of n causal single-valued operators and a multivalued causal operator in Banach spaces.
The peculiarity of single-valued operators is that, starting from the second term, each operator
is represented by an integral with a variable upper limit of the previous term. Such functional
inclusions generalize the Cauchy problem for semilinear differential equations and inclusions of
arbitrary order n, as well as a Cauchy-type problem in the case of inclusions and equations of
fractional order not exceeding n. To solve the problem, we will apply the theory of topological
degree for multivalued condensing mappings. To prove the existence of a solution, we will
construct a resolving multivalued operator in the space of continuous functions corresponding
to the problem. Based on the properties of the resolving operator, we will prove a theorem on the
existence of solutions to this problem.
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1. INTRODUCTION

The study of boundary value problems for differential equations and inclusions is a complex
and extremely important section of modern mathematical science, which has numerous
applications and currently attracts the attention of many scientists. Many physical, economic,
biological and engineering problems, primarily related to the flow of processes in dynamical
systems, lead to the need for new research in the field of differential equations and inclusions
in abstract spaces. In turn, the development of the theory of differential inclusions is due to
the fact that they are a convenient and natural tool for describing control systems of various
classes, systems with discontinuous characteristics studied in various sections of optimal
control theory, mathematical physics, radio physics, acoustics, etc. One of the best tools for
studying this kind of problem, provide multivalued and nonlinear analysis methods that stand
out as very powerful, efficient and useful.

Recently, the attention of many researchers (see [1], [2], [3], [4] and references therein)
has been attracted to generalizations of differential equations and inclusions, namely to the
class of functional equations and inclusions with causal operators. The term of a causal or
Volterra operator in the sense of A.N. Tikhonov (see [5]), was used in mathematical physics to
solve problems of differential equations, integro-differential equations, functional-differential
equations with a finite or infinite delay, integral equations of Volterra type, functional
equations of a neutral type, etc. (see, for example [6]). The papers [7], [8], [9], [10], [11]
among others are devoted to the study of equations and inclusions with causal operators of
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various types, theorems on the existence of solutions, description of qualitative properties of
solutions and various applications.

In this paper we study a Cauchy type problem in Banach spaces for various classes
of functional inclusions with causal operators. Basing on the topological degree theory for
condensing multimaps we prove a global theorem on the existence of trajectories for systems
governed by functional inclusions. As an application, we obtain generalizations of existence
theorems for solutions of a Cauchy type problem for semilinear differential inclusions an
arbitrary order n and semilinear differential inclusions of a fractional ordern — 1 < g < n.

2. PRELIMINARIES

2.1. Measures of Noncompactness

We denote a Banach space by £ and introduce the following notation:
e P(& ) ={A C & : A +# @} is the collection of all non-empty subsets of &;

« Ph(E)={A¢€ (5) A is bounded} ;
* Pu(€) ={A e P(€): Aisconvex};

e C(&)={A € P(&): Aisclosed};

* Cu(€) =Pu(E)NC(E);

e K(&)={A € P(€): A is compact} ;
* Kv(€)=Pv(&)NK(E).

Definition 2.1:
(See [12]). Let (A, >) be a partially ordered set. A function ( : Pb(E) — A is called the
measure of noncompactness (MNC) in & if for each Q) € Pb(E) we have:
B(co ) = B(Q),
where €0 () denotes the closure of the convex hull of ().
A measure of noncompactness [ is called:

1) monotone, if for each Q, Q2 € Pb(E), from 2y C €2 follows £(2y) < :
2) nonsingular, if for each a € £ and each 2 € Pb(E) we have 5({a} U Q) = ().

If A is a cone in a Banach space, the MNC £ is called:

3) regular, if 5(2) = 0 is equivalent to the relative compactness of Q2 € Pb(E);
4) real, if A is the set of all real numbers R with the natural ordering.

As the example of a real MNC obeying all above properties, we can consider the Hausdorff
MNC x(Q):
X(Q2) = inf{e > 0, for which (2 has a finite e-net in £ }.

As other examples, consider the measures of noncompactness defined in the space of
continuous functions C'([a, b]; £) with values in the Banach space &:

(1) the modulus of fiber noncompactness:

©(2) = sup xe(Q(t)),

t€la,b]

where x¢ is the Hausdorff MNC in € and Q(t) = {y(t) : y € Q};
(2) the fading modulus of fiber noncompactness:

() = sup e "e(Q1)),

t€[a,b]

where L > 0 is a given number;
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(3) the modulus of equicontinuity:

Q) = 1i —~ .
mode () = lim sup | max | ly (t2) —y (&)

These measures of noncompactness satisfy all the above properties, except for the
regularity.

2.2. A Family of Cosine Operator Functions

Definition 2.2:
(See [13]). A family of bounded operators {C(t)}icr in a Banach space E is called a strongly

continuous family of cosine operator functions if:

(1) C(0) = I;
(2) C(s+1t)+C(s—t) =2C(s)C(t) forallt,s € R;
(3) t — C(t)x is continuous for all x € F.

The family of strongly continuous sine operator functions associated with the family of
cosine operator functions {C'(t) }+cr is the family of operators {S(¢) };cr such that

¢
S(t)r = / C(s)xds, x € E,t € R.
0

The operator A is a generator a family of cosine operator functions {C'(t) }ser if:

d2
Ar = %O(t)xltzo,

for all z € D(A) for which the last expression is well defined.

2.3. Multivalued Maps

Let X be a metric space and Y be a normed space. Let us recall some notations (see, for
example, [14], [15]).

Definition 2.3:

A multivalued map (multimap) F : X — P (Y') is said to be upper semicontinuous (u.s.c.) at
a point x € X, if for every open set V. C Y such that F(x) C V, there exists a neighborhood
U(x) of x such that F(U(z)) C V.

Definition 2.4:
A multivalued map F : X — P (Y') is called closed if its graph Gz = {(z,y) 1z € X,y €
F(x)} is a closed subset of X X Y.

Definition 2.5:
A multivalued map F : X — P (Y) is called quasicompact if its restriction to each compact
subset A C X is compact.

Definition 2.6:
For a given p > 1, a multifunction G : [0,T] — K(Y) is called:

» [P—integrable if it admits an LP-Bochner integrable selection, i.e., there exists a
function g € L? ([0, T];Y) such that ¢(t) € G(t) fora.e. t € [0,T7;
* LP—integrably bounded if there exists a function £ € L”([0, 7)) such that

GOy < &)
fora.e.t € [0,7].
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Definition 2.7:
A multimap F : X C & — K(&) is called condensing with respect to a MNC B (or [—
condensing) if for each bounded set () C X which is not relatively compact, we have:

BF(Y) £ B(Y).

Let D C & be anon-empty closed convex subset, V' be a non-empty bounded open subset
of D, (3 is a monotone nonsingular MNC in £ and F : V — Kwv (D) be a u.s.c. S-condensing

map such thatz ¢ F (z) forall x € OV, where V and OV denote the closure and the boundary
of the set V' in the relative topology of D.
In such a setting, the (relative) topological degree

degp (z - F, V)

of the corresponding vector field 7 — F, satisfying the standard properties is well defined (see,
for example, [14], [15]). In particular, the condition

degp (z’ —.7:,7) # 0

implies that the fixed points set Fix F = {z : © € F(z)} is a nonempty subset of V.
Application of topological degree theory leads to the following fixed point principles,
which will be used in the that follows.

Theorem 2.1:

(See [14], Corollary 3.3.1). Let M be a convex closed bounded subset of £ and F : M —
Kv(M) a f—condensing multimap, where [ is a monotone nonsingular MNC in £. Then the
fixed point set Fix F is non-empty.

Theorem 2.2:
(See [14], Theorem 3.3.4). Let V' C D be a bounded open neighborhood of a point a € V

and F: V — Kv(D) a u.s.c. B-condensing multimap, where (3 is a monotone nonsingular
MNC in &, satisfying the boundary condition

r—aé¢ MNF(x)—a)
forall z € OV and 0 < \ < 1. Then Fix F # () is a non-empty compact set.

2.4. Causal Multioperators

Let F be a separable Banach space. By L? ([0,T]; E), 1 < p < oo, we denote the Banach
space of all Bochner summable functions f : |0,7'| — E with the usual norm.
For each subset N' C L? ([0,T7]; E') and 7 € (0,7T) we define restriction A/ on [0, 7] as

Nloa=A{f lo: F €N

Definition 2.8:

A multivalued map Q : C ([0,T]; E) —o L ([0, T]; E) is said to be a causal multioperator,
if for each T € (0,T] and for every u,v € C ([0, T]; E) the condition u |jo ;= v |j0,-] implies
that Q(u) |[07T}: Q(U) |[07ﬂ .

Let us give examples of causal multioperators.

Example 2.1:
We assume that the multimap F : [0,T] x E — Kwv (F) satisfies the following conditions:

(F1) for each ¢ € E the multifunction F (-,¢) :[0,T] — Kv (FE) admits a measurable
selection;
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) E— Kv(E)isu.s.c.;

(F2) fora.e. t € [0, T) the multifunction F (t,
1 < p < o0, such that

(F'3) there exists a function o € L% [0, T,
1E(, d)lle = sup{[[z]|z : z € F(t,¢)} < a(t)(1 + |[¢]£)
forae te€[0,T]and ¢ € E.
From above conditions (F1) — (F3) it follows that the multimap Pr : C([0; T]; E) —
P(L*([0,T]; E)), given in the following way
Pr(x)={f € LP([0,T|; E) : f(t) € F(t,z(t)) fora.e. t€[0,T]}
is well defined (see, for example, [14], [15]). It is clear that the multioperator Pr is causal.

Example 2.2:

Let F:[0,T] x E— Kv(E) be a multimap satisfying conditions (F1)— (F3) from
Example 2.1. Suppose that {K(t,s):0<s<t<T} is a continuous (with respect to
the corresponding norm) family of bounded linear operators in E and m € L'([0,T]; E)
is a given function. Consider the Volterra integral multioperator V : C ([0,T]; E) —o

L ([0, T]; E) defined as

V(u)(t) = m(t) —{—/0 K(t,s)F(s,u)ds,

ie.,

V(u) = {y € L' ([0,T]; E) : y(t) = m(t) +/0 K(t,s)f(s)ds: f € Pp(u)}

It is also clear that the multioperator V is causal.

3. CAUCHY TYPE PROBLEM FOR FUNCTIONAL INCLUSIONS
WITH THE CAUSAL OPERATORS

We will assume that the causal operator Q : C'([0,T]; E) — C (L? ([0, T]; E)) satisfies the
following conditions:

(Q1) the operator Q is weakly closed in the following sense: conditions {u,}>, C
C(0,TLE), {fulily C LP([0,T[ E), 1 <p< o0, fu € Qua), n 21, up — uo,

fo & fo implies fo € Q(uq);
(Q2) there exists a function o € L([0, 7']) such that

1Q () () |z < () (1 + [lu(t)[e), forae.tel0,T],
forall u € C([0,T7]; E);
(Q3) there exists a function w : [0,7] x Ry — R, such that
(wl) forallz € Ry tw(-,x) € LE([0,T]), 1 < p < o0
(w2) for ae. t € [0,7] a function w(t,-) : Ry — R, is continuous, nondecreasing and

quasihomogeneous in the sense that w(t, \z) < Aw(t, z) forall z € R, and A > 0;
(w3) for each bounded set A C C' ([0, T7]; E') we have

x(Q(A) () <w (t, 861&)11] go(A(s))) fora.e. t € [0, 7],

where the set A(s) ={y(s):y€ A} C E and ¢ is the modulus of fiber
noncompactness in C ([0, 7]; E) .
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Note that the condition (w2) means that w(t,

t,0) = 0 fora.e. t € [0,7] and as an example
of such a function we can consider w(t, z) = k(t)

- x, where k(-) € L% ([0, T]).

Consider a linear operator S : LP([0,1]; E E), which is causal in the sense
that for every 7 € (0,7 and f,g € Lp ([0, T ) condmon f(t) = g(t) for ae. t € [0,7]
implies (Sf) (t) = (S g) (t) for all t € [0,7]. F l owing [14], we impose the next conditions
on operator S :

(81) for 1 < p < oo there exist D > 0 such that

HSﬂﬂ—SWM@Sl{AHﬂQ—QSN%B

forall f,g € LP([0,T]; E)and 0 <t < T}
if p = oo there exist D; > 0 such that

t
IS7(6) = Sg(®)le < Dy [ 1£(5) = g(o)] s
0
forall f,g € L>([0,T]; E)and 0 <t <T.
(82) for an arbitrary compact set X' C E and a sequence { f,}22, € L? ([0, T]; E) 1<p<

00, such that { f,, (¢ )}n 1 C K for all t € [0, 7] the weak convergence f, Ly f, implies
an — Sfoin C([0,T

Also we suppose that S satisfies the relation:
(83) (§f) (0) = 0 for each function f € LP([0,T]; E).
Notice, that condition (S1) implies that the operator S satisfies the Lipschitz condition:

(S1) [|Sf = Sylle < DIf = gl
Consider following important examples of special cases of the operator S.

(i) The operator M, : L*([0,T]; E) — C([0, T); E) defined as

Mt = | A=) £(5)ds

where a closed linear operator A : D (A) C E — E is the infinitesimal generator of a
uniformly bounded Cy-semigroup {e?t};o.

Remark 3.1:
The Laplace transform for a real-valued function f

LIfI(N) = /000 e f(s)ds, N € R, A >0,

is a special cases of the operator S. Notice, that the inverse Laplace transform is a
causal operator also and satisfy conditions (S1) — (S3).

(i) The operator M, : L*([0,T]; E) — C([0,T); E) defined as
Maf(0) = [ (¢ = s)shiar) f(s)is,
0

where a closed linear operator A: D (A) C F — E is a generator of a uniformly
bounded family of strongly continuous cosine operator functions {ch(At)};>o.
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(iii) The operator L; : LP([0,T); E) — C([0,T]; E), p > 1/q, defined as

nfo= | (=8 Ti(t = ) f(s)ds, 0<g<1,

where

= CI/ qu tqe qu) = 19_1_%\1%(971/(1),
q

v,(0) = —Z( 1)rtg-am- 1Hng+1) sin(nmq), 0 € RT,
m

n!

n=1

and A : D(A) — FEis aclosed linear operator in £ generating a uniformly bounded Cj-
semigroup {U(t)},5, -

(iv) The operator Ly : LP([0,T]; E) — C([0,T]; E), p > 1, defined as

Laf(t) = [ (=9 Tt = 5)f(s)ds, 0<q <1,

where

7-2(75) = q/OOO qu(Q)S(tqH)dQ’ fq(e) _ éelé\pq(el/q)’

1 ) 1
U,(0) = - Z(—l)”_lg_qn_l% sin(nmq),0 € RT.
n=1 )

and A: D(A) C E — E is a closed linear operator in F generating a uniformly
bounded family of strongly continuous cosine operator functions {C(t)},- -

Let a closed linear operator A : D (A) C E — E be a generator of a uniformly bounded
family operator functions {Gy(t) }+>0. We suppose the following conditions:

g]_ Foreacht € O, T , go -) are linear bounded o erators, more recisel f foreachx € F
||g0(t)x||E <M ||:E||E

where M = sup{||Go(t)|;t € [0, 400)}.
(G2) The operator function Gy (+) are strongly continuous, i.e., functions ¢ € [0, 7] — Gy(t)x
are continuous for each z € E.

Consider the operator functions G;, i = 1,2,...,n — 1 defined as

/ G (
Lemma 3.1:

Under conditions (G1), (G2) the operator functions G;, (i =1,--- ,n —1) possess the
following properties:

1) foreacht € [0,T), G; are linear bounded operators, more precisely, for each x € E we
have .

t
I1G:(t)z [l < M|zl =3

Copyright © 2025 ASSA. Adv Syst Sci Appl (2025)



A CAUCHY PROBLEM FOR FUNCTIONAL INCLUSIONS WITH CAUSAL OPERATORS... 65

2) the operator functions t'G;(-) are strongly continuous, i.e., functions t € [0,T] —
t'Gi(t)x are continuous for each v € E.

Proof
1) For every fixed ¢t > 0 and for each = € E, we prove the statement using the principle of
mathematical induction. Show it is true for i = 1. By using condition (G1) we have

t
16 (t)z] 5 < /0 1G0(s)]|p ds < M|z|[ t.

Let us assume that
k

t
19k ()]l < M ll2]| 5 75

is true. Now, we prove that it is true for ¢ = k£ + 1.

t 1 t L tk—l—l
10l < [ 16u(s)all ds < Mlale 5 [ 5 ds = Mol 5
2)Foranyz € £, i =1,--- ,n—1,and any 0 < t; < ¢, we have
[
161 )2~ Guta)ol < [ 1Ga (o)l s <
(t2 —t1)’
[ Ml s < v el 220
Then if ¢, — t; we have ||G;(t1)z — Gi(t2)z||; — 0 forevery z € E.
[
By using Lemma 3.1 it is easy to see that the operator functions G;, « = 0,1,--- ,n, are

satisfy conditions (S1) — (S3).
Consider a system governed by a functional inclusion with causal operators Q and S, of
the following form:

z(t) € Go(t)xo+ Gi(t)x1 + - + Gro1 () xp—1 + S0 Q) (), t € [0,T] 3.1

2(0) =z, 2'(0) =z, -, 2"7V(0)=m, . (3.2)

Definition 3.1:
A function x € C([0,T]; E) is called a mild solution to problem (3.1)-(3.2), if it satisfies
inclusion (3.1) and condition (3.2).

Consider the multioperator I" : C([0, T|; E') — C([0,T)]; E') defined as
I'(z) ={x € C([0,T]; E) : 2(t) = Go(t)xo + G1(t)x1 + - - + Gp1(t)xp_1 + S 0 Q(2)}.
It is clear that if the function x is a fixed point of the multioperator I', then z is a solution
to the problem (3.1) - (3.2), therefore, our goal is to prove the existence of fixed point of the

multioperator I".
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Definition 3.2:
A sequence of functions {&,} C LP([0,T]; E) is called LP—semicompact if it is LP—integrably
bounded, i.e.,

16 ()]l p < v(t) forae. t € [0,T] and foralln =1,2, ...,

where v € LP([0,T)), and the set {,(t)} is relatively compact in E for a.e. t € [0,T).

Lemma 3.2:

(See. [14], Proposition 4.2.1.). Every LP—semicompact sequence is weakly compact in
LY([0,T]; E).

We need the following properties of the multioperator S o Q. Since for every 1 < p <
oo : LP([0,T]; E) C L'([0,T]; E), we can formulate a modification of Theorem 5.1.1 from
[14] in the following form.

Lemma 3.3:
Let S : L*([0,T); E) — C(]0,T); E) be an operator satisfying conditions (S1) and (S2).
Then for every LP-semicompact sequence { f,}>2, C LP([0,T]; E), the sequence {S f,}>>,

1
is relatively compact in C (I[O, T); E) and, moreover, the weak convergence f, N fo implies

that S f, — Sfoin C([0,T]; E).

Theorem 3.1:
(See [4]). Let the multioperator Q satisfy conditions (Q1)—(Q3) and the operator S satisfy
(81), (82). Then the composition S o Q : C([0,T]; E) — C([0,T); E) is a u.s.c. multimap

with compact values.

Let us proceed to finding conditions under which the multioperator S o Q will be
condensing with respect to a corresponding MNC. For this we need the following statements.

Lemma 3.4:
(See [4]). Let a sequence of functions { f,,}5°, C LP([0,T]; E) be LP-integrally bounded and
there exist a function v € L* ([0, T]) such that

X ({fn (O}321) S 0(t) forae t €[0,T].

If an operator S satisfies conditions (S1) and (S2), then for 1 < p < oo we have

s < (v0 [ o) v

s h O <20 u(s)ds,

where D, Dy are the constants from condition (S1).

and for p = oo

Consider the measure of noncompactness v in the space C'([0, T]; E') with values in the
cone R? . On a bounded subset of @ C C([0, T; E) we define the values of v as follows:

v(Q2) = (v(€) ,modc (),
where mods is the modulus of equicontinuity, v is the fading modulus of fiber

noncompactness
() = sup e “x(Q(1)).
te[0,7]
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The constant L > 0 is chosen so that

maX{Qla q2} < 17

t 1/p
q1 = sup |4D'? (/ e PP (5, 1) ds) ,
t€[0,T] 0

t
¢o = sup <2D1/ e Lt=s)y, (s,l)ds) ,
te[0,7) 0

where the constants D, D, are from condition (S1), w is a function from condition (Q3).
It is easy to see that the MNC v is monotone, nonsingular, and algebraically semi-additive.
It follows from the Arzela-Ascoli theorem that it is also regular.

Theorem 3.2:
Let a causal multioperator Q : C([0,T]; E) — LP ([0, T); E) satisfy conditions (Q2) and
(Q3) and for a causal operator S : L? ([0,T]; E) — C ([0, T]; E) the conditions (S1)—(S3)

be satisfied. Then the multioperator 1" is v-condensing.

Proof
By Lemma 3.1 it is suffices to prove the assertion of the theorem for the multioperator S o Q.
Let Q@ C C([0,T]; E) be a bounded set such that

v(S0Q(Q) > (). (3.3)

where

Let us show that the set €2 is relatively compact.
Inequality (3.3) means that

1{S0Q(D)}) = v(). (3.4)

Applying the condition (Q3) and by using the properties of the function w, we obtain for
ae.te|0,7]

Xx{f(): feQ@)}) <w (t, sup ¢ ({y(s) -y € Q})> =w(t,e({y:yeQ})) =

s€0,t]

w (t, efe o ({y:yc Q})) < w (t, elty (Q)) < w (t, eLt) v (Q).
At first, we consider the case 1 < p < co. By Lemma 3.4 we have for each ¢ € [0,7] :

1/p

VUSHE)  fe Q@) < (4@ [ (ks (Q)) <

t 1/p
4D'r (/ ePEswP (s,1) ds) -y (92).
0

Inequality (3.4) and the last inequality imply the following estimate

1) < sup <4D1/,, ( / P (5 1) ds) Up) 1) =17 ().

te[0,T

therefore
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thus
P () =0
forall t € [0,T].
Let us turn to the case p = co. By Lemma 3.4 we have for each ¢ € [0,7]] :

{SUN0: Fe Q@Y <2D1 [ w (st ds- () <2D1 [ b (s, 1)ds-7(9):

Inequality (3.4) and the last inequality imply the following
t
1@ < s (200 [ B (51 ds) 1 (9) = 1(9),
t€[0,T] 0

therefore
thus

foreach ¢t € [0,7].

Now we will show that the set (2 is equicontinuous. We take sequences {y,,}5°, C Q, n >
1, and {f.}>°, fn € Q(yn). From conditions (Q2) and (Q3) it follows that the sequence
{fn}52, is LP-semicompact, and therefore by Lemma 3.3 the sequence {S f,, } 72, is relatively

compact. Hence
modc({Sfn}nzy) = 0.

Thus
v(§0Q(©)) = (0,0),
but then it follows from the inequality (3.3) that

v (Q) = <07 O)?
and the last expression yields that the set €2 is relatively compact. [

To prove the main theorem of the paper, we need the following statements, known as the
Gronwall - Bellman Lemma and the generalized Gronwall - Bellman Lemma (see [16]).

Lemma 3.5:
Let v(t) and f(t) be nonnegative continuous functions on the segment |a, b|, moreover

t
o) et [ Fuls)ds, b )
where c is a positive constant. Then for each t € [a, b] the inequality

v(t) S cefo? f(s)ds,
holds.

Lemma 3.6:
Let h(t), u(t) and v(t) be nonnegative functions integrable on [a, b] satisfying the inequality:

v(t) < u(t) —I—/ h(s)v(s)ds, t € |a,b].

Then the following inequality holds:

v(t) < u(t) + /t ela MO (s\u(s)ds, t € [a,b].

a
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Theorem 3.3:

Let a causal multioperator Q : C([0,T]; E) — Cv(LP([0,T|; E)), 1 <p < oo, satisfy
conditions (Q1)~(Q3) and a linear causal operator S : LF([0, T]; E) — C([0,T7; ) satisfy
conditions (S1)—(S3). Then the set ¥ of all solutions to problem (3.1)-(3.2) is a non-empty

compact set.

Proof

Let us show that the set of all solutions € C([0, T|; E) of a one-parameter inclusion
r € Nl'(z), Xe0,1], (3.5)

is a priori bounded. We divide the proof into three cases: p =1, 1 < p < 00, p = 00.
Let p = 1, if a function z € C([0, T]; F) satisfies condition (3.5), then by Lemma 3.1 for
each ¢t € [0, 7], we have the following estimates:

t
@)z < [[Go()xolle + 1G1 ()21l + - - + (|G (D)znlle + D/ 1f(s)]| zds <
0

tnfl t
M||550||E+M75||171||E+"'+Mﬁ||$n—1||E+D/ [f(s)][eds <

n—

T
Mol + MT |||z + - +M( >Hxn 1HE+D/ 1f (s)]| zds,

where f € Q(x) and, therefore, by condition (Q2) :
1f(s)lle < als)(X + [lz(s)x),

we have
Tn—l
lz@)|lz < Mllzollz + MT|[21[|p + -- - + Mmllﬂcn—lllmL
t Tn—l
D/ a(s)(L+ [z(s)lle)ds < Ml|zolls + MT ||zl + - + MWH%HHH
0 - .
t
Dljalli~T + Dlalli~ [ ()] eds.
0
The last expression is a non-decreasing function of ¢, so we get
Tn—l
lz@)]lz < Mllzollz + MT|[z1[|p + -- - + Mml!xn—l\lﬁ
t
DHOéHLooTﬂL/O Dl ool (s) | zds.
This means that the function v(t) = ||x(¢)|| g satisfies the estimate
Tn—l
v(t) < Ml[zollg + MT||z1|lp + -+~ + ]\/fm||9€n—1||ﬁﬁL

t
D||le| T + / D||e| v (s)ds.
0
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Applying Lemma 3.5, we obtain the required a priori boundedness:

o(t) = |z ()5 < UePleli= =+,
where
771
U= M)|xo||lg+ MT|x1||lg+---+M

m“ﬂin—lHE + |2alle + Dl|e]| T
Then [|z]|c = sup,ejom [|2() |5 < 7.
For the case 1 < p < 0o, we have

Tnfl
|zt < Ml|zol|le + MT |21 ]|g + -+ M

t 1
mgylenille + (D [ 150 Ias)” <
Tn—l
Mlzo|lp + MT||za|[g+ -+ M

t
Gopylenlle + (D / o()(1+ || (s)l| ) ds
Tn—l
Mol +MTarllp + - + M @01 s+
(n—1)!

(D /Ot oP(s)ds + D/Ot ozp(s)||x(s)||%ds>; <

Tn—l
Mlzollp + MT ||z |lp + -+ + MWHMAHEJF

(D /Ot ap(s)ds)l/p + (D /Ot ap(s)H:):(s)H%ds);.

Let us introduce the following notation:

=

<

Tnfl
o = Mol + MTfoulls + - + M lon-ill + D,

h(s) = DYPa(s).

Jotolle <o ( [ t () s "

Let v(t) = ||(t)||’%, then from the last inequality we obtain the estimate:

t
v(t) < 2Pch + 2”/ hP(s)v(s)ds.
0
Now applying Lemma 3.6 to the last inequality, we get

t
v(t) = ||z(t)||% < 2P (1 +/ €2Pf0thp(9)d0hp<s)ds) )

0
Then we have the final estimate for 1 < p < oo :

t
z(8)]|5 < 20 §/1 +/ 2 OB p(5)ds = .
0
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Then |[z]|c = supsejo 17 [|2(8)]| 2 < 2.
For the case p = oo, in the same way as in the case p = 1, the following estimate holds:

|7]|c < Upelrleleoe = 5y

where
Tnfl
Uy = M||zol|lg + MT||z1|lp+ -+ + M ——=
(n—1)!
~ Now, if we take R > max{71,72,73}, we can guarantee that the set V' C C([0, T]; E),
given as

[2n-1lle + DT

V={zeC(0,T|;E) : |z]lc < R},

contains all solutions of inclusion (3.5). Thus, the multioperator I" satisfies on OV the
condition of Theorem 2.2 with a = 0, hence the set of its fixed points is nonempty and
compact.

4. EXAMPLES

We will need the following notion (see [17, 18]).

Definition 4.1:
The Gerasimov-Caputo fractional derivative of an order q¢> 0 of a function g €
C™([0,T); E) is the function © Dig of the following form:

q — 1 ' n—q—1_(n _
“Dio(t) = s | (= ds, =l 1.

where 1 is the Euler’s gamma-function

F(q):/ v e " du.
0

Notice, that the last definition includes the case, when ¢ = n € N.
Consider the following system governed by a differential inclusion in a separable Banach
space I :

“Diy(t) € Ay (t) + F (t,y(t)), t€[0,T], n—1<qg<n, (4.6)
y(0) =vo, YO0 =y, -, y"0) =y (4.7)
Let a multimap F': [0,7] x E — Kv(F) is such that:

(F1) for each ¢ € C([0,T]; E) the multifunction F (-,¢):[0,7] — Kv (E) admits a
measurable selection;

EFQ; for a.e. t € [0, 7] the multimap F'(¢,-) : £ — Kv (E)isu.s.c.;

F3) there exists a function o € L°[0, T'| such that

1E(, ¥)le = sup{l|zlle : 2 € F(t,¢)} < a(t)(1+ [[¢]le)

fora.e.t € [0,7] and for all Y € F;
(F4) there exists a function wp : [0,7] x Ry — R, satisfying the conditions (w1)-(w3) such
that for each bounded set 2 C C([0, T]; E') we have

X (F(t,9Q) <wp(t,p(Q)) forae. t e [0,T].
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The fact that the superposition multioperator Pr : C([0,T]; E) — LP([0,T]; E), p >
1/q, satisfies condition (Q1) can be verified as in paper [19]. Conditions (Q2) and (Q3)
for Pp follow from (F'3) and (F'4), respectively.

If 0 < ¢ < 1 we will suppose that

(A7) A: D(A) C F — E is a linear closed operator generating a uniformly bounded Cj-
semigroup {U(t) }+>o.
/ (U (t10)d

Then
and a function y € C([0,7]; E) is a mild solution to problem (4.6)—(4.7), if it can be
presented in the form:

y(t) = Go(t)yo + /Ot(t — )T (t — 8) f(s)ds,

where f € Prp(y).

We can consider the relation (4.6) as a special case of functional inclusion (3.1) with
O = Pr, and the Cauchy type operator S = L.

As a direct consequence of Theorem 3.3, we obtain the following result.

Theorem 4.1:
Suppose that conditions (Ar), (F'1)—(F4) hold and 0 < q < 1. Then the set of solutions to
problem (4.6)-(4.7) is a non-empty compact subset of the space C'([0,T]; E).

Now, let 1 < ¢ < 2. We will suppose that

(Arr) A: D(A) C E — FE be a closed linear operator in £ generating a uniformly bounded
family of strongly continuous cosine operator functions {C'(t) },5 -

/ £,(0)C (117200 /go

and a function y € C([0,7]; E) is a mild solution to problem (4.6)—(4.7), if it can be
presented in the form:

Then

y(t) = Golt)yo + Ga (D)1 + / (t — )2 T3 (t — ) £(5)ds,

where [ € Pr(y).

We can consider the relation (4.6) as a special case of functional inclusion (3.1) with
Q = Pp, and the Cauchy type operator S = Ls.

As a direct consequence of Theorem 3.3, we obtain the following result.

Theorem 4.2:
Suppose that conditions (Arr), (F1)—(F4) hold and 1 < q < 2. Then the set of solutions to
problem (4.6)-(4.7) is a non-empty compact subset of the space C([0,T]; E).

Finally, in the general case n — 1 < ¢ < n, we will suppose that

(Arrr) A: D(A) C E — E generating a uniformly bounded family operator functions
go (t)}tzo such that

(Gol) Go(0) =1
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(Go2) the operator function Gy(-) is strongly continuous, i.e., the function ¢t — Gy(t)z, t > 0

is continuous for each z € F.

Then, the operator functions G;, i = 1,2, ...,n — 1, will be define as

Gi(t) = /0 Gy (s)ds.

A function y € C([0,T]; E), is a mild solution to problem (4.6)—(4.7), if it can be

presented in the form:

y(t) = Got)yo + Gr(O)yr + -+ + G (Y1 + L7 [N = A) L] (V)] (1),

where f € Pr(y), L is a Laplace transform and \? € p(A).

We can consider the relation (4.6) as a special case of functional inclusion (3.1) with

Q = Pp, and the Cauchy type operator S = L1 [(A? — A)1L[f] (N)].
As a direct consequence of Theorem 3.3, we obtain the following result.
Theorem 4.3:

Suppose that conditions (Arrr), (F1)—(F'4) hold. Then the set of solutions to problem (4.6)-
(4.7) is a non-empty compact subset of the space C([0,T]; E).

° »®» =2 o
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