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Abstract: The paper considers various approaches to the decomposition of artificial neural 
networks for the purpose of their application on fog computing nodes. Based on the requirements 
for the organization of fog computing, a method of dividing the input information into subspaces 
by means of wavelet transform and subsequent proportional division of all layers of the neural 
network is proposed. The proposed approach achieves a significant gain in the amount of 
information transferred between modules compared to the currently used layer-by-layer 
partitioning. In addition, the proposed method optimizes the load on fog computing nodes by 
partially utilizing the modules. 
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1. INTRODUCTION 

Today, the IoT is becoming a significant part of society and the volume of connected devices 
is growing rapidly. Existing approaches based on cloud computing technologies are unable to 
provide the required quality of service due to the increasing latency of data transmission 
[10]. Therefore, more and more attention is being paid to the fog computing (FC) model. The 
FC model involves placing computing power at the edge of the network [11], i.e., close to 
the hardware in use [8]. This approach allows to significantly reduce the cost of data 
transmission, as well as to increase the privacy of user data. 

More and more tasks, such as virtual assistant, computer vision and object recognition, 
require the use of artificial neural networks (ANNs). Highly accurate ANN models have 
significant volumes and require large computational resources. With the cloud computing 
model, there is no problem in using ANNs, computing resources in the cloud are sufficient. 
However, the shift in focus to fog computing requires the placement of ANNs on FC nodes, 
whose computing power is much lower than cloud computing. In this regard, multiple FC 
nodes are required to be used simultaneously to support the high-fidelity ANN model. 

Application of ANN is usually divided into 2 stages: training and intended use. The 
growth of requirements to model accuracy is directly related to the growth of the number and 
volume of ANN layers, which, in turn, requires large expenditures of computational 
resources that FC nodes do not possess. To solve the emerging contradiction, different 
approaches are used today: 

1. The training process is performed on the cloud server and the ANN is deployed on FC 
nodes only directly for the intended application [9]. 
2. Utilizing the client-server computing paradigm [12], which requires infrastructure 
support. 
3. ANN model compression [12], which requires infrastructure support or special training 
steps. 
4. Using a distributed programming model such as MapReduce [3]. 
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5. Using mathematical methods of dividing the input information into modules with 
subsequent separate processing of each module at FC nodes [19]. 
Approach 1 is widely applicable and can be used if the computational power of the FC 

node is sufficient for ANN operation. This approach is not modular and allows to perform 
the most energy-intensive training operation on the server. Approach 2 is also non-modular 
and moves energy-intensive operations from the FC domain to the cloud server. This 
approach does not solve the problem of service time delay and is actually a veiled form of 
cloud computing. Model compression (approach 3), as a rule, requires additional costs for 
ANN optimization, but allows to obtain a performance gain of 20-30% compared to 
approach 1. The use of distributed programming model (approach 4) is the most popular 
today. This approach allows to divide the ANN into layers (by one or other attribute) and 
execute one or more layers on a separate FC node [2, 12]. A significant disadvantage of this 
approach is the heavy load on data transmission channels, since the amount of information 
transferred between layers is very large. At the same time, this approach allows training and 
intended use of ANN without accessing the cloud server. Approach 5 has a significant 
advantage over approach 4: with its help, the ANN is divided into modules not along the 
layers, but across, i.e., all the layers of the module reduce their volume so that the 
computational power of the FC node is sufficient for its functioning [19]. Due to the fact that 
almost all module layers are on the same node, the channel load is significantly reduced. 
Another advantage of the proposed approach is the non-uniform distribution of features 
within modules, i.e., the use of a smaller number of modules only slightly reduces the 
recognition accuracy of ANN and allows optimizing the load of FC nodes. 

One of the key characteristics of FC is scalability and dynamism [7], i.e. FC should be 
adaptive in nature. Adaptability, in turn, implies support for the following key mechanisms: 
elasticity of computation, pooling of resource capabilities, adjustment to changes in data load 
and changes in network composition [10]. This paper is devoted to the use of the latter 
approach for building scalable and dynamic ANNs on FC nodes. 

2. JUSTIFICATION OF USING WAVELET TRANSFORM 
TO CREATE MODULAR ANNS FOR FC 

The proposed approach is based on a well-known concept in the theory of information 
transmission - power spectral density (PSD). If x (t) is a periodic signal with period T, then 
the average power per period can be defined as 
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Where cn are the complex coefficients of the Fourier series. The power spectral density P (f) 
of a periodic signal x (t), which is a real, even and non-negative function of frequency, gives 
the distribution of signal power over the frequency range, is defined as follows: 
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Here f0 is the center (average) frequency. 
The input values of the ANN can be considered as a discrete periodic signal, since all 

input values have the same digit capacity, and the period of the signal coincides with the 
digit capacity of the ANN input. This discrete periodic signal at the ANN input defines a 
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finite set of classifiable images. Differences in images belonging to the same cluster can be 
considered as additive noise on the ideal (averaged) image. 

It follows from Riemann's theorem that the Fourier coefficients cn of the function 

 ,Rf L     tend to zero when n   [17], i.e., the partial sums   1 2, ,k k
kP f k n n    , of 

expression (2) will also decrease as n increases. This means that if we divide the spectrum of 
the signal at the ANN input into 2 equal parts, the PSD in the left (low-frequency) part will 
be higher than in the right one. Based on (2.1), it can be stated that the power of features in 
the signal representing the low-frequency part will be higher than in the high-frequency part. 

In [4] it is proved that in the presence of nonlinearity in ANN, it is possible to construct 
connections and select coefficients between neurons in such a way that ANN can compute 
any continuous function from its inputs with any accuracy. Consequently, an ANN trained 
with the low frequency part of the signal will perform image recognition with higher 
accuracy than an ANN trained with the high frequency part of the signal.  

The Fourier transform of a numerical sequence is a 2π-periodic function. Therefore, 
when one speaks of low and high frequencies, one means close to zero or ±π, and the 
sampling step Δt = 1. In this case, the Kotelnikov (Nyquist) frequency is equal to π [1, 16]. 
For ideal low-pass H (ω) and high-pass G (ω) filters, the transfer characteristics are 
described by expressions: 
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From expression (2.3) it is not difficult to find the coefficients of ideal filters (by 
performing the inverse Fourier transform): 
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When the signal is decomposed into high- and low-frequency components 

     ,g h
n n nx x x  the number of samples doubles, but using the Kotelnikov-Shenon theorem 

it is possible to discard half of the samples [16]. This process is called decimation. Thus, to 
realize the process of dividing the input sequence into high- and low-frequency parts it is 
enough to perform its convolution with coefficients of ideal filters followed by decimation. 

Consider 2 Haar filters with coefficients [1, 6, 16]: 
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The convolution of the low-pass filter kernel  ih  with the input sequence  jx  will 

result in the following sequence  

1

1 1

2 2n k n k n nk Z
a h x x x 

       (2.5)  



                APPLICATION OF MODULAR NEURAL NETWORKS FOR IMAGE RECOGNITION…  25 

Copyright ©2025 ASSA.                                                                                    Adv. in Systems Science and Appl. (2025) 

 

and convolution of the high-pass filter kernel  kg  with the input sequence  jx  the 

sequence will be obtained 

1

1 1
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The sequence an, defined by expression (2.5), is obtained as the arithmetic mean of two 

neighboring values of  jx , reducing the oscillation frequency, while the sequence dn (2.6), 

being essentially the first derivative of the input values of  jx , reflects its oscillations. Thus 

k k kx a d  , i.e., the input values  kx  have been decomposed into a low-frequency part ak 

and a high-frequency part dk and can be recovered by a postal addition of the components.  
Turning to the wavelet transform, we define in the space L2(R) the orthonormalized Haar 

basis [16] as 
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In [16] it is shown that the spaces Vj, generated by the system of functions 

, 2 (2 ),j j
j n x n       (2.8) 

created on the basis of the parent function (2.7), form an infinite system of nested subspaces 

0 1 2 ...V V V   . This system of subspaces can be used to go from an arbitrary function f (x) 

from L2(R) to its more or less exact approximation in the space jV Z , the spaces Vj are 

being scaled versions of the space V0. 
Thus, the use of scaled versions of spaces for ANN training will allow to create modular 

neural networks with cross-layer separation [19], since the dimensionality of spaces 
decreases proportionally to the level of nesting due to decimation. At the same time, the 
dimensionality of the ANN module can be reduced in proportion to the level of nesting. In 
this case, the accuracy of space approximation Vj determines the classification accuracy of 
the ANN module from more accurate (low-frequency part) to less accurate (high-frequency 
part). The ANN modules can be used separately, for example, for optimization 
(dimensionality reduction) of ANN, or together. A single linear layer was used to combine 
the results of the modules in [19]. However, the Haar wavelet transform assumes an inverse 
transform [6], but due to the nonlinearity of the ANN, the inverse transform kernel cannot be 
used, so the inverse transform layers need to be trained. 

3. EXPLORING THE POTENTIAL OF A MODULAR CROSS-LAYER 
PARTITIONED ANN FOR USE IN FC 

The task of using ANN at FC nodes can be divided into several subtasks: wavelet 
transformation of the input signal with decimation, division of the initial ANN into modules 
(according to the number of input information module), training of the network and its 
application as intended. 

Thanks to the McCulloch-Pitts model [13], it has become possible to realize spectral 
decomposition operations in direct propagation ANNs and convolutional layers for almost 
any, including random signals. Here, the most important feature is the correlation radius of 
the information field [15]. Most conveniently, this operation can be performed using 
convolution layers, which allow to perform, for example, wavelet transform simultaneously 
with several kernels. This operation is considered in detail in [20]: 
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If the signal at the input of the ANN is a one-dimensional sequence, one convolution 
layer with kernels h (n) and g (n) is sufficient to perform the Haar wavelet transform. In 
image processing, the input signal is a two-dimensional matrix, and 3 convolution layers will 
be required to perform the two-dimensional Haar wavelet transform (Fig. 1). 

 
Fig. 1. Two-dimensional wavelet transform 

As noted earlier, the division of ANN into modules is most often performed layer-by-
layer [18]. In this case, the volume of the ANN does not change, and the lack of computing 
resources is compensated by using several computing devices connected in series with the 
placement of several layers of the network on each of them. The authors rely on the thesis 
that it is impossible to divide one layer into 2 or more computing devices [18]. As it was 
shown in [19], such separation is possible not at the level of the ANN layer, but at the level 
of input information. It was proposed to divide the input information into several modules 
and to carry out joint or separate processing of modules on ANNs, proportionally reduced 
compared to the original network. The authors in this paper set out to compare the 
performance of the approaches proposed in [18] and [19] for FC nodes. 

For this purpose, 2 sets were used: the simplest one, MNIST [14], for visual 
demonstration of comparative performance and a much larger set GTSRB [5] (German 
Traffic Sing Recognition Benchmark) for working with AlexNet-like network. For the first 
experiment, an ANN with two convolution layers and a classifier of two linear layers was 
used on a personal computer running the "Windows 10 Home" operating system with an 
Intel© Core™ i7-10510U processor and 16 GB of RAM.  

Each of the layers was placed in a separate ANN, which were placed sequentially, i.e. the 
output of the previous ANN is the input of the subsequent one. Thus, the entire network was 
partitioned layer by layer and trained for later use at the FC nodes. It is clear that with such 
an architecture, it is impossible to remove at least one ANN, because in this case a complete 
retraining is required. For comparison, a similar ANN was divided across the layers into 4 
modules and trained. At the same time, 3 convolution layers were added to the ANN 
architecture to perform the two-dimensional Haar wavelet transform to the first layer and 3 
layers at the end of the network for the inverse transform. The training results are presented 
in Table 1. 

Table 1. Training results of ANNs with longitudinal and cross-layer separation 
 Maximum training 

cycle time 
Minimum training 

cycle time 
Average training 

cycle time 
Mean square 

deviation 
Separation of ANNs 

along the layers 
0.21533 0.14007 0.16213 0.01076 

Separation of ANNs 
across layers 

0.21266 0.14084 0.16620 0.00917 
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Table 2 summarizes the amount of data transferred between modules. 

Table 2. Dimensionality of data transferred between modules 
 INS input 1 module output 2 module output 3 module output 4 module output 

Separation of ANNs 
along the layers 

28х28х100 32х14х14х100 3136х100 1000х100 10х100 

Separation of ANNs 
across layers 

28х28х100 4х196х100 4х10х100  10х100 

 
Table 1 shows that the time characteristics of both types of architectures are very close. 

Taking into account that there are 6 more layers in the ANN with cross-layer partitioning 
(forward and inverse two-dimensional wavelet transform), the difference in the average 
training time by 0.004 sec does not look critical. It became possible due to parallelization of 
operations between modules. Here, it should be noted that the number of training cycles in 
ANN with cross-layer partitioning turned out to be ≈1.5 times greater than in ANN with 
layer-by-layer partitioning: 314 vs. 192 cycles. This is quite understandable, since in addition 
to the training of 4 modules, 3 layers of the inverse two-dimensional wavelet transform are 
subject to training. As noted earlier, introduction of nonlinearity into ANN leads to 
impossibility of the inverse transform using the standard kernel. 

Table 2 gives an idea of the amount of data transferred between modules. With layer-by-
layer partitioning of the ANN, the amount of data transferred is proportional to the size of the 
layer (the size of the batches is the same and equals 100). At the same time, the amount of 
data to be transmitted through communication channels is 8 times less at cross-layer 
separation of ANN after the first layer, 78.4 times less after the second layer, and not 
required after the third layer. At the same time, the number of modules in cross-layer 
partitioned ANN is much larger: 6 vs. 4, since 2 more modules are required to perform 
forward and inverse wavelet transform. 

But the biggest advantage in cross-layer partitioning of ANNs is that not all 4 modules 
can be used in network operation, but for example 2 or 3 (Table 3). 

Table 3: Comparison of recognized quality and execution time using different number of modules 
 1 module 2 module 3 module 4 module 

Recognition quality, % 96.08 97.18 97.72 98.11 
Average turnaround time, sec. 0.014 0.025 0.037 0.047 

 
During the experiment, zero tensors were fed instead of the output data of the missing 

modules. At the same time, once trained ANN does not require retraining if 2, 3 or 4 
modules are used depending on the availability of FC computational resources.  

From the conducted experiment the advantages of cross-layer separation of ANN become 
clear: firstly, the amount of transferred information between layers is tens of times less than 
at layer-by-layer separation, secondly, the possibility of using not all trained modules, which 
allows to reduce the load on FC nodes at some reduction of recognition accuracy. The 
disadvantages of the proposed method include the need for two additional modules: to 
perform the wavelet transform and to combine the data using linear or convolution layers. 

The following libraries for the Python 3.7 (64 bit) compiler: Numpy (v. 1.21.4), 
PyWavelets (v. 1.3.0), PyTorch (v. 1.12.1) were used for the experiment using the GTSRB 
dataset [5]. The experiment was conducted on a server running the Linux 2operating system, 
CPU E5-2690V4 processors, 1 TB of RAM. The purpose of the experiment was to evaluate 
the feasibility of the proposed cross-layer separation method for volumetric high-precision 
AlexNet-like ANNs, as well as to assess the advantages of using linear and convolutional 
layer modules for combining the results of the linear and convolutional layer modules. 

The German Traffic Sign Recognition Test (GTSRB) includes 43 different types of road 
signs divided into 39,209 training and 12,630 test color images. The pictures depict a variety 
of lighting and environments. To reduce the volume of ANN, the authors allowed themselves 
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to convert color images of signs into grayscale. Such approach allowed, on the one hand, to 
reduce the volume of ANN due to the lack of necessity to process each color, on the other 
hand, increased the complexity of the problem due to the lack of 3 processing channels. 

Table 4 shows comparative data on the recognition quality and performance of two 
AlexNet-like networks, one of which used a linear layer as a unifying layer and the other 
used 3 convolutional layers simulating the inverse Haar wavelet transform with the 
possibility of training kernels. 

Table 4. Comparison of the features of the unifying linear and convolutional layers 
 1 module 2 module 3 module 4 module 

Recognition accuracy, line layer, % 78.57 96.24 99.38 99.49 
Recognition accuracy, convolution layer, % 99.23 99.29 99.31 99.34 
Recognition time of test images, line layer, с 14.8 21.84 28.47 35.65 

Recognition time of test images, convolution layer, с 15.04 21.93 28.32 35.35 

 
Table 4 shows that the temporal characteristics of both architectures are very close and it 

can be argued that there are no advantages. But the recognition quality of the ANN with a 
convolutional layer showed a significant advantage: even 1 low-frequency module performs 
recognition with a quality almost as good as a full network of 4 modules. Application of 
linear layer shows a significant decrease in recognition quality - by more than 20%. And 
only 3 modules out of 4 show quality comparable to full ANN. However, it should be noted 
that this approach does not always give such an advantage. A similar experiment on the 
MNIST dataset showed almost the same drop in recognition quality when the number of 
modules decreases for ANNs with linear and convolutional combining layer. Obviously, 
such an effect appears at significant redundancy of the network and/or input data.  

CONCLUSION 

In this paper, methods of partitioning ANNs into modules were investigated. The proposed 
method of cross-layer partitioning of ANN and further modular application showed a 
significant advantage over the currently used layer-by-layer partitioning, primarily in terms 
of the volume of data transferred between modules. In addition, the proposed method allows 
to use not all trained modules at the same time, but only a part of them. In this case, no 
additional training of the network is required when excluding a part of modules. The layer-
by-layer separation of ANNs does not allow using this approach. These advantages allow the 
proposed ANN partitioning principle to be used in fog computing when the number and 
computational power of FC nodes are not known in advance. In this case, once trained ANN 
can be placed on the number of FC node that is available without the need for additional 
training. In addition, when FC nodes are released, the used ANN can be augmented to 
increase the recognition accuracy. Thus, the scalability and dynamism of computation, which 
is one of the most important indicators of FC, are achieved. 
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