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Abstract: Nonlinear single-channel control plant with affine unmached external disturbances are 
considered. Their mathematical model has the so-called triangular (based on the composition of 
the arguments of the functions in each equation) “input-output” form, which has the following 
structural properties. If there are no external disturbances, then this form is controllable and 
observable in terms of output. If external disturbances are smooth, then the control plant model is 
representable in the canonical “input-output” form with respect to mixed variables (functions of 
state variables, external disturbances and their derivatives). In the new mixed variable basis, the 
system remains controllable, observable, and has the same relative degree as the original system. 
If the output variable is measured, then an observer of mixed variables can be constructed based 
on the canonical system and, using suitable feedback, ensure the desired behavior of the output 
variable. In this case, there is no need to detail external disturbances and design individual 
observers for them, which greatly simplifies the structure of the controller. This paper discusses 
the problem of implementing the specified synthesis procedure in the case when the output 
variable is not measured. Motivating examples are given and conditions are formulated under 
which it is possible to first restore the output variable from the measurement of other state 
variables invariantly with respect to the action of external disturbances. Methods for estimating 
external disturbances using observers with piecewise linear corrective actions, which do not 
require the introduction of dynamic disturbance models, constitute the methodological basis for 
solving this problem. Using the example of various mathematical models of single-link 
manipulators, the fulfillment/failure of the conditions necessary to restore an unmeasured output 
variable is demonstrated. The proposed approach can be extended to multichannel nonlinear 
control plants without loss of generality. 

Keywords: nonlinear SISO system, unmatched disturbances, observability, reduced-order state 
observer, piecewise linear function with saturation, single-link manipulator.  

1. INTRODUCTION 

The problem of constructing the reduced-order state observers is considered for nonlinear 
minimal-phase systems with one input and one output (SISO), represented in a triangular (by 
the composition of the function arguments in each equation) “input-output” form. This form 
is convenient for synthesis and feedback when solving the tracking problem, and for the state 
observer for estimating unmeasured variables, when only the output (controlled) variable is 
measured, and all parametric uncertainties and external disturbances are match, i.e. act on the 
input in the last equation [12, 15, 17–19]. In this paper, we study a case little studied in 
theory, but common in practice, when the output (controlled) variable of the tracking system 
for one reason or another cannot be measured [5], the set of sensors is not complete, and the 
parametric and external disturbances are unmatched. 

The problem of observing non-measurable (including controlled) variables is considered 
in a narrow setting, when the identification of unknown parameters and the construction of 
external disturbance generators are not provided or are not possible. Our goal is to formulate 
for a triangular “input-output” system the conditions necessary for constructing a physically 
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realizable observer, which depend not only on the structural properties of observability, but 
also on the channels of action of parametric and external disturbances. The scientific novelty 
lies in the identification of a practically significant class of SISO systems with unmatched 
disturbances, where the problem of estimating unmeasured state variables is feasible without 
additional identification of the existing parametric and external disturbances. The reduced-
order state observer of a special structure with piecewise linear control actions provides a 
solution to this problem [8, 9, 13], if the differential equations of the measured variables in 
the control plant model do not contain parametric and external disturbances. Then, the 
observer is constructed as a copy of these equations, where unmeasured state variables are 
treated as undefined bounded inputs and estimated with the observer's corrective actions. In 
this case, the uncertainty of differential equations of unmeasured state variables is allowed. 

The proposed approach, which provides a given estimation accuracy in a finite time, is 
fundamentally different from the traditional methods for constructing reduced observers 
based on differential equations of unmeasured variables [3, 4, 6, 7, 14], which in a narrow 
setting can be implemented only if the entire control plant model is fully defined.  

The paper is structured as follows. Design options for a state and disturbance observer 
with piecewise linear correcting actions for a second-order system are discussed in Section 2. 
The main result is presented in Section 3. The conditions are formulated necessary for 
constructing a physically realizable observer for estimating the controlled but unmeasured 
variable of the n-th order SISO system. As an example, the equations of motion of single-
link manipulators with a rigid and elastic type of articulation with the shaft of a DC motor 
are considered.  

2. MOTIVATING EXAMPLES 

Methods for estimating external disturbances in terms of their act on the control plant are the 
methodological basis for this study. These methods provide the given accuracy of the 
estimating signals when certain conditions are met [8, 9, 13]. To explain them, we will 
consider a triangular SISO system “input-output” of the second order 
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where 2T
21 ),( RXxxx   is the state vector, X  is an open bounded area of change of 

state variables in the control process, )(1 tх  is controlled output, ),( 21 ххfi  are functionally 

and parametrically defined expressions satisfying the Lipschitz conditions, Ri  are 

external disturbances, Ru  is the control (input), which is assumed to be a known function 
of time, for simplicity b  is assumed to be a known constant. Satisfaction of conditions (2.2) 
means that system (2.1) is controllable and observable with respect to the output in the 
absence of external disturbances. 

All internal and external signals in system (2.1) are assumed to be bounded together with 
their derivatives in the control process, in particular: 
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where T  is regulation time, iiii FF  ,,,  are known constants, in this section everywhere 

2,1i . 
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Let us consider various variants of measurements in system (2.1) and the corresponding 
conditions for the physical realizability of observers of unmeasured state variables and 
external disturbances. 

Example 2.1:  
If state variables )(),( 21 txtx  are measured in system (2.1), then we can obtain estimates of 
external disturbance s using two first-order autonomous observers: 
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where Rzi   is the state vector, Rv i  are corrective actions of the observer. Taking into 

account (2.1), (2.4), the system with respect to observation errors Rzx iii   takes the 

following form 

.2,1,)(  ivt iii       (2.5) 

Synthesis of observer (2.4) consists in choosing the parameters of piecewise linear 
corrective actions 
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where ,0const, ii lm  so as to stabilize the observation errors and their derivatives with a 

given accuracy 
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We can obtain inequalities for the choice of observer parameters that provide (2.7) using 
the second Lyapunov method [8]. Taking into account the measurements in systems (2.4), 
(2.5), we set the initial values  
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Then we can provide ii lt /1)(   during the entire control time ],0[ Tt  by choosing the 

amplitudes of corrective actions (2.6) in the form  

.0)())sign((  iiiiiiiiiii mmm     (2.8) 

In the linear zone ii l/1 , system (2.5) and its derivatives take the form 
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The state variables )(),( tt ii    of this virtual system will converge to the given domains 

(2.7) in a finite time Ttt  00 0:  if the conditions  
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are met. The simultaneous fulfillment of conditions (2.8)–(2.9) 
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ensures the solution of the formulated estimation problem (2.7). 

Example 2.2:  
If in system (2.1)–(2.2) )(1 tx  is measured, and ,0)(1 t  then, similarly to (2.4), we can 

reconstruct )(2 tx  with a first-order observer based on the first equation of system (2.1) in the 
form 
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Then, after analyzing virtual systems  
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we obtain inequalities for choosing the parameters of the observer (2.11) similarly to (2.8)–
(2.10)  
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providing 11211111 ),()(,)(  vxxftt   , then  
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where ),( 111 vxh  is the solution of the equation 1211 ),( vxxf   with respect to 2x , which exists 
due to (2.2). 

Thus, we applied the technique for estimating external disturbances, presented in the first 
case, to estimate the unmeasured state variable )(2 tx  using the reduced observer (2.11), 
constructed on the basis of the differential equation of the measured variable, which does not 
depend on the external disturbance. At the same time, we did not explicitly use the second 
equation of system (2.1), which depends on the disturbance, so identification 0)(2 t  is not 
needed to solve this problem. 

The main limitation of this approach is that at the design stage it is necessary to obtain 
the estimates 11, FF  required to tune the observer (2.12), taking into account the specific 
control law and the admissible range of initial values of the state variables. 

Note that in this case, the standard reduced observer, which is constructed on the basis of 
the differential equation of an unmeasured variable, is physically unrealizable in a narrow 
setting, since the second equation of system (2.1) is under the influence of an external 
uncontrolled disturbance [6, 7]. 

Note that due to (2.13) we can reconstruct both )(2 tx  and 0)(2 t  using a full-order 
observer 
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Taking into account (2.1), (2.14), the system with respect to observation errors 
Rzx iii   takes the form 
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where for 1tt   the inequalities  
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are met, 212, LL  are well-known Lipschitz constants. Then, under the conditions similar to 

(2.10), taking into account (2.16), the estimation )()(,)( 2222 tvtztx    is provided in a 

finite time .: 212 Tttt    
The conditions for observability of the controlled variable, regardless of external 

disturbances, have the following form: if in system (2.1) )(2 tx  is measured, and 0)(2 t , 

,0/),( 1212  xxxf  then we can reconstruct )(1 tx  using a first-order observer similar to 

(2.11) but based on the second equation of system (2.1), and provide 2212 ),( vxxf   

).,()(~)( 22211 хvhtxtx   In addition, we can obtain estimates of both )(1 tx  and )(1 t  using a 
full-order observer, similar to (2.14). 

Example 2.3:  
If in system (2.1) only )(1 tx  is measured and ,0)(1 t  then in a narrow setting, i.e. without 

introducing a dynamic model of )(1 t , it is impossible to solve the problem of separately 

estimating the variable )(2 tх  and external disturbances. Similarly, if only )(2 tx  is measured, 

and 0)(2 t , then it is impossible to solve the problem of estimating separately the variable 

)(1 tх  and external disturbances in a narrow setting. 
In the next section, the presented results are used to formalize the observability 

conditions for the output controlled variable of a single-channel arbitrary order system. 

3. MAIN RESULT 

3.1. General Case of Triangular SISO System 

Let us consider a minimum-phase nonlinear multidimensional SISO system, represented in a 
triangular affine form “input-output” 
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where n
n RXxxx  T

1 )...,,(  is the state vector, Rtx )(1  is controlled output, Ru  is 

the control, )...,,,( 121 ii xxxf  are functionally and parametrically defined expressions 

satisfying the Lipschitz conditions, b  is a known constant. All uncertainties of the control 
plant model and external disturbances are concentrated in expressions i , in some equations 

of system (3.1) these terms are absent. It is assumed that in the control process all internal 
and external signals are bounded similarly to (2.3). The fulfillment of the conditions  
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means that system (3.1) is observable with respect to the output in the absence of 
disturbances, and the output is controllable with respect to the input. 

In a narrow setting, when the identification of unknown parameters and the construction 
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of external disturbance generators are not provided or not possible, there are two options for 
synthesizing feedback that provides tracking of the output variable )(1 tx  of a reference signal 

)(tg .  

The first variant [9]: if conditions 1,1,,   niCf in
ii   and nСtg )(  are satisfied, 

system (3.1) is representable in the canonical basis of mixed variables (functions of state 
variables, external influences and their derivatives), for the estimation of which it is enough 
to measure )(1 tx  и ),(tg  at the same time, it is possible to provide )()(lim 1 tgtx

t



 using 

dynamic feedback.  
The second variant [1]: if the functions )(),( tgti   are not smooth, then when measuring 

)(...,),(1 txtx n  and )(tg , it is possible to provide a given accuracy of the tracking error using 

static feedback. With an incomplete set of sensors, the possibility of estimating the state 
variables necessary for feedback synthesis depends on the observability structure of system 
(3.1) and the absence of disturbances 0)( tj  in specific j -th equations. 

Let the first variant of feedback synthesis be used for system (3.1)–(3.2), but the 
controlled variable )(1 tx  is not measured. Let us formulate the conditions for its 
observability regardless of disturbances, based on the motivating examples from Section 2. 
In what follows, a narrow statement of the problem is considered by default, i.e., without 
additional identification of existing uncertainties. 

Theorem 3.1: 
If in system (3.1)–(3.2) there is i -th equation ( ni ...,,2 ) such that:  

1. ,0)( ti  ,0/)...,,( 111   xxxf ii  ;Xx   

2. )(1 txi  is measured ( 0)(1  txn );  

3. )(txi  is measured or observed independently of disturbances (see Example 2.2);  

4. )(...,),( 12 txtx i  either are not arguments of the function if , or are measured, or are 

observed regardless of disturbances,  
then for estimating )(1 tx  it is possible to construct a physically realizable reduced observer. 

Proof 
The conditions formulated in the lemma are dictated by the triangular form of the considered 
system (3.1)–(3.2). In the simplest case, when )(txi  ( ni ...,,2 ) and all available arguments 

of the function if  are measured (except for )(1 tx ), ,0)( ti  then the estimate of )(1 tx  can 

be obtained using the corrective action of the first-order observer constructed on the basis of 
the i -th equation of system (3.1) similarly to (2.11)–(2.13): 
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Note that if ni  , then the first expression (3.3) will take the form buvz nn  , but the 

following expressions (3.3) will not change. 
If )(txi  and/or the available arguments )(...,),( 12 txtx i  of the function if  necessary for 

restoring )(1 tx  (3.3) are not measured, then the conditions for their observability are similar 

to those formulated in the lemma. For example, if in system (3.1)–(3.2) )(2 tх  is measured, 

then under conditions ,0)( tj  ,...,,3,2 kj   1 ik , based on the j th equations, we can 

construct a physically realizable observer for estimating )(...,),( 13 txtx k  similarly to (2.14)–
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(2.16). If in system (3.1)–(3.2) )(3 tх  is measured, then under conditions ,0)( tj  

,...,,3 kj   1 ik , based on the j th equations, we can construct a physically realizable 

observer for estimating ),(...,),( 14 txtx k  if at the same time )(2 tx  is measured or is not an 

argument of functions jf , etc. □ 

If the conditions of Theorem 3.1 are satisfied and an estimate )(~
1 tx  can be obtained, then 

for the second variant of the synthesis of the tracking system, the conditions for constructing 
physically realizable observers for the remaining unmeasured variables with respect to the 
measured (observed) variables are verified similarly. For example, if ,0)(1 t  then there is 

the possibility of estimating )(2 tx ; if at the same time 0)(2 t , then and )(3 tx  etc. 

3.2. Application to Single Link Manipulator 

As an example, let us consider two systems of the form (3.1)–(3.2), which describe the 
equations of motion of a single-link manipulator [16] with a rigid joint type with a DC motor 
shaft  
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and with an elastic joint type  
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where )(1 tх  is the angular position of the pendulum (controlled output), an overline means 
that this parameter is not exactly known, .0)( t  

As we can see, the conditions of the Theorem 3.1 are not satisfied in system (3.4). If the 
controlled variable )(1 tx  is not measured, then in a narrow formulation it is impossible to 

obtain its estimate from measurements of ),(),( 32 txtx  this is possible only in the absence (or 

identification) of uncertainties .,,, 232221 ccc  Thus, in system (3.4), the first variant of the 

tracking system synthesis is realized only when measuring .1x  
For the second variant of the synthesis of the tracking system, the minimum set of sensors 

is measurements ),(),( 31 txtx  since, based on the first equation of system (3.4), it is possible 

to construct a reduced observer for estimating ),(2 tx  and it is not necessary to identify the 
existing uncertainties to solve the observation problem. 

In system (3.5), the conditions of the lemma are satisfied for 4i  and measurements 
).(),(),( 543 txtxtx  Then the corrective action of the first-order observer constructed on the 

basis of the fourth equation of system (21) will give the estimate ).(1 tx  Sensors )(),( 53 txtx  

are the minimum set for estimating ).(1 tx  In this case, estimates of both )(1 tx  and )(4 tx  can 
be obtained using a second-order observer constructed on the basis of the third and fourth 
equations of system (3.5) [10, 11].  

Sensors )(),( 53 txtx  are the minimum set for the second variant of the synthesis of the 

tracking system. In this case, the third-order observer is constructed on the basis of the 
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unperturbed subsystem 

21

54544413434

43

,)(

,

xx

xaxaxxax

xx












    (3.6) 

in the form of 
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allows one to obtain the estimates ).(),(),( 214 txtxtx  

If )(),( 31 txtx  are measured, then the observer constructed on the basis of subsystem (3.6) 

in the form of 
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allows one to obtain the estimates ).(),(),( 254 txtxtx  

An example of constructing a reduced-order observer for a multilink manipulator whose 
movements are described by matrix equations of the type (3.4) is presented in the work [11]. 
Simulation modeling of closed systems (3.4), (3.5) with different sets of sensors and with the 
corresponding reduced observers confirmed their performance [2, 9, 10].  

4. CONCLUSION 

The control plant model is often presented in the canonical “input-output” form in order to 
make it convenient to perform mathematical analysis and synthesis of the tracking system. 
However, the canonical form completely depersonalizes the control plant model and hides its 
features. This paper shows that if the output variable is not measured in tracking systems 
operating under parametric and external disturbances, then it is advisable to use the 
triangular shape “input-output” to solve the problem of its observation. At the same time, the 
use of the technique for estimating external disturbances for estimating unmeasured state 
variables makes it possible to construct robust reduced-order observers. 
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