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Abstract: Axial defects in wind turbine blades represent a critical factor influencing both their 
vibration characteristics and overall operational performance. Among these, the axial cracks are 
particularly concerning.  They alter the structural dynamics of the blade, compromise stiffness and 
reduce the ability of the system to withstand fluctuating aerodynamic and mechanical loads. This 
study presents a systematic vibration analysis of wind turbine blades with three different levels of 
axial crack defects, specifically of lengths 50 mm, 100 mm, and 350 mm subjected to shaft 
rotational speeds ranging from 50 rpm to 200 rpm. The experimental investigations are conducted 
using the Spectra Quest wind turbine simulator. It replicates the conditions of a real wind turbine 
by incorporating actual wind data from Sohar. The results reveal a strong correlation between 
defect size, shaft speed and vibration response with regression analysis yielding a high coefficient 
of determination (R² = 0.98). Further, Taguchi design of experiments is applied to identify the most 
effective parameter combinations for minimizing vibration risks. The proposed condition 
monitoring framework demonstrates an effective approach for detecting and mitigating vibration 
levels in defective blades. Thereby contributing to enhanced reliability, extended service life and 
reduced maintenance costs in wind turbine systems. 

Keywords: Blade Defect, Crack size, Rotational Speed, Taguchi analysis, Vibration Patterns, Wind 
Turbine. 

1. INTRODUCTION 

The quick development of wind energy as a clean and renewable control source has led to 
expanded attention to upgrading the reliability and efficiency of wind turbine systems [1]. 
Regardless of significant advancements in wind turbine innovation, the presence of blade 
defects remains a challenge, affecting the execution and life expectancy of wind turbines [2]. 
Blade vibration can be categorized into three types: stall flutter, classical flutter, and axial 
vibration. These vibrations can cause severe damage to the blade structure. 

The wind turbine blades are essential components that convert the kinetic energy of the 
wind into a mechanical form of energy. As these blades are subjected to significant mechanical 
loads and environmental forces throughout their working lives, they are critical to the longevity 
and productivity of wind energy systems. [3]. However, the presence of defects inside these 
blades, especially along the axial direction, can compromise structural integrity and 
performance, leading to operational downtime, upkeep costs, and security risks [4][5]. Axial 
defects, such as axial cracks, can lead to catastrophic failures if not detected and treated on 
time. Vibration-based investigation of wind turbines utilizes advanced monitoring methods to 
assess blade integrity and performance. Data complexity and computational requirements are 
some challenges in vibration-based analysis. Vibration analysis procedures, such as time 
domain and regression analysis, are employed to detect and analyze these defects, allowing for 
timely maintenance and repair interventions to prevent costly downtime and ensure the safe 
operation of wind turbines [6]. This is particularly useful for detecting sudden changes in 
vibration patterns and blade failures. Regression analysis of vibration data involves modelling 
the relationship between various vibration parameters and the condition of wind turbine blades. 
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Taguchi analysis is a statistical method used in this paper for optimizing the wind turbine 
performance as it is widely used in engineering research [7]. The main idea of this method is 
to design experiments efficiently so that it shows how different input factors affect the output 
[8]. This is done while minimizing variation (noise) and maximizing performance [9]. This 
analytical approach aims to correlate vibration measurements with the health status of the 
blades under different operating conditions. This can identify patterns and trends in vibration 
data indicative of potential defects or deterioration. These vibration amplitudes and 
frequencies may signal abnormalities or wear in turbine blades. Condition monitoring 
procedures allow for proactive evaluation of turbine component health, enabling early defect 
detection and targeted maintenance interventions [10]. Wind turbines are becoming 
increasingly larger in capacity [11]. This proactive maintenance technique empowers 
convenient intervention, reducing downtime, maintenance costs, and safety risks while 
optimizing energy generation and increasing the operational life expectancy of wind turbines. 
This research paper presents an analytical vibration analysis of axially defective wind turbine 
blades through time domain and regression analyses, as a condition monitoring approach. The 
novelty of this research study is to simulate Sohar's actual wind speed data using a vibration 
lab wind turbine simulator to evaluate the vibration patterns of a wind turbine due to axially 
defective blades. 

2. LITERATURE REVIEW 

Currently, many research studies on blade vibration suppression focus on passive and active 
control methods. Passive control adjusts the mass and stiffness distribution of the blade 
structure, changes the blade’s natural frequency, redesigns the blade structure, and replaces 
blade materials. Lighter and harder carbon fibers were used to improve blade performance. 
The results showed that the new materials can reduce vibration speed by about 5% to ensure a 
certain bend-twist coupling [12]. Active control suppresses blade vibration by installing 
dampers on the original blade and using advanced control strategies without adjusting the 
structure, designing new airfoils, or replacing blade materials. A new tuned damper was 
proposed to be installed inside the blade to improve the critical condition of blade vibration. 
The results showed that the tuned damper can increase the critical speed of blade flutter by 
100% [13]. However, this method was mainly for the blade torsional flutter problem, rather 
than the axial vibration. An active optimal control scheme based on a piezoelectric actuator 
and linear rectangular Gaussian theory was proposed to suppress wave vibration [14]. 
Researchers aimed to decrease the vibration amplitude by reducing the fluctuations of the axial 
force moment [15][16][17]. Additionally, as the blade vibrates, it is necessary to detect the 
vibration and modify the load control algorithm by identifying the blade dynamics [18]. 

Blade vibration, which generally involves axial vibration, is related to the inherent dynamic 
characteristics and blade aerodynamic characteristics. However, there are still some 
deficiencies in current research on blade vibration due to various defect directions. With the 
increase in blade length, wind shear and tower shadow effects on blade vibration will become 
more prominent. Therefore, it is worth considering how to prevent blade vibration caused by 
different effects. This paper investigates the analysis of blade vibration caused by axial defects 
and the effective optimization methods to suppress blade vibration. 

3. METHODOLOGY 

The research work involves wind speed data collection followed by practical design and setup 
for test measurement and signal processing. Design of tests and model development are then 
employed. Results are discussed through time-domain and analytical vibration analysis, 
alongside graphical analysis. Regression and Taguchi analyses are conducted to further 
understand vibration patterns. Finally, prediction, optimization, and sensitivity analyses are 
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performed to enhance comprehension of the effects of axially defective blades on wind turbine 
vibration. Fig. 3.1 shows the methodology flow chart. 

 
Fig. 3.1. Methodology flow chart 

3.1. Data Сollection 

The Spectra Quest wind turbine simulator is a lab facility installed in the vibration lab at Sohar 
University, Oman.  The Sohar town's monthly average wind speed is shown in Table 3.1, 
which was measured at a height of 50 m using Sohar University facilities. Using the wind 
speed to rotational speed conversion for the Spectra Quest wind turbine simulator, the wind 
speed data was converted to a rotational speed at the low-speed shaft. Then, this rotational 
speed was converted to a high-speed shaft rotational speed, at which the accelerometer was 
mounted, using the gearbox ratio of 4.571. A conversion error of 5% is considered in the 
Spectra Quest wind turbine simulator. 

The high-speed shaft rotational speed in Table 3.1 ranges from almost 100 rpm to 150 rpm. 
To represent it clearly, a hypothetical range of rotational speed from 50 rpm to 200 rpm is 
proposed, considering the 50 rpm limit on both sides. Considering an interval speed range of 
50 rpm, the set of input rotational speeds is namely; 50 rpm, 100 rpm, 150 rpm and 200 rpm 
for the current research work. This research work includes practical design and setup, data 
measurement and signal processing methods, and vibration analysis techniques. The practical 
work was done by installing the axially defective wind turbine blades, one after the other, in 
the Spectra Quest wind turbine simulator and obtaining the resultant vibration patterns under 
the input set of rotational speeds. Graphical representation and regression analysis were 
employed to correlate with the condition monitoring approach. 

Table 3.1. Monthly averaged wind speed and corresponding rotational speeds 
Months Average wind speed (m/s) Low shaft speed (rpm) High shaft speed (rpm) 

Jan 4.50 24.75 113.15 

Feb 5.12 28.16 128.74 

Mar 4.87 26.79 122.45 

Apr 4.80 26.40 120.69 

May 5.47 30.09 137.54 

Jun 5.47 30.09 137.54 

Jul 5.35 29.43 134.52 

Aug 5.15 28.33 129.49 

Sep 4.92 27.06 123.71 

Oct 4.24 23.32 106.61 

Nov 3.86 21.23 97.06 

Dec 4.42 24.31 111.14 
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3.2. Practical Design and Setup 

The Spectra Quest wind turbine simulator is a wind turbine lab facility with three blades. One 
of these blades was replaced by an axially defective blade for each test. Based on the crack 
size, there are three different blades with different crack sizes, namely; low, medium and high. 
These axial defects were intentionally made for analysis purposes. After replacing the healthy 
blade with a defective blade, the system was tested for vibration analysis. The same was 
repeated using medium and high defective blades at each time. This simulator provides a lab-
wise controlled environment for replicating real-world conditions, enabling precise testing and 
data collection.  

The varying rotational speeds were measured using a tachometer installed in the Spectra 
Quest wind turbine simulator, while the vibration level was measured by an accelerometer 
installed at the high-speed shaft of the Spectra Quest wind turbine simulator. Each 
accelerometer measures the vibrational excitation in one direction [10].  

The sensor’s readings are collected by a data acquisition system that is connected to a 
computer. Vibra Quest signal analysis software is used to analyze the signals the data 
acquisition system reads and generate output vibration reports.   

3.3. Design of Experiments 

Design of experiments (DoE) is a systematic approach utilized to optimize processes and 
products by exploring the effects of various factors and their interactions. Table 3.2 outlines 
the input parameters and their corresponding levels needed for conducting an effective design 
of experiments. These parameters include defect level with low, medium, and high categories, 
defect size with values of 50mm ≤ x1 ≤ 350mm, and shaft rotational speed with options of 
50rpm ≤ x2 ≤ 200rpm. The impact of these inputs on vibration patterns can be evaluated by 
manipulating them at different levels. This facilitates the identification of optimal settings to 
enhance efficiency and reduce vibration levels. 

Table 3.2. Input parameters and their levels 
Parameters Input  Levels 

Defect Level  Low Medium High 
Defect size (mm) x1 50 100 350 
Shaft rotational speed (rpm) x2 50 100 150 200 

3.4. Model Development 

To optimize machine learning model development for wind turbine performance, a 
multifaceted approach integrating wind to rotational speed conversion and crack size vibration 
effects is essential. Leveraging monthly averaged wind speeds and corresponding rotational 
speeds in Table 3.1 provides a foundational dataset for training and validation. Additionally, 
the input parameters and their levels in Table 3.2 offer critical variables for model refinement. 
These data can be analyzed to predict optimal shaft speeds based on wind conditions and detect 
potential defects by harnessing advanced algorithms, including regression analysis. This 
holistic optimization strategy not only enhances turbine efficiency but also minimizes 
maintenance costs and downtime, contributing to sustainable energy production. 

4. RESULTS AND DISCUSSION 

The Vibra Quest software exported the vibration results in MS Excel format, after reading the 
data from the vibration sensor (accelerometer). At the same time, the software shows the time-
domain vibration waveforms with the times of a maximum of two time-peaks set by the 
software. For each test, the generated file presents about 32768 vibration peaks (positive and 
negative waveform peaks) that were used for vibration analysis. In this results section, the time 
domain waveforms are discussed for each case of the defective blades (low, medium and high) 
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run at each rotational speed (50 rpm, 100 rpm, 150 rpm and 200 rpm) followed by the analytical 
analysis of the vibration patterns. After that, the graphical and regression analyses are 
discussed. Finally, the vibration model optimization is discussed for prediction and sensitivity 
analysis.  

4.1. Time-Domain Vibration Analysis  

The practical tests of the vibration analysis presented the vibration patterns obtained by the 
accelerometer at different rotational speeds using the Vibra Quest wind turbine simulation 
system. At each case of defect size, four tests were performed at each rotational speed (50 rpm, 
100 rpm, 150 rpm and 200 rpm) respectively.  
4.1.1. Case 1: Low Defective Blade 

The Spectra Quest wind turbine simulation system operated first with two healthy blades and 
one low defective blade. Figs. 4.1 to 4.4 show the vibration waveform readings at each 
rotational speed respectively, generated by Vibra Quest software. As the rotational speed 
increases, the amplitude of the vibration level increases. The Figs. show also the pre-set two-
time times when higher values of amplitudes occur. 

  
Fig. 4.1. Vibration waveform 

with a low defective blade at 50 rpm 
Fig. 4.2. Vibration waveform 

with a low defective blade at 100 rpm 

  
Fig. 4.3. Vibration waveform 

with a low defective blade at 150 rpm 
Fig. 4.4. Vibration waveform 

with a low defective blade at 200 rpm 

4.1.2. Case 2: Medium Defective Blade 

In this case, the low defective blade is replaced by a medium defective blade. The Spectra 
Quest wind turbine simulation system is operated with two healthy blades and one medium 
defective blade. Figs. 4.5 to 4.8 show the vibration waveform readings at each rotational speed 
respectively. Same as in case 1, the amplitude of the vibration level increases with the increase 
in rotational speed. The times when higher values of amplitudes occur are shown also in these 
Figs. 
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Fig. 4.5. Vibration waveform with a medium 

defective blade at 50 rpm 
Fig. 4.6. Vibration waveform with a medium 

defective blade at 100 rpm 

  
Fig. 4.7. Vibration waveform with a medium 

defective blade at 150 rpm 
Fig. 4.8. Vibration waveform with a medium 

defective blade at 200 rpm 

4.1.3. Case 3: High Defective Blade 

In case 3, the Spectra Quest wind turbine simulation system operated with two healthy blades 
and one high defective blade. Figs. 4.9 to 4.12 show the vibration waveform readings at each 
rotational speed respectively. The same as in cases 1 and 2, the amplitude of the vibration level 
increases as the rotational speed increases. These graphs also display the times at which the 
amplitudes reach larger values. 

  
Fig. 4.9. Vibration waveform with a high defective 

blade at 50 rpm 
Fig. 4.10. Vibration waveform with a high defective 

blade at 100 rpm 



                           STUDY OF THE EFFECTS OF AXIALLY DEFECTIVE BLADES… 17 

Copyright ©2025 ASSA.                                                                                    Adv. in Systems Science and Appl. (2025) 

 

  
Fig. 4.11. Vibration waveform with a high defective 

blade at 150 rpm 
Fig. 4.12. Vibration waveform with a high defective 

blade at 200 rpm 

4.2. Analytical Vibration Analysis 

For this research work, the Vibra Quest software generated the vibration patterns in the voltage 
unit. For each test, about 32768 vibration peaks (positive and negative) were generated by the 
software. An analytical analysis was conducted including the minimum (Min) and maximum 
(Max) peak values, the averages of (n) negative peaks (Avg. (Min)) and (m) positive peaks 
(Avg. (Max)). Additionally, determining the vibration range, spanning from the average of 
positive peaks to the average of negative peaks shows the amplitude dispersion within the 
recorded data. Table 4.1 tabulates these results from the generated reports. For each test, the 
following equations were used: 

𝐴𝑣𝑔. (𝑀𝑖𝑛) =  
∑ (𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑎𝑘𝑠)௡

௜ୀଵ

𝑛
(4.1) 

𝐴𝑣𝑔. (𝑀𝑎𝑥) =  
∑ (𝑝𝑜𝑠𝑖𝑡𝑣𝑒 𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑎𝑘𝑠)௠

௜ୀଵ

𝑚
(4.2) 

𝑉𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑛𝑔𝑒  =  𝐴𝑣𝑔. (𝑀𝑎𝑥) −  𝐴𝑣𝑔. (𝑀𝑖𝑛) (4.3) 
 

Table 4.1. Vibration waveform results 

Test 

Input Parameters Vibration waveform analysis 

Defect 
Level 

Defect 
size 

(mm) 

Rot. 
Speed 
(rpm) 

Min (V) Max (V) 
Avg. 

(Min) (V) 
Avg. 

(Max) (V) 
Vibration Range (V) 

1 Low 50 50 -0.028766 0.025389 -0.004481 0.004612 0.009093 

2 Low 50 100 -0.080538 0.075132 -0.015803 0.015027 0.030830 

3 Low 50 150 -0.150698 0.122752 -0.017426 0.017276 0.034702 

4 Low 50 200 -0.141121 0.169997 -0.019577 0.019999 0.039577 

5 Medium 100 50 -0.025456 0.024302 -0.004495 0.004679 0.009174 

6 Medium 100 100 -0.077624 0.069251 -0.015792 0.015070 0.030862 

7 Medium 100 150 -0.207226 0.144662 -0.019152 0.018824 0.037976 

8 Medium 100 200 -0.144500 0.148000 -0.021969 0.022760 0.044729 

9 High 350 50 -0.023882 0.027492 -0.004298 0.004885 0.009183 

10 High 350 100 -0.076275 0.065869 -0.016437 0.014879 0.031316 

11 High 350 150 -0.148958 0.135611 -0.020603 0.020607 0.041210 

12 High 350 200 -0.200616 0.177882 -0.022574 0.023095 0.045668 

As shown in Table 4.1, the tests investigate how the vibration waveform features are 
affected by different rotation speeds and defect sizes. The generated waveforms are examined 
in terms of their minimum peaks, maximum peaks, average of minimum peaks, average of 
maximum peaks, and the range from maximum to minimum average peaks for every 
combination of parameters. The range of average peaks widens as the rotation speed increases 
at each defect level.  
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At a low defect level, as the rotation speed increases from 50 to 200 rpm, there is a gradual 
expansion in the range of average vibration. For instance, as shown in Fig. 4.1, where the 
defect size is 50 mm, the range of average voltages increases from 0.009093 V at 50 rpm to 
0.039577 V at 200 rpm, as shown in Fig. 4.4. This expansion suggests that higher rotation 
speeds exacerbate vibration fluctuations, likely due to increased stress and deformation within 
the system. Similarly, at medium and high defect levels, the range of average voltages exhibits 
a notable increase as both defect size and rotation speed rise, as shown in Figs. 4.5 to 4.8 for a 
medium defective blade and Figs. 4.9 to 4.12 for a high defective blade.  

4.3. Graphical Analysis of Vibration 

The collected vibration data is graphically analyzed in Fig. 4.13 to represent the peak-peak 
levels. The graphs show the relationship between vibration levels in terms of defect size and 
rotational speed. As the rotational speed increases, the vibration level increases for each defect 
size. The higher the defect size, the higher the vibration level at the same rotational speed. 

 
Fig. 4.13. Peak-peak vibration 

The presented graphs in Fig. 4.13 reflect the dynamic behavior of the wind turbine system. 
Till 100 rpm rotational speed, the graphs are almost linearly parallel and then they vary due to 
either non-linear response of the system, resonance effects, non-linearities in the defects or 
dynamic response of the system. Table 4.2 presents a comparison of vibration levels for each 
defect level with the average vibration level across each rotational speed. The higher the crack 
size, the higher the vibration level. However, as rotational speed increases, the impact of crack 
severity becomes more pronounced, with higher speeds exacerbating vibration levels, 
particularly evident in cases of medium and high crack severities. 

Table 4.2. Vibration levels comparison 
Rotational 

speed (rpm) 
Average vibration 

(V) 
Low crack vibration 

(V) 
Medium crack 
vibration (V) 

High crack 
vibration (V) 

50 0.009150 0.009093 0.009174 0.009183 
100 0.031002 0.030830 0.030862 0.031316 
150 0.037963 0.034702 0.037976 0.041210 
200 0.043325 0.039577 0.044729 0.045668 

4.4. Regression Analysis of Vibration  

Regression analysis is performed to quantify the relationship between defect size and shaft 
rotational speeds with vibration levels. The quadratic function represents the best regression 
expression for the research model compared with linear regression. Table 4.3 shows the input 
factors and output response set for the quadratic regression model. 

Table 4.3. Input and output parameters for a quadratic regression model 
Crack Size  

(mm) 
Crack Size^2 

(mm^2) 
Rot. Speed  

(rpm) 
Rot. Speed^2 

(rpm^2) 
Crack Size × Rot. Speed 

(mm × rpm) 
Vibration 
range (V) 

50 2500 50 2500 2500 0.009093 

50 2500 100 10000 5000 0.030830 
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50 2500 150 22500 7500 0.034702 

50 2500 200 40000 10000 0.039577 

100 10000 50 2500 5000 0.009174 

100 10000 100 10000 10000 0.030862 

100 10000 150 22500 15000 0.037976 

100 10000 200 40000 20000 0.044729 

350 122500 50 2500 17500 0.009183 

350 122500 100 10000 35000 0.031316 

350 122500 150 22500 52500 0.041210 

350 122500 200 40000 70000 0.045668 

The quadratic regression analysis was performed using Minitab software. Table 4.4 gives 
the regression statistics of the regression model. 

Table 4.4. Regression Statistics 
Multiple R R Square Adjusted R Square Standard Error Observations 
0.990879 0. 981841 0. 966708 0. 002504 12 

As shown in Table 4.4, the Multiple R of 0.990879 indicates a strong positive and direct 
relationship between the independent variables (defect size and rotational speeds) and the 
dependent variable (vibration level). The R Square of 0.981841 shows that approximately 
98.18% of the variance in the vibration level is clarified by the defect size and rotational speeds 
in the regression model. The Adjusted R Square is calculated as 0.966708, slightly lower than 
the R Square, showing that the model may have some degree of overfitting. The Standard Error 
of 0.25% indicates the average amount of error in the predicted values of the vibration level.  

The analysis of variance (ANOVA) in this research work is conducted to evaluate the 
implications of the regression model and its components. This statistical technique helps 
determine if the observed variations in vibration levels can be attributed to the different defect 
sizes tested. Table 4.5 shows the ANOVA results and Table 4.6 shows the regression summary. 

The ANOVA table offers a clear understanding of the effects of vibration caused by axially 
defective blades at different rotation speeds, ranging from 50 to 200 rpm. The F-statistic of 
64.88 indicates a strong correlation between rotation speed and vibration caused by defective 
blades. Additionally, the Significance F value of 3.85×10-5 suggests that this correlation is 
statistically significant, reinforcing the idea that changes in rotation speed affect vibration 
caused by axially defective blades. 

Table 4.5. Analysis of Variance (ANOVA) 

 df SS MS F Significance F 

Regression 5 0.002034 0.000407 64.88184 3.85×10-5 

Residual 6 3.76×10-5 6.27×10-6   

Total 11 0.002071       

Table 4.6. Regression Summary 

 Coefficients Standard Error t Stat P-value 

Intercept -0.02011 0.005763 -3.48954 0.012991 

Crack Size 5.73×10-5 6.5×10-5 0.881162 0.412133 

Crack Size^2 -1.6×10-7 1.58×10-7 -1.0019 0.355069 

Rot. Speed 0.000612 7.51×10-5 8.139658 0.000185 

Rot. Speed^2 -1.6×10-6 2.89×10-7 -5.70372 0.001256 

Crack Size × Rot. Speed 1.23×10-7 1×10-7 1.224465 0.266668 

The regression equation derived from this analysis offers a mathematical model for 
predicting vibration levels (peak-peak) based on defect size and shaft rotational speed: 
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Vibration level = −0.02011 + 5.73 × 10ିହ𝑥ଵ − 1.6 × 10ି଻𝑥ଵ
ଶ

+0.000612𝑥ଶ − 1.6 × 10ି଺𝑥ଶ
ଶ + 1.23 × 10ି଻ 𝑥ଵ𝑥ଶ

 (4.4) 

 
where x1 is the defect size and x2 is the shaft rotational speed.  

Considering this equation, the predicted vibration level could be calculated. Fig. 4.13 can 
be integrated with the predicted vibration (peak-peak) level. Fig. 4.14 shows the predicted 
vibration levels graph for each defect size at different shaft rotational speeds as well as the 
actual vibration levels graph. 

 
Fig. 4.14. Peak-peak vibration (actual and predicted) 

Fig. 4.14 presents an insightful visualization of a comparative analysis between predicted 
and actual vibration levels across varying defect sizes and shaft rotational speeds. The 
predicted vibration levels graphs intricately overlay the predicted outcomes based on the 
regression analysis, while the actual vibration levels graph reflects empirical data obtained 
from tested observations. The collocation of these two datasets shows a clear degree of 
alignment between theoretical predictions and practical manifestations. Figs. 4.15 and 4.16 
show the defect size line fit plot and the rotational speed line fit plot, respectively. 

Figs. 4.15 and 4.16 collectively show a multi-layered investigation into the relationship 
between defect size estimated at varying rotational speeds and vibration levels as an 
investigation of anticipated and real vibration information. They express a relationship in a 
scatter plot of actual and predicted data points. Fig. 4.15 shows how diverse defect sizes impact 
vibration levels, whereas Fig. 4.16 shows how changes in the rotational speed of the wind 
turbine shaft correspond to changes in the vibration level of the turbine.  

  
Fig. 4.15. Defect size line fit plot Fig. 4.16. Rotational speed line fit plot 

4.5. Taguchi analysis 

In this Taguchi analysis, the focus is on understanding the relationship between vibration range 
and crack size concerning rotational speed. Table 4.7 shows the response table for Signal to 
Noise Ratios (considering smaller vibration is better). This Table 4.7 shows the Signal to Noise 
Ratios (SNR) for two factors: crack size and rotational speed. The smaller the ratio, the better 
the quality. It indicates less variation or noise in the output. The factors are tested at different 
levels, denoted as 1, 2, 3, and 4. Delta represents the difference between the best and worst 
SNR for each factor. Rank indicates the ranking of each factor based on Signal to Noise ratios. 
Fig. 4.17 shows the main effects plot for SNR. 
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The other consideration of Taguchi analysis is the Response Table for Means, shown in 
Table 4.8. This Table 4.8 shows the means for crack size and rotational speed. The means 
indicate the average values of the factors at different levels. Delta represents the difference 
between the best and worst means for each factor. Rank indicates the ranking of each factor 
based on the mean values. Fig. 4.18 shows the Main effects plot for means. 

Table 4.7. Response Table for Signal to Noise Ratios Table 4.8. Response Table for Means 
Level Crack Size Rot. Speed 

1 32.07 40.77 
2 31.59 30.17 
3 31.33 28.43 
4 

 
27.28 

Delta 0.74 13.49 
Rank 2 1 

 

Level Crack Size Rot. Speed 
1 0.028550 0.009150 
2 0.030685 0.031002 
3 0.031844 0.037963 
4 

 
0.043325 

Delta 0.003294 0.034175 
Rank 2 1 

 

 

  
Fig. 4.17. Main effects plot for SN ratios Fig. 4.18. Main effects plot for means 

Taguchi analysis results can be interpreted as follows:  
4.5.1. Crack Size: 

In terms of Signal to Noise Ratio (SNR), the best performance is achieved at level 2, where 
the SNR is 31.59, indicating less variation in the output. In terms of means, the best 
performance is also at level 2, with a mean value of 0.030685. Therefore, for crack size, level 
2 performs the best in both SNR and mean values. 
4.5.2. Rotational Speed: 

In terms of SNR, the best performance is at level 3, with an SNR of 28.43. In terms of means, 
the best performance is at level 1, with a mean value of 0.009150. Therefore, for rotational 
speed, there is a discrepancy between the optimal level based on SNR and mean values. Level 
3 is optimal based on SNR, while level 1 is optimal based on mean values. 

4.5. Prediction, Optimization and Sensitivity Analysis 

The regression analysis determines the relationship between vibration responses and 
independent factors (crack size and rotational speed) by using defined regression algorithms 
and relationship estimates [19]. From the regression analysis shown in Table 4.6, the P-value 
for the shaft rotational speed is 0.000185 (<0.05) which is fine, but the P-value for the crack 
size is 0.412133 (>0.05). For optimization, the P-value of the crack size is high and should be 
excluded in regression analysis. The longer bar represents the input that contributes more to 
the model.  

Considering the prediction and optimization of the multiple regression model, the 
following terms are in the fitted equation that models the relationship between vibration range 
and the rotation speed variables (x2: Rotational Speed and x2^2). The model fits the data well. 
Consequently, this equation can be used to predict the vibration range for specific values of 
the x variables and find the settings for the x variables that correspond to a desired value or 
range of values for the vibration range. The final model equation is:  
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𝑉𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑛𝑔𝑒 =  −0.01762 + 0.000631𝑥ଶ + 0.000002𝑥ଶ
ଶ (4.5) 

The model-building sequences in Fig. 4.19 display the order in which terms were added or 
removed in the regression model. 

 
Fig. 4.19. Model building sequences 

The final regression model equation shows that the relationship between the variables in 
the model is statistically significant (p<0.1) with 96.65% of the variation in vibration range 
can be explained by the regression model 

5. CONCLUSION 

The results of this study provide an important understanding of how vibration patterns are 
affected by axially defective wind turbine blades, with significant implications for improving 
maintenance and operating reliability. Through time-domain analysis, the study revealed a 
noticeable increase in vibration amplitude corresponding to the increased rotational speeds and 
defect severity levels. This trend underscores the essential role of rotational speed as a primary 
determinant of vibration level, with defects exacerbating the vibrational response. Utilizing 
analytical techniques such as regression analysis, a robust correlation between defect size, 
rotational speed, and vibration levels was established, with the regression model demonstrating 
a commendable explanatory power (R Square = 0.981841). Additionally, Taguchi analysis 
discerned optimal parameter settings for mitigating vibration-induced risks, guiding how to 
reduce operational disturbances and improve wind turbine performance. Furthermore, 
predictive and optimization models derived from regression analysis present actionable 
insights for targeted involvement strategies aimed at the limitation of vibration-related hazards. 
This research underscores the potential for proactive management of wind turbine integrity by 
integrating advanced analytical methodologies, thereby fostering sustained operational 
efficiency and reliability within renewable energy systems. The research findings contribute 
to advancing the understanding of wind turbine dynamics and asses performance and longevity 
while ensuring safety and sustainability in wind energy production, thereby supporting the 
continued growth of renewable energy technologies.  
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