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Abstract: The article analyzes the relationship between the residence times of subtasks in the
fork-join subsystems of the queuing system. When arriving the fork-join system, the task is
divided into subtasks, each of which is serviced in its own subsystem, the task is considered
serviced after the completion of all subtasks that originally comprised it servicing. There
is a dependence between the residence times of subtasks in subsystems, which affects the
main performance indicators of the system, for example, the response times, which greatly
complicates their analysis. The paper examines the characteristics of the existing dependence.
In particular, with the help of generating functions and the Laplace-Stieltjes transformation,
exact expressions for the Pearson and Spearman correlation coefficients are obtained. In addition,
using a combination of several methods, including the Nelder-Mead optimization method, the
estimation of the Kendall correlation coefficient was obtained, and the model for the response
time estimation based on the resulting correlation coefficients was described. Despite the many
works on the study of fork-join queuing systems, there are practically no articles devoted to the
correlation analysis of the temporal metrics of the model. Therefore, this article can become one
of the first in this area, laying the foundation for the study of the correlation dependence and its
influence on the performance parameters of the model, not only for the classical case of M |M |1
subsystems, but also for more complex architectures of this system.

Keywords: fork-join queueing system, system with parallel service of tasks, correlation
coefficient, Pearson correlation, Spearman correlation, Kendall correlation,
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1. INTRODUCTION

The article studies the classical fork-join queuing system (QS) with M |M |1-type subsystems.
Upon arriving the system, the task is divided into several subtasks (the number of which is
equal to the number of subsystems), each of which rises in turn for service. After servicing,
the subtasks are again combined into a whole task, and the collected task leaves the system.
Thus, the residence time of the entire task (the response time) is determined by the maximum
of the residence times of its constituent subtasks.

The described mechanism for the functioning of the fork-join QS is suitable for modeling
multitasking processes of various nature. Due to the fact that the division of a complex
combined task into several subtasks is one of the ways to save time and resources, the analysis
of fork-join QS is still an urgent task.

First of all, if we talk about the practical application of this model, it is worth mentioning
the processes occurring in information and computing systems. For example, we can talk
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about computing platforms that support data-intensive applications, and in general about
various high-performance environments for big data analysis, which are based on parallel or
distributed structures (MapReduce technology) [12,21,27,35]. There are also many examples
of parallel structures in manufacturing systems, such as the process of assembling multi-item
orders in warehouses of one or more suppliers [6, 19, 31]. In the field of healthcare, when
patients are admitted or discharged, medical studies are carried out, which are distinguished
by their duration [2, 15, 20]. In the banking sector, consideration of a loan application can be
carried out by several departments simultaneously, which also leads to parallelization of this
procedure [17].

In all systems described, the response time plays a key role. This characteristic is
critical and quite often appears in agreements on the quality of services provided. Therefore,
predicting both the average response time and the quantiles of this random variable allows
one to make a qualitative prediction of one of the most important indicators of system
performance.

The main reason for the complexity of the analysis of fork-join QS is the existing
dependence between the times subtasks spend in subsystems. This dependence arises due
to the commonality of the moment when subtasks appear in the system itself, since they are
constituent elements of one task, which was divided into parts at the time of arriving into the
system. The dependence between the sojourn times of subtasks is a distinctive feature of the
fork-join QS with K subsystems M |M |1 (the analyzed type of QS in this particular case)
from K parallel QS M |M |1. Therefore, it is of particular interest to estimate the correlation
coefficients between the residence times of subtasks.

It is also important to estimate correlation coefficients because this expands the rather
limited range of known methods for analyzing system response time. In particular, the
article presents one of the variants of the model based on the known value of the
Spearman correlation coefficient, which makes it possible to evaluate various response time
characteristics by using the example of mathematical expectation based on the meta-Gaussian
model. This model is not the only one possible in this case, but it serves as a clear example of
the viability of the proposed approach for assessing the characteristics of a fork-join queueing
system using correlation coefficients.

Despite the fact that the fork-join QS variant with M |M |1 subsystems is considered
the easiest to study, accurate results were obtained only for the average response time in
the case with two subsystems (K = 2) [23]. For K > 2, only approximations of the mean
response time and its variance of varying degrees of accuracy [32–34] were obtained. There
are also known publications in which estimates of the time moments of the task’s stay in the
QS, as well as estimates of high-level percentiles (for example, the 99th percentile) of the
response time distribution in the case of more complex types of QS subsystems [4,25,26,29]
. By more complex types of subsystems we mean QS with non-Poisson input flows and
non-exponential distribution of service time. Along with the classical analytical methods of
queuing theory, fork-join systems have been studied empirically, using elements of the theory
of order statistics and even using machine learning methods [7,9,36]. Various generalizations
and modifications of fork-join systems [3, 28, 30] are also considered.

We also note that the authors previously studied the dependence of the maximum residual
service times in two subsystems for a fork-join system with an infinite number of servers and
general service times, for which the copulas and Blomquist coefficients [8] were found.

As for the evaluation of the correlation coefficients between the residence times of
subtasks, there are practically no studies in this direction, and the authors could not find
publications in which such an analysis would be carried out even in the case of subsystems
of the M |M |1 type. In [10], the authors studied systems with Pareto service and obtained
empirical formulas for the Pearson, Spearman and Kendall correlation coefficients (along
with mean and standard deviation estimates) that give a good fit over a wide range of
parameters. In the same work, it was possible to derive not estimates of the Pearson and
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Spearman correlation coefficients, but exact formulas. An approximation for the Kendall
correlation coefficient is also obtained.

The article provides the detailed description of the approach to the derivation of
expressions for the correlation coefficients between the residence times of a pair of subtasks
in the respective subsystems. By itself, the approach for deriving Pearson and Spearman
correlations is classical and is based on the theory of generating functions and Laplace-
Stieltjes transformations, while considering a system for which the number of subsystems
is two (K = 2). To evaluate the Kendall correlation, the combined approach is used, which
includes the Nelder-Mead optimization method and graphical analysis.

An interesting phenomenon has been discovered: at low load, the Pearson correlation
coefficient is greater, and at high load, Spearman’s. In this case, the Kendall correlation
coefficient is always less than both of them.

It should be noted that the value of the correlation coefficients between any pair of
subtasks is not affected by the number of subsystems, i. e. the value of the correlation
coefficient does not depend on K and will be the same for any paired combination of subtasks
from two different subsystems with fixed input flow and service parameters, and hence also
true for all K > 2.

The article is organized as follows. Section 2 describes the mathematical model of fork-
join QS. Sections 3–5 present a description of approaches to finding each of the three Pearson,
Spearman and Kendall correlation coefficients, respectively, with elements of numerical
analysis using a specific example of numerical data to confirm the obtained analytical result
comparing with the results of simulation modeling in the Python software environment. In
Section 6, the limiting two-dimensional distribution for the normalized residence times of
subtasks under high load is obtained and all three correlation coefficients are compared.
Section 7 describes the meta-Gaussian model for the average response time estimation
using the Spearman correlation coefficient, also the numerical example is presented. The
Conclusion (Section 8) summarizes some results and outlines ways for further research.

2. MATHEMATICAL MODEL OF FORK-JOIN QS

Consider a classical fork-join queuing system with K ⩾ 2 subsystems (Fig. 2.1). Tasks enter
the system according to a Poisson process with a rate λ > 0. Upon arriving the system, a
task is instantly divided into K subtasks, each of which is queued for service to one of K
subsystems or immediately starts to be serviced if the queue is empty. All subsystems have
one server for servicing subtasks and buffer of unlimited capacity. The service time on each
server has an exponential distribution with the parameter µ > 0. Thus, the subsystems are K

.

.

.

Fork

point
Join

point

...

...

...

λ 

λ 

λ 

λ 

µ 

µ 

µ 
 

Fig. 2.1. Fork-join model of a queuing system with K subsystems of type Mλ|Mµ|1.

identical QSs of type Mλ|Mµ|1. A task is considered serviced only after all its parts, i. e. all
its constituent subtasks, have been serviced.

Next, we turn to the consideration of the case when K = 2, since the total number of
subsystems has no effect on the pairwise dependence of the times of sojourn in subsystems.
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Consequently, the random residence time of a task in the QS (or the response time) of the
R system is the maximum of two random residence times of the subtasks ξi, i = 1.2, in the
corresponding subsystems

R = max{ξ1, ξ2}.
The functioning of the system is described by the Markov process X(t) =

{X1(t), X2(t)}, where Xi(t) is the number of subtasks in the i-th subsystem, i = 1, 2. Then
the set of process states can be written as follows X = {(i, j), i ⩾ 0, j ⩾ 0}. Further, let pij
be the stationary probability that the first subsystem contains i customers and the second
subsystem has j customers. The system ergodicity condition is standard and common for
both queuing subsystems, i. e. ρ = λ/µ < 1.

Now we introduce a generating function for the number of subtasks in the system

P (z, w) =
∞∑
i=0

∞∑
j=0

ziwjpij. (2.1)

According to [5] it will take the form

P (z, w) =
N(z, w)

Q(z, w)
,

where for λ = 1 (which, without loss of generality, we will assume everywhere below)

N(z, w) = µz(w − 1)P (z, 0) + µw(z − 1)P (0, w),

Q(z, w) = (1 + 2µ)zw − µw − µz − z2w2,

P (z, 0) =
(µ− 1)3/2

µ(µ− z)1/2
=

(1− ρ)3/2

(1− ρz)1/2
, P (0, w) =

(1− ρ)3/2

(1− ρw)1/2
,

then

P (z, w) =
z(w − 1)P (z, 0) + w(z − 1)P (0, w)

(2 + ρ)zw − w − z − ρz2w2
. (2.2)

In the following sections, we will describe the sequence of actions required to calculate the
correlation coefficients of several types.

3. PEARSON CORRELATION COEFFICIENT

The dependence between the residence times of subtasks in the fork-join subsystems of a
system with parallel servicing of tasks arises due to the common moments of tasks arrival
in these subsystems. Up or down fluctuations of the input flow (according to the number of
arrivals for some time) lead to an increase or decrease in the length of queues in subsystems
and, accordingly, an increase or decrease in the residence time of subtasks of one task in
subsystems.

Data visualization makes it possible to demonstrate the dependence of the sojourn times
in subsystems. So, in fig. 3.2 shows the values of ξ1 and ξ2 obtained by simulation in the case
of a fork-join QS and for the case of two parallel QSs M |M |1 with identical values of the
parameters λ and µ. The number of pairs of points (ξ1, ξ2) is the same in both cases and is
one million. Of course, such a number of points is not enough to obtain a good estimate of
the correlation coefficient, but it is quite acceptable to illustrate the presence of a difference
in the behavior of random variables for two options for the functioning of systems.

From the theory it is clear and clearly visible that for independent residence times (Fig.
2b) the joint density level lines have the form x1 + x2 = const (since partial distributions
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are exponential), while for dependent residence times (Fig. 2a) it can be seen that the lines
have a bulge from the origin, which is the greater, the greater the load. This reflects a greater
likelihood of jointly larger values than with independence.

Note that visually the nature of the dependence is not similar to the classical case in
statistics, when there is a functional dependence of quantities (linear or monotonic), on which
random noise is superimposed. Therefore, the question arises of how the known correlation
coefficients will be able to capture (reflect) this dependence.

a) b)

Fig. 3.2. Illustration of presence/absence of dependence between random variables ξ1 and ξ2 at ρ = 0.8 in case
of a) fork-join QS with two subsystems M |M |1; b) two parallel functioning QS M |M |1.

To calculate the Pearson correlation coefficient, we will use the classical tools from
queuing theory. Consider the Laplace-Stieltjes transformation (LST) for the residence times
of subtasks in subsystems

φ(s, t) =

∞∫
0

∞∫
0

e−sxe−tyv(x, y)dxdy, (3.3)

where

v(x, y) =
∂2V (x, y)

∂x∂y

is the two-dimensional distribution density of the residence times of subtasks in subsystems,
V (x, y) = P (ξ1 < x, ξ2 < y).

Next, we carry out the standard arguments. If, when a task enters the system, it encounters
i subtasks in the first QS and j subtasks in the second QS, then the waiting time in the queue
of each of its two related elements in the corresponding subsystems will consist of the sum
of the random service times of all preceding them in queue i or j of subtasks, respectively,
as well as the service time of the newly arrived element itself. Taking into account the fact
that the service time of one subtask has an exponential distribution with the parameter µ,
then the sum consisting of (i+ 1) and (j + 1) of such random variables will have the Erlang
distribution with the distribution function Ei+1(x) and Ej+1(x). Then the two-dimensional
distribution function of the residence time of subtasks in subsystems will take the form

V (x, y) =
∞∑
i=0

∞∑
j=0

Ei+1(x)Ej+1(y)pij. (3.4)
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Using the properties of the LST, taking into account the expression (3.4), we obtain that

φ(s, t) =
∞∑
i=0

∞∑
j=0

εi+1(s)εj+1(t)pij =
∞∑
i=0

∞∑
j=0

(
µ

µ+ s

)i+1(
µ

µ+ t

)j+1

pij,

where εi+1(s) and εj+1(t) — LST for Ei+1(x). Thus, the LST of the residence times of
subtasks in subsystems (3.3) can be represented as

φ(s, t) = P
( µ

µ+ s
,

µ

µ+ t

)
· µ

µ+ s
· µ

µ+ t
, (3.5)

where P (·, ·) is the generating function from (2.1).
Taking into account λ = 1, we have

φ(s, t) = P
( 1

1 + ρs
,

1

1 + ρt

)
· 1

1 + ρs

1

1 + ρt
. (3.6)

The Pearson correlation coefficient between the residence times of subtasks in subsystems is
determined by the following expression

rp =
E[ξ1 · ξ2]− E[ξ1]E[ξ2]√

V ar[ξ1]V ar[ξ2]
. (3.7)

Taking into account the fact that, as is known, the residence time of an task in a system of
type Mλ|Mµ|1 has an exponential distribution with the parameter (µ− λ), i. e.

E[ξ1] = E[ξ2] =
1

µ− λ
, V ar[ξ1] = V ar[ξ2] =

1

(µ− λ)2
,

the expression (3.6) with λ = 1 is converted to the form

rp = (µ− 1)2E[ξ1 · ξ2]− 1 = µ2(1− ρ)2E[ξ1 · ξ2]− 1. (3.8)

Therefore, to determine the correlation coefficient, it is necessary to calculate E[ξ1 · ξ2]. This
can be done with LST φ(s, t)

E[ξ1 · ξ2] =
∞∫
0

∞∫
0

xy · v(x, y)dxdy =

=
∂2φ(s, t)

∂s∂t

∣∣∣∣
s=0,t=0

=
∂2
[
P
(

1
1+ρs

, 1
1+ρt

)
· 1
1+ρs

1
1+ρt

]
∂s∂t

∣∣∣∣
s=0,t=0

,

while
P
( 1

1 + ρs
,

1

1 + ρt

)
· 1

1 + ρs

1

1 + ρt
=

=

(1− ρ)3/2
(
t

√
ρs+1√

ρs−ρ+1
+ s

√
ρt+1√

ρt−ρ+1

)
ρ2s2t+ ρ2st2 − ρ2st+ ρs2 + 2ρst− ρs+ ρt2 − ρt+ s+ t

.

If we introduce the following notation

F (s) =
(1− ρ)3/2

√
1 + ρs√

1 + ρs− ρ
,
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G(s, t) = ρ2s2t+ ρ2st2 − ρ2st+ ρs2 + 2ρst− ρs+ ρt2 − ρt+ s+ t,

then the formula can be written in a more compact form

P
( 1

1 + ρs
,

1

1 + ρt

)
· 1

1 + ρs

1

1 + ρt
=

tF (s) + sF (t)

G(s, t)
.

Taking derivatives will lead to the following expression

∂2

∂s∂t

[
tF (s) + sF (t)

G(s, t)

]
=

f(s, t)

g(s, t)
,

where

f(s, t) = G2(s, t)[F ′(s) + F ′(t)] +G′
s(s, t)G

′
t(s, t)[2tF (s) + 2sF (t)]−

−G′
s(s, t)G(s, t)[F (s) + sF ′(t)]−G′

t(s, t)G(s, t)[F (t) + tF ′(s)]−
−G′′

st(s, t)G(s, t)[tF (s) + sF (t)],

g(s, t) = G3(s, t).

Next, we need to calculate

∂2φ(s, t)

∂s∂t

∣∣∣∣
s=0,t=0

= lim
s→0
t→0

∂2φ(s, t)

∂s∂t
= lim

s→0
t→0

f(s, t)

g(s, t)
.

Moreover, note that the functions f(s, t) and g(s, t) are infinitesimal of the third order as
(s, t) → (0, 0), i. e.

lim
s→0
t→0

f(s, t) = lim
s→0
t→0

g(s, t) = 0,

f ′
s(0, 0) = f ′

t(0, 0) = g′s(0, 0) = g′t(0, 0) = 0,

f ′′
ss(0, 0) = f ′′

tt(0, 0) = f ′′
st(0, 0) = g′′ss(0, 0) = g′′tt(0, 0) = g′′st(0, 0) = 0,

f
(3)
sn1 tn2 (0, 0) ̸= 0, g

(3)
sn1 tn2 (0, 0) ̸= 0, n1 + n2 = 3.

Therefore, for the existence of a double limit at the point (0, 0), it is necessary and sufficient
that the following equality [13, 14] to be true:

f
(3)
sn1 tn2 (0, 0)

g
(3)
sn1 tn2 (0, 0)

= m, m ̸= 0,m ̸= ±∞, n1 + n2 = 3. (3.9)

and the double limit itself will be equal to m from (3.9)

lim
s→0
t→0

f(s, t)

g(s, t)
= m.

After appropriate calculations, we get that

f
(3)
sn1 tn2 (0, 0) =

3(1− ρ)ρ2(4ρ− ρ2 + 8)

4
, g

(3)
sn1 tn2 (0, 0) = 6(1− ρ)3, n1 + n2 = 3.

Thus, we have

∂2φ(s, t)

∂s∂t

∣∣∣∣
s=0,t=0

= lim
s→0
t→0

∂2φ(s, t)

∂s∂t
=

f
(3)
sn1 tn2 (0, 0)

g
(3)
sn1 tn2 (0, 0)

=
ρ2(4ρ− ρ2 + 8)

8(1− ρ)2
,
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then

rp = µ2(1− ρ)2
ρ2(4ρ− ρ2 + 8)

8(1− ρ)2
− 1 =

ρ(4− ρ)

8
. (3.10)

The correctness of the (3.10) formula for the Pearson correlation coefficient between
the residence times of any two subtasks in the corresponding subsystems is confirmed by a
numerical experiment. With the help of simulation for the values λ = 1, ρ ∈ [0.1, 0.9] with a
step of 0.05, the values of rp were calculated. The results of the comparison with the analytical
expression (3.10) are shown in 3.3. Small deviations in the range of ρ values close to unity
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Fig. 3.3. Pearson correlation coefficient rp

are explained as follows. An increase in the system load factor requires a significant increase
in the duration of the run within one launch of the simulation model, since an increase in the
load factor leads to an increase in the correlation of the data used to build a point estimate
of the quantity under study. The features of the simulation fork-join QS and the construction
of confidence intervals of the obtained estimates can be found in the work [11]. An increase
in the duration of the run, in turn, leads to a significant increase in the time spent on the
numerical experiment, which is not rational in this case, since the data match up to the third
digit after the decimal point, and the module of the maximum relative error does not exceed
0.62%.

Based on the obtained results, we can conclude that the dependence between the residence
times ξ1 and ξ2 in the subsystems is well reflected by the Pearson correlation coefficient, and
it increases quadratically (with deceleration) with the load ρ.

4. SPEARMAN CORRELATION COEFFICIENT

Let’s analyze the Spearman’s correlation coefficient in order to get a complete picture of
the relationship between the random residence times of subtasks ξ1 and ξ2 in subsystems.

In statistics, the Spearman correlation coefficient is calculated as the Pearson correlation
coefficient applied to the ranks of observations (in ascending order) as a measure of the
strength of a monotonic dependence (increasing or decreasing) between random variables,
usually to test hypotheses about their independence.

From the point of view of probability theory, for continuous random variables, the
Spearman correlation coefficient is conveniently defined as follows. Let random variables X1

and X2 have distribution functions F1 and F2, we consider U1 = F1(X1) and U2 = F2(U2),
then the Spearman correlation coefficient X1 and X2 can be expressed as the Pearson
correlation coefficient of U1 and U2 random variables [24, p. 170]: rs(X1, X2) = rp(U1, U2).

Copyright © 2024 ASSA. Adv Syst Sci Appl (2024)
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The coefficient rs, as well as rp, takes values on the interval [−1, 1].
To determine the coefficient rs, let’s make some preparatory calculations. Consider φ(s, t)

from (3.5), where s and t are multiplied by (µ− λ), then taking into account that ρ = λ/µ,
we get

φ((µ− λ)s, (µ− λ)t) = P (
µ

µ+ (µ− λ)s
,

µ

µ+ (µ− λ)t
) · µ

µ+ (µ− λ)s
· µ

µ+ (µ− λ)t
=

= P (
1

1 + (1− ρ)s
,

1

1 + (1− ρ)t
) · 1

1 + (1− ρ)s
· 1

1 + (1− ρ)t
.

Now let λ = 1, then we will substitute the corresponding expression for the generating
function. We will get

φ((µ− λ)s, (µ− λ)t) =

=

1
1+(1−ρ)s

(
1

1+(1−ρ)t
− 1

)
· (1−ρ)3/2

(1− ρ
1+(1−ρ)s

)1/2
+ 1

1+(1−ρ)t

(
1

1+(1−ρ)s
− 1

)
· (1−ρ)3/2

(1− ρ
1+(1−ρ)t

)1/2

(2 + ρ) 1
1+(1−ρ)s

· 1
1+(1−ρ)t

− 1
1+(1−ρ)s

− 1
1+(1−ρ)t

− ρ
(1+(1−ρ)s)2(1+(1−ρ)t)2

·

· 1

1 + (1− ρ)s
· 1

1 + (1− ρ)t
=

A(ρ)

B(ρ)
· 1

1 + (1− ρ)s
· 1

1 + (1− ρ)t
.

Simplify the numerator A(ρ)

A(ρ) =
1

1 + (1− ρ)s
· 1− 1− (1− ρ)t

1 + (1− ρ)t
· (1− ρ)3/2(

1+(1−ρ)s−ρ
1+(1−ρ)s

)1/2+
+

1

1 + (1− ρ)t
· 1− 1− (1− ρ)s

1 + (1− ρ)s
· (1− ρ)3/2(1+(1−ρ)t−ρ

1+(1−ρ)t

)1/2 =

=
−(1− ρ)2

(1 + (1− ρ)s)(1 + (1− ρ)t)
· t(1 + (1− ρ)s)1/2

(s+ 1)1/2
+

+
−(1− ρ)2

(1 + (1− ρ)s)(1 + (1− ρ)t)
· s(1 + (1− ρ)t)1/2

(t+ 1)1/2
=

=
−(1− ρ)2 · C(ρ)

(1 + (1− ρ)s)(1 + (1− ρ)t)
. (4.11)

Simplify the denominator B(ρ) with an additional factor

B(ρ) · (1 + (1− ρ)s)(1 + (1− ρ)t) =

= 2 + ρ− (1 + (1− ρ)s)− (1 + (1− ρ)t)− ρ

(1 + (1− ρ)s)(1 + (1− ρ)t)
=

= ρ− (1− ρ)(s+ t)− ρ

(1 + (1− ρ)s)(1 + (1− ρ)t)
=

ρ(1− ρ)(s+ t) + ρ(1− ρ)2st− (1− ρ)(s+ t)− (1− ρ)2(s+ t)2 − (1− ρ)3(s+ t)st

(1 + (1− ρ)s)(1 + (1− ρ)t)
=

=
−(1− ρ)2 ·

(
(s+ t)− ρst+ (s+ t)2 + (1− ρ)(s+ t)st

)
(1 + (1− ρ)s)(1 + (1− ρ)t)

=
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=
−(1− ρ)2 ·D(ρ)

(1 + (1− ρ)s)(1 + (1− ρ)t)
(4.12)

Then

φ((µ− λ)s, (µ− λ)t) =
C(ρ)

D(ρ)
,

where C and D are defined in (4.11) and (4.12), i. e.

φ((µ− λ)s, (µ− λ)t) =
t(1 + (1− ρ)s)1/2(s+ 1)−1/2 + s(1 + (1− ρ)t)1/2(t+ 1)−1/2

(s+ t)− ρst+ (s+ t)2 + (1− ρ)(s+ t)st
.

(4.13)
Recall that the sojourn times of subtasks in the fork-join subsystems of the QS have

an exponential distribution with the parameter µ− λ, i. e., ξi ∼ Exp(µ− λ). Consider
random variables Ui = F (ξi), where Fξi(x) = 1− e−(µ−λ)x, x > 0, which will have uniform
distribution on the interval [0, 1], i. e., Ui ∼ R[0, 1], i = 1, 2. Then rs — Spearman’s
correlation coefficient for random variables ξ1 and ξ2 will be Pearson’s correlation coefficient
for random variables U1 and U2 [24, p. 170], i. e.

rs =
E[U1 · U2]− E[U1]E[U2]√

V ar[U1] · V ar[U2]
.

Compute E[U1 · U2]:

E[U1 · U2] = E[(1− e−(µ−λ)ξ1)(1− e−(µ−λ)ξ2)] =

= 1− E[e−(µ−λ)ξ1 ]− E[e−(µ−λ)ξ2 ] + E[e−(µ−λ)ξ1e−(µ−λ)ξ2 ]

Since ηi = (µ− λ)ξi ∼ Exp(1), i. e., pηi(x) = e−x, x > 0, we have

E[e−(µ−λ)ξi ] = E[e−ηi ] =

∞∫
0

e−xe−xdx =
1

2
.

Then we get

E[U1U2] = 1− 1

2
− 1

2
+ E[e−(µ−λ)ξ1e−(µ−λ)ξ2 ] = E[e−(µ−λ)ξ1e−(µ−λ)ξ2 ] =

=

∞∫
0

∞∫
0

e−(µ−λ)xe−(µ−λ)ypξ1ξ2(x, y)dxdy =

=

∞∫
0

∞∫
0

e−(µ−λ)sxe−(µ−λ)sypξ1ξ2(x, y) dxdy

∣∣∣∣
s=1,t=1

=

= φ((µ− λ)s, (µ− λ)t)

∣∣∣∣
s=1,t=1

.

Now, substituting s = 1 and t = 1 into the formula (4.13), we obtain

E[U1 · U2] =

√
2
√
2− ρ

8− 3ρ
.
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And given that E[Ui] = 1/2, and V ar[Ui] = 1/12, i = 1.2, we can write the Spearman
correlation coefficient in a final form

rs =

√
2
√
2−ρ

8−3ρ
− 1

2
· 1
2

1
12

=
12
√
2
√
2− ρ

8− 3ρ
− 3. (4.14)

Simulation modeling confirms the correctness of the (4.14) formula for the Spearman
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Fig. 4.4. Spearman correlation coefficient rs

coefficient (Fig. 4.4).
Note that the Spearman correlation coefficient also increases with load in a non-linear

manner, which however is visually closer to linear than for the Pearson correlation coefficient.

5. KENDALL CORRELATION COEFFICIENT

In this section, we construct an approximation for the Kendall correlation coefficient, since it
has not yet been possible to derive an exact formula for it. The Kendall correlation coefficient,
like the Spearman correlation coefficient, is a rank correlation coefficient. It also evaluates
the nature of the monotonic dependence between random variables and the closeness of this
connection [1, 18].

Statistically, in the sample, the proportion of pairs of observations of random vectors
(from two random variables as components) is estimated, in which the components have
the same order (monotonic character), i. e., for example, one component increases with
the growth of the other, or vice versa, decreases with the growth of another. The Kendall
correlation coefficient is estimated as the difference between the proportions of pairs of
vectors for which the orders are the same and for which they differ. The formula for it can be
written as follows

r̂k = 1− 4

N(N − 1)

N−1∑
i=1

N∑
j=i+1

1{[ξ1i < ξ1j] ̸= [ξ2i < ξ2j]}, (5.15)

where 1{·} is the event indicator function {·}, and (ξ1i, ξ2i), 1 ≤ i ≤ N , is random sample of
N vectors from random variables ξ1 and ξ2.

From the point of view of probability theory, the Kendall correlation coefficient of the
random variables X and Y is defined as

rk = E sign(X1 −X2)(Y1 − Y2),

Copyright © 2024 ASSA. Adv Syst Sci Appl (2024)
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where (X1, Y1), (X2, Y2) are independent random vectors distributed as (X, Y ).
To approximate the Kendall correlation coefficient, we use a combination of several

methods. First, we will carry out a graphical analysis of the data obtained using simulation
modeling. After plotting the dependence of rk on the system load ρ, you can see that, as in the
case of rs, this dependence is close to linear in appearance (compare Fig. 4.4 and Fig. 5.5),
although in fact, as follows from the (4.14) formula, this is not the case. Assume for simplicity
that rk depends on ρ quadratically, i. e.

rk ≈ ρ(C1 + C2ρ).

Now, to find the unknown coefficients, we use the Nelder-Mead optimization method. In
the process of optimization with respect to C, we will minimize the modulus of the relative
approximation error

APE =

∣∣∣∣rk − r̂k
rk

∣∣∣∣ · 100%
between data generated by simulation (rk — “true” values of Kendall’s correlation
coefficient) and predictions calculated by the proposed analytical formula (r̂k — Kendall’s
correlation coefficient estimate), with the initial values of the coefficients estimated from the
graph.
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Fig. 5.5. Kendall correlation coefficient rk

Table 5.1. Errors in approximating the Kendall correlation coefficient rk by (5.16) for ρ ∈ {0.10, 0.15, ..., 0.90}

Estimated Error types
characteristic Max APE, % Min APE, % MAPE, %

rk 0.92828 0.09158 0.43138

As a result of optimization in the Python software environment, we obtain the values of
the coefficients

C1 ≈ 0.25134, C2 ≈ 0.02517.

Therefore, the final expression for rk will look like

rk ≈ ρ(0.25134 + 0.02517ρ). (5.16)

In the 5.5 figure and in the 5.1 table, you can compare the results of simulation modeling of
the Kendall coefficient with the results of calculations using the analytical formula (5.16). As
can be seen, the approximation error is not at all large and does not exceed 1
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As for the values themselves, then, for example, rk ≈ 0.2 is true for ρ = 0.8, and this
means that for about 60% of pairs of observations of the vectors (ξ1, ξ2) from the entire set of
their the order (character of monotonicity) coincides, but for about 40% of the pairs (ξ1, ξ2)
it does not. In this case, each vector corresponds to a task and consists of the sojourn times of
its subtasks.

Thus, the nature of the dependence of the Spearman and Kendall correlation coefficients
on the load in both cases is close to linear, but the Kendall coefficient takes smaller values.

6. LIMITING TWO-DIMENSIONAL DISTRIBUTION AND RATIOS OF CORRE-
LATION COEFFICIENTS

From the obtained results, it can be seen that all correlation coefficients have some limits at
high load (ρ → 1), and these limits are different from both 0 and 1, which suggests that they
have meaningful meaning.

Note that from the formula (4.13) one can obtain the limit

lim
ρ→1

φ((µ− λ)s, (µ− λ)t) =
t(s+ 1)−1/2 + s(t+ 1)−1/2

s+ t− st+ (s+ t)2
, (6.17)

and this is the LST of some two-dimensional distribution. Namely, this is the limit distribution
of normalized sojourn times

η1 = (µ− λ)ξ1, η2 = (µ− λ)ξ2,

whose joint distribution is described by the LST φ((µ− λ)s, (µ− λ)t), with the random
variables η1 and η2 individually are always equally distributed (they are standard
exponentials), and the dependence between them is determined by the load of ρ.

All limit values of the correlation coefficients are thus the values of the correlation
coefficients for the limit distribution (6.17). Let’s write them out explicitly†:

rp =
3

8
= 0.375, rs =

12
√
2

5
− 3 ≈ 0.394, rk ≈ 0.276.

In the figure 6.6 we also present a joint graph of all three coefficients (with the addition
of limit values). As can be seen from the figure, the lines of the Pearson and Spearman
correlation coefficients intersect at one point (except zero). The coordinates of the intersection
point can be found by equating the expressions (3.10) and (4.14). After simplification, we
obtain the equation

9ρ6 − 120ρ5 + 160ρ4 + 2752ρ3 − 6080ρ2 + 3072ρ = 0.

The numerical solution of this equation allows us to find the only root that belongs to the
interval ρ ∈ (0, 1), namely ρ ≈ 0.803146. Thus, the intersection point has the following
approximate coordinates: (0.803146, 0.320943). To the left of it is more Pearson’s correlation
coefficient, and to the right — Spearman’s.

7. META-GAUSSIAN MODEL

The calculation of the residence time correlation coefficients is not only of academic interest,
but can also be useful for assessing system performance. Indeed, when it comes to selecting an

†The value of rk is an estimate according to the formula (5.16).
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Fig. 6.6. Coefficients of correlation and their limit values

approximate model of the dependence of residence times, such a model can be parameterized
by one of the correlation coefficients.

Next, we will consider the meta-Gaussian model based on reducing an arbitrary
distribution to a multivariate normal one. Such models are used in financial mathematics [22,
ch. 5, 9], hydrology [16], etc. At the same time, we do not claim that this model is optimal in
this case, but we present it only as an example and plan to pass on to more accurate models
in the future.

Let the number of subsystems be K ≥ 2, and the random variables ξi, 1 ≤ i ≤ K, as
before, be the residence times of subtasks from one task. All of them have an exponential
distribution with parameter (µ− λ). Let’s put

ζi = Φ−1
(
1− e−(µ−λ)ξi

)
, 1 ≤ i ≤ K,

where Φ−1 is the inverse function of the standard normal distribution. Then the random
variables ζi, 1 ≤ i ≤ K, have the standard normal distribution and

ξi = − 1

µ− λ
ln (1− Φ(ζi)) , 1 ≤ i ≤ K.

Suppose that ζi, 1 ≤ i ≤ K, have a joint multivariate normal distribution. Then, due to
the symmetry of the system, any pair of quantities ζi and ζj , i ̸= j, has the same Pearson
correlation coefficient, which we denote as r. In addition, this pair has the same Spearman
correlation coefficient rs as the original pair ξi and ξj , since the Spearman correlation
coefficient is preserved under continuous monotonically increasing transformations of
random variables. For a multivariate normal distribution [22, Theorem 5.36, p. 215] it is
true, that:

rs =
6

π
arcsin

r

2
,

where we can find
r = 2 sin

πrs
6

, (7.18)

with known rs, calculated by using the formula (4.14).
A set of random variables ζi with the required distributions and correlations can be

obtained using the formulas:

ζi =
√
rε0 +

√
1− rεi, 1 ≤ i ≤ K,
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where εi, 0 ≤ i ≤ K, are independent standard normal random variables.
So for the response time

RK = max{ξ1, . . . , ξK}
we get the estimate

R̂K = − 1

µ− λ
ln
(
1− Φ(

√
rε0 +

√
1− rmax{ε1, . . . , εK})

)
. (7.19)

Using formulas (4.14), (7.18) and (7.19), a simulation was carried out for the values
λ = 1, ρ ∈ [0.1, 0.9] with steps of 0.05 and K from 3 to 20, in order to estimate the average
response time in comparison with the results of the simulation of a fork-join queuing system
carried out by the authors earlier.

The errors of the obtained approximations are presented in the table 7.2.

Table 7.2. Errors in approximations of the average response time using the formula (7.19) (meta-Gaussian
model) for values K = 3, ..., 20 and ρ ∈ {0.10, 0.15, ..., 0.90}

Evaluated Types of errors
characteristic Max APE, % Min APE, % MAPE, %

RK 4.18222 0.29829 2.46825

Note that MaxAPE turns out to be close to the error of the classical Nelson-Tantavi
formula [23] on a given set of parameter values (about 4%).

The model can be easily used to estimate not only the average response time, but also
variance, quantiles, etc.

The disadvantages of the meta-Gaussian model include the fact that it requires simulation
rather than provides an explicit formula, but this simulation is much simpler and faster than
the simulation of the original fork-join queuing system.

Of course, more advanced models, which parameterized by correlation coefficients, are
possible. If the model uses parameterization for other reasons, then it seems desirable that
its predictions of the values of the correlation coefficients do not diverge too much from the
actual ones.

8. CONCLUSION

The article presents exact analytical expressions for the Pearson and Spearman correlation
coefficients between the residence times of subtasks in the fork-join subsystems of QS. These
formulas were obtained using the classical method of generating functions and Laplace-
Stieltjes transformations. The authors could not find sources where such studies were carried
out, perhaps one of the reasons is the cumbersomeness of the calculations necessary to derive
these formulas.

An approximate expression was obtained for the Kendall correlation coefficient, the
approximation accuracy of which is quite high. To derive the Kendall correlation estimate,
graphical analysis and the Nelder-Mead optimization method were used. The results obtained
in the framework of a numerical experiment were compared with the data of simulation
modeling, which confirmed their correctness.

It is shown that all coefficients increase with increasing load, with Pearson’s correlation
coefficient quadratic (with slowdown), and Spearman and Kendall’s in a more complex non-
linear manner (but close to linear). At a high load, they approach some limiting values due
to the properties of the limiting two-dimensional distribution of the normalized residence
times of subtasks. The coefficients were compared according to how well they capture the
dependence (they take larger values). It has been established that the Kendall coefficient is

Copyright © 2024 ASSA. Adv Syst Sci Appl (2024)



16 A.V. GORBUNOVA, A.V. LEBEDEV

the worst, and as for the rest, there is a critical load value, below which the Pearson coefficient
is better, and above it is the Spearman coefficient.

Formulas for correlation coefficients make it possible to meaningfully describe the
existing relationship between the random variables of the residence times of subtasks, which
in turn may allow further more accurate analysis of the response time characteristics of the
entire system for the case when the number of subsystems is more than two, since for such
systems only approximations of the average response time and its variance have been obtained
with varying degrees of accuracy. As a simple example along this path, the paper presents the
meta-Gaussian model. To describe the dependence and evaluate the characteristics, it is also
planned to use the modern theory of copulas, with the fitting of copulas to the available data.
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