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Abstract: Heart disease is a significant public health concern, affecting a large number of
people worldwide every day. With a shortage of qualified cardiologists, particularly in low-
income countries, the diagnosis and management of heart disease can be challenging. The
electrocardiogram (ECG) is the primary diagnostic tool for heart disease, but interpreting ECG
reports requires the expertise of a qualified cardiologist, making it time-consuming and costly.
To address this issue, automated ECG signal interpretation is necessary. Hence, this article has
made an encyclopedic review of the existing literature. The article includes a demonstration of
frequently utilized data sets, tools, and techniques for this domain. Therefore, a framework is
proposed based on the observation of existing works. The proposed framework aims to improve
the analysis of ECG reports for both cardiologists and non-experts. Our framework considers
the 12-lead ECG, the different types of leads, wave patterns, and their relationship with heart
disease. The objective is to produce reliable and accurate results while reducing analysis time.
The proposed framework is inherent in improve the diagnosis and management of heart disease
by enabling a wider range of healthcare providers and individuals to interpret ECG reports. This
could lead to earlier detection and treatment of heart disease, which could improve outcomes and
save lives.
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1. INTRODUCTION

Cardiovascular disease (CVD) is a consolidated term for conditions affecting the heart or
blood arteries [72]. A science-based organization known as the Centers for Disease Control
and Prevention (CDC) depicts that the leading cause of death among men, women, and
individuals from various racial and ethnic backgrounds in the United States is heart disease.
Accordingly, the World Health Organization (WHO) declares that 17.9 million people die due
to heart disease every year. Unhealthy and processed food, physical sluggishness, usage of
nicotine, and excessive alcohol consumption are the major behaviorally threatening elements
for heart disease. These risk factors can lead to elevated levels of blood pressure, blood
glucose, blood lipids, and being overweight or obese in individuals [1]. The accumulation
of fatty substances known as atheroma in the coronary arteries can cause a blockage or
disturbance in the blood flow to the heart muscle, which can lead to the development of
coronary heart disease (CHD) [101].Heart-related illnesses include arrhythmia, myocardial
infarction (MI), sometimes known as heart failure, angina, stroke, heart attack, etc. [40,126].
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The irregularity of the heartbeat known as arrhythmia is linked to a higher risk of blood
clots [97, 109, 133]. MI follows when not enough blood reaches a particular area of the heart
muscle [59, 101]. The longer it takes for the heart to restore proper blood flow, the greater
the harm inflicted on the heart muscle [26]. Additionally, coronary artery disease (CAD) is
the primary cause of heart attacks, while the failure of the heart to effectively pump blood
throughout the body is referred to as heart failure, which can result from the heart becoming
too stiff or weak [26, 27, 38]. This condition is also known as congestive heart failure (CHF)
[28, 67]. An ECG is a rapid diagnostic tool that can be utilized to assess the heart’s electrical
function and rhythm [114, 150]. In this diagnosis, sensors attached to the skin can detect the
electrical impulses that the heart produces with each beat [4, 128]. The signals are recorded
by a machine, and a physician evaluates them to determine if there are any irregularities [87].
The 12 ECG leads each reflect a unique 3-D direction of heart action, where leads I, II, III,
aVF, aVR, aVL, V1, V2, V3, V4, V5, and V6 are the standard ECG leads [19, 23, 91, 106].
However, these leads are classified into two parts: Leads I, II, III, augmented Vector right
(aVR), augmented Vector left (aVL), and augmented Vector foot (aVF) are known as limb
leads (Figure 1 (a)), and Leads V1, V2, V3, V4, V5, and V6 are known as precordial leads
(Figure 1 (b)) [52, 136, 151]. Nowadays, detecting heart problems using ECG has become
popular due to its reliability and accurate production of signals [31, 96, 147]. Detecting heart
disease from ECG signals can be a challenging task for medical professionals due to the time
required to understand these signals as well as the expense associated with having qualified
experts perform this task.

(a) Limb leads positions for ECG (b) Precordial leads position for ECG

Fig. 1. Leads placement for monitoring ECG signals

Therefore, the development of an automated system for detecting heart disease from ECG
signals may provide a potential solution to this issue. Several works have been incorporated
to detect various CVDs by analyzing ECG signals [20, 99, 124]. A thorough analysis has
been conducted on the automated identification of CAD through the use of ECG signals [65].
This study employed sixteen entropy measures to detect distinct latent features from ECG
signals obtained from patients with CAD and healthy individuals. In recent years, various
methods such as Machine Learning (ML), Deep Learning (DL), and hybrid approaches
have been employed for heart disease classification. A review of prior research on the
application of DL for ECG diagnosis revealed the use of four standard algorithms: stacked
auto-encoders, Deep Belief Network (DBN), Convolutional Neural Network (CNN), and
Recurrent Neural Network (RNN) [72]. They conducted a thorough assessment of ECG
diagnosis for accomplishing their application, including their advantages and disadvantages.
However, most of the research has concentrated on utilizing ECG signals to identify the
presence of heart disease [50, 67, 90, 94]. But the working principle of ECG signals and the
signal collection procedure of 12 leads of the ECG device are not focal points of the research.
Therefore, this research aims to incorporate this issue by answering the following research
questions:
• Q1: Which data sets are available to analyze heart rate variance?

Copyright © 2024 ASSA. Adv Syst Sci Appl (2024)



68 A. SUFIUN, N. R. CHAKRABORTY, S. A. SHAMMI, S. K. BANSHAL

• Q2: What is the importance of the automatic classification of heart diseases, and which
approaches are utilized to incorporate this issue?
• Q3: What is the relation between heart disease and 12 lead ECG mechanisms and how do
they help to predict each distinct heart condition?

1.1. Inclusion and Exclusion Criteria
In this work, some search strategies are applied to find relevant research in this domain.
Moreover, this article has analyzed only recent articles to understand the updated and current
techniques applied for heart disease detection. In this study, articles that were released
between 2019 and 2023 were examined. In addition, we have selected some well-known
journals based on ranking and focus on various disease detection, and the medical sector is
given more priority to extract the papers.

Searching Criteria: "heart disease" AND "ECG"

Source: IEEE Transactions on Biomedical Engineering, Heart Rhythm, Circulation: Arrhythmia and Electrophysiology, Journal of
Cardiovascular Translational Research, International Journal of Cardiology, Biomedical Signal Processing, and

Control, Sensors, Pacing and Clinical Electrophysiology, Physiological Measurement, Journal of Medical Systems, Archives of
Computational Methods in Engineering, Knowledge-Based Systems, Biocybernetics and Biomedical Engineering, Google Scholar 

 

Year Range: 2019-2023
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Fig. 2. Article search strategy

The search strategy along with the final list of the articles are illustrated in figure 2.
Therefore, this study incorporates the popularly utilized data sets and techniques for various
CVD. After that, the relation between heart disease and 12 lead ECG mechanisms has also
been incorporated in this study. Finally, a framework has been developed to suggest an
executable approach based on the concomitant literature that is described in the Proposed
Methodology section.

2. FREQUENTLY USED DATABASES

Data is the fundamental requirement for the detection, analysis, or interpretation of any
kind of disease. It is a challenging task to detect disease without any form of information or
data. There are several data sets have been built and they are publicly available for disease
detection [50, 77, 142, 150]. Moreover, some popular data sets are publicly available for the
prediction of different heart problems [8, 28, 101]. Table 1 illustrates the popular data sets
used for the detection of arrhythmia, Table 2 refers to the datasets that were used for some
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dangerous disease such as MI, heart failure, etc. and Table 3 illustrates the frequently used
databases that are utilized for the prediction of several heart problems.

Table 1. Different types of ECG data sets for Arrhythmia

Citation Source of Data Number of Disease DetectedRecordings

[8] MIT-BIH arrhythmia
47 subjects: 25 males
and 22 females, 4000
ECG Signal

Arrhythmia

[66] MIT-BIH arrhythmia N/A Arrhythmia
[122] MIT-BIH 47 subjects Arrhythmia

[28]

(MIT-BIH) ARR
database, MIT-BIH
Normal, Sinus Rhythm
(NSR), and BIDMC
CHF database

Total 162 records CHF, Arrhythmia
(ARR)

[95] MIT-BIH Atrial Fibril-
lation Database N/A Atrial Fibrillation (AF)

[143] MIT-BIH arrhythmia 29 subjects Arrhythmia
[97] MIT-BIH 29 subjects Arrhythmia

[116]

Numerical-sultanova,
Cleveland, ECG-
physioNet, MIT-BIH
Arrhythmia data set,
PTB Diagnostic ECG
Database

N/A, 1190 people,
18,885 patients,
109446 samples, 14552
samples

Arrhythmia

[83]
MIT-BIH Normal
Sinus Rhythm, MIT-
BIH Arrhythmia,
BIDMC CHF database

18 (5 Males, 13
Females), 47 (25
Males, 22 Females), 15
(11 Males, 4 Females)

Arrhythmia, CHF

[38] MIT-BIH-PhysioNet
databases 105 subjects

Arrhythmia, CHF,
sudden cardiac death
(SCD)

[22]
China physiological
signal challenge
(CPSC) 2018 data set

6877 recordings 9 categories of Arrhyth-
mia

[27]
MIT-BIH ARR, MIT-
BIH NSR, BIDMC
CHF

48 subjects, 18 sub-
jects, 15 subjects CHF, arrhythmia

[55] ECG data from wear-
able sensors N/A Arrhythmia

[109] MIT-BIH 1800 records Arrhythmia
[133] MIT-BIH 48 records 47 from

patients Arrhythmia

[120] MIT-BIH 47 subjects, 48 record-
ings Arrhythmia

[80]
MIT-BIH AFDB,
CUDB, MITDB, MIT-
BIH VFDB

23 subjects, 35 sub-
jects, 44 subjects, 22
subjects

6 types of arrhythmia

[141] MIT-BIH 25 subjects AF
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Table 2. A bunch of ECG data sets for prominent heart problems

Citation Source of Data Number of Record-
ings Disease Detected

[101] PTBDB, MIT-BIH
database 48 records MI

[67]

RR interval database,
BIDMC-CHF database,
NSR-RR, Fantasia
database, MIT-BIH,
NSR database

Total 156 subjects Heart failure

[59]
Self-developed
database (ECG Device
‘EDAN SERIES-3)

1937 patients data
COVID-19, Abnormal
Heartbeat, MI, Previous
History of MI, and Nor-
mal Person

[53] Self-developed 43 Patients IHD

[104]
MIT-BIH arrhythmia
and PTB-ECG
databases

360 subjects Heart Disease

[26]
PTB diagnostic,
BIDMC CHF, St.
Petersburg,

236 patient, 15 patient,
7 patient,

MI, Normal (N),
CAD, Valvular heart
disease (VHD) ,
Bundle Branch Block
(BBB), Hypertrophic
cardiomyopathy
(HCM), Dilated
cardiomyopathy
(DCM)

[29] PTB database 549 ECG records from
290 subjects MI

[138] MIT-BIH 48 records Heartbeats

[44]

Fantasia Normal
database, European
STT database,
Collected data from
IBN- AL-NAFEES
Hospital

40 subjects 40 record-
ings, 78 subjects 88
recordings, 30 subjects
30 recordings

Myocardial ischemia

[76] Cleveland data set 303 records Heart Disease
[93] PTB-XL dataset 21,837 records

[152] PTB-XL database 21,837 records CVD

[146] St-Petersburg, BIDMC
CHF, PTB Diagnostic

5 subjects 17 records,
15 subjects 15 records,
52 subjects 80 records

CAD, CHF, MI, normal
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Table 3. Detecting multiple heart problems using ECG data

Citation Source of Data Number of Record-
ings Disease Detected

[39] MIT-BIH, St. Peters-
berg, PTB databases N/A

AV nodal block (AV
NB), Acute MI, Atrial
fibrilation (AF), CAD,
Earlier MI (EMI),
Healthy, Sinus Node
Dysfunction (SND),
Transient Ischemic
Attack (TIA), BBB,
Cardiomyopathy,
Dysrhythmia,
Healthy control,
MI, Myocarditis, VHD,
AFIB, Normal, P, SBR

[125]
MIT/BIH-SCDH,
MIT/BIH-NSR
databases

23 subjects, 18 subjects SCD

[15] MIT-BIH Arrhythmia
Database 47 subjects

left bundle branch
block (LBBB) beat,
right bundle branch
block (RBBB) beat,
PVC beat, ventricular
flutter wave beat,
nodal (junctional)
escape beat, aberrated
atrial premature beat,
ventricular escape beat,
and normal beat

[74] MIMIC-II 12,000 instances of 942
patients Blood Pressure (BP)

Q1: Which data sets are available to analyze heart rate variance?

One of the most popular data sets regarding heart disease is the Massachusetts Institute
of Technology-Beth Israel Hospital (MIT-BIH) data set [66, 97, 122, 138]. There are various
categories of data available in this data set such as the MIT-BIH arrhythmia data set, MIT-
BIH Normal Sinus Rhythm (NSR) data set, MIT-BIH-PhysioNet databases, MITBIH Atrial
Fibrillation Database (MIT-AFDB), MIT-BIH Malignant Ventricular Ectopy Database (MIT-
BIH VFDB), MIT/BIH Sudden Cardiac Death Holter (SCDH), etc [28,38,80,102,125,143].
Among them, the MIT-BIH arrhythmia data set is the mostly utilized database and this data set
is known by several names such as the MIT-BIH arrhythmia data set, MIT-BIH ARR data set,
etc. [15,27,102]. However, it is observed from the existing literature that researchers are more
concerned about detecting different types of arrhythmia disease than others [109, 133, 141].
This is why the arrhythmia dataset is popular in this domain for detecting heart problems.
Additionally, arrhythmia is also referred to as AF in some articles because AF is a type
of arrhythmia [12, 95, 102]. After that, MI, CHF, and SCD are also predicted in some
research using the MIT-BIH data set [27,38,101]. Other heart-related problems such as heart
failure, Ischemic Heart Disease (IHD), and abnormal heartbeat are predicted in this field
using several popular databases [53, 59, 67]. Hence, Beth Israel Deaconess Medical Center
(BIDMC) CHF data set is employed in some studies to detect heart failure [26–28]. After
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that, Physikalisch Technische Bundesanstalt (PTB) diagnostic ECG database is utilized in
various literature to detect MI, arrhythmia, etc, [29, 101, 116]. In spite of that, there are
some data sets available employed for the detection of heart problems in a few articles.
For example, St-Petersburg, Fantasia database, Numerical-sultana, Cleveland, Creighton
University Ventricular Tachyarrhythmia Database (CUDB), European ST-T database, Multi-
Parameter Intelligent Monitoring in Intensive Care II (MIMIC-II) Waveform database, etc.
are utilized in some articles to predict heart disease [44,74,80]. Therefore, these data sets are
popularly utilized for a combination of detecting several heart diseases.

3. OBSERVATION OF EXISTING APPROACHES

Q2: What is the importance of the automatic classification of heart diseases, and which
approaches are utilized to incorporate this issue?
Automatic classification of heart disease can help the cardiologist to save their time and they
can operate more patients within a short amount of time. Not only that, automatic diagnosis of
heart problems using ECG signals can also help the patients to acknowledge their condition
before affected seriously [8, 101]. Therefore, it can also help to diagnose accurately the heart
issues since the pre-trained algorithm is trained by the existing database that helps the models
to learn the signals specifically. Moreover, the available approaches in different domains are
depicted in the subsections below.

3.1. Deep Learning
There are several techniques have been utilized to detect different heart problems in many
articles such as ML techniques, DL approaches, Ensemble methods, hybrid approaches,
etc. [8, 29, 143]. Among these approaches, some DL algorithms such as CNN, Long-Short
Term Memory (LSTM), CNN-LSTM, etc. are widely used in several applications to identify
heart illness [28, 66, 122]. CNN is commonly applied in several studies from DL approaches
to detect heart diseases [80, 102]. An article introduced a novel neural network architecture
based on recent advancements in CNNs as a solution to create self-governing systems for
diagnosing heart disease using ECG signals [8]. This research employs 1D convolutional
layers and the ReLU activation function, which produces 98.33% accuracy. Alternatively,
1D and 2D CNN models with the same activation function are investigated to construct
a robust algorithm capable of effectively classifying the ECG signal in the presence of
environmental noise [122]. The 1D CNN and 2D CNN have achieved 97.38% and 99.02%
accuracy, respectively. Another article proposed a method for classifying multiple cardiac
illnesses using a one-dimensional CNN with a modified ECG signal as input [39]. They
applied their method to three distinct data sets where the St. Petersburg data set yielded the
best accuracy of 99.71%. Moreover, CNN-based hybrid approaches are also popular in this
field for classifying heart disease [27, 28, 55, 66, 101, 138]. CNN-LSTM is a frequently used
algorithm among CNN-based hybrid approaches [50, 67, 95, 143]. An automated detection
system is proposed for the detection of MI where CNN, CNN-LSTM, and ensemble methods
were applied. Among them, CNN-LSTM and ensemble techniques provided high accuracy of
99.9% [101]. Another study suggests an automated diagnosis approach based on Deep CNN
and LSTM Architecture (DCNNLSTM) for diagnosing CHF using ECG signals [67]. This
approach has performed similarly to the previous work, 99.52%. In this study, CNN is utilized
to extract deep features, while LSTM is employed to achieve the goal of detecting CHF using
the extracted features. However, another CNN-based hybrid approach known as Grey Wolf
Optimizer (GWO) Artificial Bee Colony (ABC) optimization algorithm (CNNGWO-ABC)
is proposed to detect arrhythmia [55]. The automatic construction of CNN typology using
neuro-evolution has been examined in this work. A unique solution based on the ABC and
the GWO has also been developed. The performance of this algorithm is satisfactory but not
excellent as compared to the previous study. It showed 94.27% accuracy which is less than
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the CNN-LSTM approaches. Another different hybrid strategy is suggested, and it involves
a two-stage medical data classification and prediction model [76]. If the results of the initial
stage can accurately predict cardiac disease, the second stage may not be necessary. During
the first stage, data from medical sensors attached to the patient’s body was categorized, while
the second stage involved the classification of ECG images to forecast the likelihood of heart
disease. To classify sensor data, a hybrid model using Faster R-CNN with SE-ResNet-101
was used, while for ECG image classification, a hybrid approach utilizing linear discriminant
analysis with modified ant lion optimization (HLDA-MALO) was employed. Therefore, the
performance of this approach is 98.06% in terms of accuracy. Hence, 1D CNN, 2D CNN,
and CNN-LSTM are commonly used algorithms in this field for detecting various types
of heart diseases. In addition, Generative Adversarial Networks (GAN) and LSTM (GAN-
LSTM), Convolutional Capsule Networks, Resnet RNNs (ResRNN), Bidirectional Long
Short Term Memory (BiLSTM), Kernel Weight CNN (KWCNN) are also applied in few
pieces of literature for heart disease prediction from DL area [22, 26, 104]. The performance
of these approaches is good but they do not outperform the other approaches in DL [120,133].

3.2. Machine Learning
ML based algorithms are also explored in some literature to detect heart illness such as
Support Vector Machine (SVM), k Nearest Neighbor (KNN), Decision Tree (DT), etc.
[104, 129, 141, 152]. Moreover, a deep genetic ensemble of classifiers (DGEC) is proposed
that consists of three layers where SVM is used in every layer [97]. The suggested framework
comprises an ensemble of three layers (48 + 4 + 1) consisting of 12 classifiers each from
the SVM (nu-SVC, RBF), kNN, PNN, and RBFNN + 4 classifiers from the C-SVC and 1
classifier from the C-SVC. This method performs with a 99.37% accuracy rate, which is
satisfactory. But the effectiveness of the DGEC system with additional physiologic signals
and the improved method was not examined in this study. However, other SVM and fusion
SVM models are proposed to detect myocardial ischemia, arrhythmia, and CHF where they
have provided 99.09% and 99.06% accuracy respectively [44, 83]. This study proposes a
novel approach for identifying myocardial ischemia using multi-lead long-interval ECG. The
method employs ChoiWilliams time-frequency distribution to detect changes in the ST and
PR segments of the ECG, which are related to ischemic symptoms, to extract ST and PR
features [44]. The suggested method is quick, inexpensive, and non-intrusive. Moreover,
another ML model known as KNN has been established to detect MI and it showed 99.96%
accuracy by single-channel ECG signal [29]. Another study introduced a novel technique
for the detection of R-waves and, based on them, the localization of QRS complexes. It was
important to evaluate classical classifiers, hence new methods of aggregating ECG signal
fragments comprising QRS segments were created. Yet, this model’s performance falls short
of expectations. It demonstrated a 90.4% accuracy rate for detecting CVD. As a result,
using ML algorithms to predict cardiac problems is not widely used. In addition, several
different algorithms, including the ridge model, Jaya Algorithm with Red Deer Algorithm (J-
RDA), Ensemble Empirical Mode Decomposition (EEMD) with local means (LM) filtering,
particle swarm optimization (PSO), differential evolution (DE), and MDD-Net, have been
investigated in a few studies [15, 117, 146]. Therefore, since ECG signals are one kind of
image related data, ML techniques sometimes cannot process them properly and for that
reason DL approaches are utilized in this area.

4. CORRELATION BETWEEN ECG LEADS AND HEART DISEASES

Q3: What is the relation between heart disease and 12 lead ECG mechanisms and how do
they help to predict each distinct heart condition?
The 12-lead ECG is vital for detecting and monitoring heart conditions, such as arrhythmia,
CHD, and electrolyte imbalances [68]. It records the heart’s electrical activity using 10

Copyright © 2024 ASSA. Adv Syst Sci Appl (2024)



74 A. SUFIUN, N. R. CHAKRABORTY, S. A. SHAMMI, S. K. BANSHAL

electrodes placed on the chest, arms, and legs, generating 12 leads. Each lead provides a
different view of the heart’s activity and is crucial for identifying specific types of heart
disease, such as right ventricular infarction (RVI) in leads V1 and V2, and lateral wall
infarction in leads V5 and V6 [127]. The 12-lead ECG plays a crucial role in screening
for possible cardiac ischemia and rapidly detecting individuals who may have experienced
a heart attack. It’s imperative for healthcare experts to carefully consider the number of
leads employed to ensure precise diagnosis and effective treatment [35]. Each ECG lead
conveys a variety of waveform information, and the ECG waveform itself encompasses
several distinct elements, each signifying various phases of the cardiac cycle. These elements
encompass the P wave, QRS complex, and T wave, each of which represents distinct
waveforms with significant relevance in the interpretation of ECGs. The P wave represents
atrial depolarization, the QRS complex represents ventricular depolarization, and the T wave
represents ventricular re-polarization. Understanding the different types of waves in ECG
can help clinicians to diagnose and manage a variety of cardiac conditions. Several works
have been incorporated for the detection of various heart problems using ECG signals
[84, 124, 136]. R to R interval, QRS complex are different portions of an ECG signal and
these portions are used for identifying different heart problems [81, 129, 149]. However, the
majority of the works utilized RR interval for several heart illnesses such as AF, various
types of arrhythmias, CAD, etc [10, 81]. Some works have utilized the QRS complex for
incorporating the issue [86, 135, 149]. An article has detected RR interval for AF detection
using CNN-BiLSTM [129]. According to earlier clinical investigations, the Q, R, and S
(QRS complex) are three deflections that reflect a single heartbeat. Its timing and structure
reveal important details about the heart’s condition. Traditional techniques for locating R
peaks include wavelet processing, frequency analysis, and digital filters that extract the
local maximum value. And R peaks indices have been shown to be important classification
indicators for both human and computer-aided categorization. In order to use their model
to extract characteristics from pure ECG signals, they would only include R peaks indices
in this approach. As a result, they just applied R-R intervals to the original ECG signals in
the feature extraction phase to obtain segmentation, and the feature extraction phase will be
handled by the model that was used. 0.82 F1 score is achieved by the proposed model in
this work. In a different article, the R-Peak Engzee ECG segmentation technique was used
to identify and extract features while recording the position, duration, and quantity of R-
Peaks [81]. They concentrated on R-R intervals because of the positional invariant nature
of CNN layers, the time-dependency of ECG data, and the importance of interval length in
ECG interpretation. Therefore, CNN architecture can learn the RR interval data rather than
the QRS complex. 91.15% accuracy was achieved by the explainable CNN algorithm for
the detection of various arrhythmia in this work. On the contrary, the time domain ECG
feature based on Feed Forward Neural Network (FFNN) and CNN provided 91.5% accuracy
for the prediction of arrhythmia using the QRS complex [14]. The only portion of an ECG
made up of numerous clustered waves is the QRS complex [30]. The QRS complex consists
of Q, R, and S waves and signifies ventricular depolarization. After the QRS complex, the
T wave denotes ventricular re-polarization. Therefore, the QRS complex is utilized for MI
detection in research [21]. They stated that a QRS wider than usual is an indication of BBB
and ventricular hypertrophy. For that reason, it is easy to recognize MI by increased R wave
amplitude, duration, and high voltage QRS. Using CNN-BiLSTM, they achieved 99.62%
accuracy. Therefore, RR interval and QRS complex both are used for the detection of several
heart problems and most of them have utilized the CNN algorithm and CNN-based hybrid
algorithms for evaluation purposes the performance is similar to each other for both RR
interval and QRS complex.

4.1. P-wave
The assessment of P-waves in a 12-lead ECG is a valuable tool for the diagnosis of
heart disease [82]. Abnormalities in P-wave morphology, duration, and amplitude can
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indicate specific types of heart disease, including atrial enlargement, AF, atrial flutter, atrial
tachycardia (one kind of arrhythmia), and WPW syndrome. P-wave abnormalities can be
detected in leads II, III, aVF, V1, and V4-6, which are important for the detection of these
conditions. The morphology of P-waves in leads II, III can detect right atrial enlargement,
while leads V1 and V2 can detect left atrial enlargement. Hence, irregular P-waves are a
hallmark of AF. Additionally, P wave abnormalities are also associated with other cardiac
conditions, such as atrial flutter, atrial tachycardia, and WPW syndrome. To effectively
diagnose different heart diseases associated with atrial depolarization abnormalities, it is
crucial to conduct a thorough evaluation of P-wave morphology across multiple leads. This
is emphasized in the medical literature as well [118].

4.2. P-R Interval
The PR interval plays a crucial role in an ECG by showing how electricity travels from the
atria to the ventricles of the heart [89]. Properly understanding the PR interval’s patterns in a
12-lead ECG is vital for diagnosing heart conditions accurately. Specifically, Lead II, Lead III,
and aVF provide insights into the heart’s lower wall, where PR interval irregularities might
signal conduction issues. Furthermore, leads V1 to V6 give us a look at the heart’s front,
side, and back walls, helping us detect atrial enlargement or fibrillation [68]. Remember, the
PR interval can be influenced by various heart conditions and medications. This underscores
the need for a comprehensive ECG examination to pinpoint the root cause of PR interval
variations [88]. Often, combining data from multiple leads is necessary for an accurate
diagnosis, which is critical for crafting an effective treatment plan [68].

4.3. QRS Complex
In a recent research article, we delved into the intricate world of heart disease diagnosis
through the examination of the QRS complex within a 12- lead ECG system [139]. Our focus
primarily centered on the significant leads V1 to V6, alongside II, III, and aVF. The QRS
complex itself serves as a mirror to ventricular depolarization, and its fluctuations can serve
as critical indicators for a range of cardiac conditions including ventricular hypertrophy, BBB,
and MI [62]. When we set our sights on identifying right ventricular hypertrophy, our trusty
companions were none other than leads V1 and V2. Conversely, left ventricular hypertrophy
revealed its presence through the ever-reliable leads V5 and V6. Now, for insights into the
inferior wall of the heart, leads II, III, and aVF came into play. These diligent leads held the
key to uncovering potential blockages or ischemia through changes in the QRS complex [56].
But that’s not all; the QRS complex’s morphology or shape had a story of its own to tell in the
grand scheme of diagnosing heart ailments. A widened QRS complex signaled the presence
of a BBB, while a narrow QRS complex hinted at a normal conduction pathway [32]. And
let’s not forget about those abnormally deep and wide Q waves; they often whispered of a
previous MI lurking in the patient’s medical history [105, 108, 134]. It goes without saying
that an accurate diagnosis and subsequent treatment plan necessitate a meticulous analysis
that takes into account a combination of leads and the distinctive morphology of the QRS
complex.

4.4. R-R Interval
A research paper delves into the effectiveness of a 12-lead ECG system for evaluating the
heart’s electrical activity [34]. One crucial element of this system involves the R-R interval
waves, which depict the time gap between successive R waves and correlate with ventricular
depolarization. Variations in the R-R interval can act as signals for various cardiac issues,
encompassing tachycardia, bradycardia, and arrhythmias. When dissecting the R-R interval,
healthcare professionals typically use lead II and lead V1 [25], although they may also
indicate heart blocks, such as first- degree AV block, second-degree AV block, and complete
heart block. To precisely pinpoint the heart disease type linked to R-R interval waves,
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healthcare providers must meticulously analyze this interval by examining multiple leads.
The R-R interval stands as a crucial component of cardiac functioning, facilitating precise
diagnosis and treatment of an array of cardiac ailments [6]. In summary, specific leads within
a 12-lead ECG system serve a vital role in discerning the heart disease type associated with
various waveforms [85]. Figure 3 illustrates each waveform’s significant leads. For instance,
P waves in leads II, III, aVL, and V1 can hint at atrial arrhythmias, while Q waves in leads I,
aVL, V5, and V6 may suggest a previous myocardial infarction. T waves in leads V2 to V5,
ST segment alterations in leads II, III, aVF, V1 to V6, and U waves in leads V2 to V5 can
all point to different cardiac conditions [112]. Hence, understanding the importance of each
waveform and its corresponding leads plays a pivotal role in identifying the

Fig. 3. Different types of wave-forms

prevailing heart disease type and offering suitable treatment. ECGs are invaluable tools
for diagnosing various heart conditions, with each type of heart disease manifesting distinct
alterations in the different leads of the 12-lead ECG. For instance, CAD may produce ST-
segment depression [131] or T-wave inversion in leads II, III, aVF, V4-V6, while a heart
attack may cause ST-segment elevation in leads II, III, and aVF (inferior MI) or leads V1-V4
(anterior MI). Heart failure may exhibit non-specific changes like left ventricular hypertrophy
or left BBB [46,49,98]. Meanwhile, arrhythmias can produce irregular or abnormal P waves,
widened QRS complexes, or absent or abnormal T waves. AF may produce an irregular
rhythm, absent P waves, and rapid ventricular response. Other heart conditions, such as
heart valve disease, cardiomyopathy, congenital heart defects, pericarditis, and pulmonary
hypertension, also cause different ECG changes [36, 51, 121]. It is important to emphasize
that only trained healthcare professionals should interpret ECGs and that ECG changes can
vary in different individuals and in different stages of the disease.

5. MAPPING CARDIAC TERRITORY: ANTERIOR, LATERAL,
INFERIOR, AND SEPTAL LEADS FOR HEART ABNORMALITIES

Proper placement and interpretation of leads are critical for accurate diagnosis and
management of cardiac conditions. Anterior wall infarction rarely occurs in isolation and
is often associated with infarcts of the septum, lateral wall, or both. The anterior wall
is represented by leads V3 and V4 [148]. If both the anterior wall and the septum are
affected, the infarct changes will appear in leads V1 to V4, known as an anteroseptal acute
MI [61, 107, 145].

In cases where the infarct affects both the anterior and lateral walls (anterolateral AMI),
changes will appear in V3 to V6 and possibly I and aVL. The lateral leads I, aVL, V5,
V6 are placed on the left side of the chest and are essential in detecting abnormalities in
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Fig. 4. Cardiac Territory Mapping for Early Detection of Heart Abnormalities

the left ventricle, such as left ventricular hypertrophy and acute MI [60, 73]. The inferior
leads II, III, aVF are placed on the lower part of the chest and are helpful in detecting
abnormalities in the right ventricle and inferior wall of the left ventricle, including RVI
[57, 113]. Finally, the septal leads V1, V2 are placed on the front of the chest and are crucial
in detecting abnormalities in the septum [5], such as septal hypertrophy or septal infarction.
The appropriate use and interpretation of these leads shown in Figure 4(a) in the 12-lead ECG
that can contribute to the accurate diagnosis and management of various cardiac conditions
and also the specification for the mapping is illustrated in the Figure 4(b). In the field of
electrocardiography, specific leads can be used to diagnose and manage different types of
MI. The right-sided leads, which include V4R, V5R, and V6R, can show ST elevation in a
right-side infarct. The posterior leads, V7, V8, and V9, are used to diagnose a posterior acute
MI [115]. Criteria for RVI include IWMI [2], ST segment elevation

greater in lead III than II, ST elevation in V1 (possibly extending to V5 to V6), ST
depression [144] in V2, and more than 1 mm of ST elevation in the right-sided leads (V4R to
V6R). Most RVIs occur in conjunction with inferior wall MI [3]. If ST segment elevation is
seen in II, III, and aVF, as well as V1, the most probable explanation is an RVI. The treatment
of an RVI is very different from that of a left ventricular infarction, and the diagnostic criteria
should be carefully considered in treatment decisions.

6. LEAD-SPECIFIC PATTERNS IN DIAGNOSING CARDIAC CONDITIONS

In general, premature ventricular contractions (PVCs) are best visualized in leads V1 to V3,
which are located in the right ventricular outflow tract and the septal region of the heart where
PVCs often originate [43, 63, 64, 78, 137]. Lead V1 is particularly useful for detecting PVCs
because it has a superior view of the right ventricle. PACs (premature atrial contractions) are
visualized in Lead II that is one of the most commonly used leads in ECG and can provide
valuable information in detecting PACs [9, 11, 37, 100]. PACs are defined as one kind of
arrhythmia. Additionally, the V1 lead, positioned at the fourth intercostal space on the right
side of the sternum, may be helpful in identifying PACs originating from the right atrium.
The V2 lead, positioned at the same location on the left side of the sternum, can help identify
PACs originating from the left atrium. Furthermore, the V4-V6 leads, located on the left side
of the chest, can also be useful in detecting PACs originating from the left atrium. RBBB is
best visualized in leads V1 and V2, which are located in the right ventricular outflow tract
where the right bundle branch is located. RBBB can also be seen in leads V5 and V6, which
are located in the left lateral aspect of the heart and may show delayed R-wave progression
also help to confirm the diagnosis by showing a ”rabbit ears” pattern in the QRS complex
[33, 45, 92]. LBBB is properly envisioned in leads V5 and V6, which are located in the left
lateral aspect of the heart where the left bundle branch is located. LBBB is a cardiac condition

Copyright © 2024 ASSA. Adv Syst Sci Appl (2024)



78 A. SUFIUN, N. R. CHAKRABORTY, S. A. SHAMMI, S. K. BANSHAL

characterized by the disruption of the electrical signals that regulate the heart’s pumping
function. In the diagnosis of LBBB, V1 and V6 leads are crucial, being the most important
on a standard 12-lead ECG. ECG criteria that suggest the presence of LBBB include a QRS
duration greater than or equal to 120 ms, broad and monomorphic R waves in leads I, aVL,
and V6, broad and monomorphic S waves in leads III and aVF, an absence or reduction in the
size of Q waves in leads V5 and V6, and an rsR’ pattern in V1. These electrocardiographic
patterns provide crucial insights into disruptions in the heart’s 17 electrical signals, which
are vital for diagnosing various heart conditions [130–134]. Medical professionals rely on
these criteria to identify conditions like LBBB accurately and offer the appropriate treatment.
Atrial premature complexes (APCs) become most apparent when looking at leads II, III, and
aVF, which are situated on the lower part of the heart, where the atria reside. APCs might
also manifest in other leads [17, 18, 42, 71, 123], like V1 and V2, but they can be trickier to
distinguish from other irregularities in those leads. The use of different leads in ECG has been
useful in recognizing APBs [24,79,110,140]. Lead II, for example, detects electrical activity
between the right arm and left leg and provides a clear image of atria function. Similarly, V1
and V2 leads are situated on the right and left sides of the breastbone, and they are capable of
detecting atrial premature beats (APBs) from their respective atria. Leads V4-V6, which are
positioned on the left side of the chest, are also useful in detecting APBs that originate in the
left atrium [13, 54, 103]. Ventricular ectopic beats (VEBs) are abnormal cardiac rhythms that
can be diagnosed using an electrocardiogram, a non-invasive diagnostic test that is widely
utilized. The ECG gives useful information for predicting VEBs [69, 70, 119]. It’s worth
mentioning that various ECG leads have a range of sensitivity in identifying VEBs. Leads
V1- V3, which are positioned on the chest wall, are more sensitive to detecting VEBs coming
from the right ventricle, whereas leads V4-V6 are more adept at detecting VEBs originating
from the left ventricle. Lead II can also identify aberrant electrical activity in the ventricles,
making it an effective tool for predicting VEBs. A comprehensive study of all ECG leads is
required to achieve an accurate diagnosis of VEBs. As established in studies, identifying a
myocardial infarction (MI) is mainly reliant on specific cardiac areas impacted by decreased
blood flow [16, 47, 48, 75]. For example, if the left anterior descending artery (LAD), which
supplies the anterior wall of the left ventricle, is blocked, you may see ST segment elevation,
Q waves, and T-wave inversion in leads V1V4. Conversely, if the blockage occurs in the right
coronary artery (RCA), which supplies blood to the heart’s inferior wall, leads II, III, and aVF
could display ST-segment elevation, Q waves, and T-wave inversion. AF is best visualize in
leads II, III, and aVF, which are located in the inferior wall of the heart where the atria are
located. AF can also be seen in other leads, such as V1 and V2, which may show flutter
waves or irregular R-R intervals [7, 111]. Additionally, leads V5 and V6 may show a rapid
ventricular response due to the irregularity of the atrial activity.

Table 4. Best Leads for Visualization of Different Heart Conditions

Heart Condition Best Leads for Visualization
PVCs V1,V2,V3
PACs II,V1,V2,V4,V5,V6
RBBB V1, V2,V5, V6
LBBB III,aVL,aVF,V1,V5,V6
APCs II, III, aVF,V1, V2
APBs II,V1,V2,V4,V5,V6
VEBs II,V1,V2,V3,V4,V5,V6

MI II, III, aVF, V1,V2,V3,V4
AF II, III, aVF,V1, V2, V5, V6

This Table 4 presents a comprehensive list of various heart conditions along with the
optimal leads for visualizing each of these conditions. The included heart conditions are
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Premature Ventricular Complexes (PVCs), Premature Atrial Complexes (PACs), RBBB,
LBBB, APCs, APBs, VEBs, MI, and AF. By providing the best leads for visualization of
each condition, this table can contribute to more accurate diagnoses and effective treatments
for these conditions.

7. PROPOSED FRAMEWORK: SPECIFIC HEART DISEASE
CLASSIFICATION FRAMEWORK

Based on the existing literature, we have found that the mostly used approach for classifying
heart problems using ECG signal is CNN. Because, this algorithm is well-known for
processing image related data and it is reliable and highest perfomer for predicting heart
problems. Therefore, a CNN model DenseNet 201 that is configured using focal loss and
Adam optimization. The medical sector often deals with imbalanced data sets, where the
normal data set exceeds the disease data set. To address this, we adopt focal loss. Focal loss is
effective for imbalance data set [41]. The Adam optimizer performs well with focal loss.The
Adam technique also works efficiently for the high-dimensional data set [58]. This research
aimed to prepare a data set for heart disease prediction. To accomplish this, we combined
multiple data sets which are discussed in the data set section. We have also employed a
technique to convert one-dimensional ECG signals into two-dimensional ECG images. This
conversion aids in reducing the noise of the ECG signals. The conversion is done using ECG-
kit, where we have transformed the ECG signal waves into image format. Next, we split the
images into R-R intervals corresponding to one complete cardiac cycle. The resulting images
are then stored in separate folders for training and testing, and Lead-Specific Patterns are
depicted in Figure 5. The ECG wave-to-image generator is used for this conversion, and the
heart bit segmentation is accomplished using the Ecg-kit with the PanTompkins algorithm.
Finally, we split the data set in 70% for training, 20% for testing and 10% for validation
purposes.
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Fig. 6. Proposed framework utilizing best classifier

The ECG-kit is a Python-based toolbox that offers a range of tools for the processing
and analysis of ECG signals. The toolkit includes functionalities for beat detection, heart
rate variability analysis, ECG signal visualization, and ECG signal processing. A noteworthy
feature of ECG-kit is its implementation of the Pan-Tompkins algorithm, a widely used
algorithm for detecting the QRS complex in ECG signals. This algorithm utilizes a
combination of bandpass filtering, differentiation, squaring, and integration to effectively
detect the QRS complex. By leveraging this algorithm, ECG-kit allows users to convert ECG
signals into gray scale images, which can be used for further analysis and visualization.
In light of the aforementioned background, we suggest a novel DL approach to accurately
predict heart disease from ECG signals in real-time scenarios.

Table 5. ECG Report Heart Disease Classification Metrics

Class Precision Recall F1-score
LBB 0.98 0.98 0.98
NOR 0.99 0.99 0.99
PAC 0.95 0.97 0.96
APC 0.99 0.97 0.98
PVC 0.97 0.98 0.97
RBB 0.99 0.99 0.99
APB 0.96 0.94 0.95
MI 0.97 0.98 0.97

VEB 0.98 0.98 0.98
AF 0.98 0.97 0.98

Accuracy 0.99
Macro Avg 0.98 0.98 0.98

Weighted Avg 0.99 0.99 0.99

Specifically, our proposed method involves utilizing a CNN architecture Densenet-201 to
categorize ECG signals into ten distinct classes of heart disease data. To ensure a diverse and
comprehensive training data set, we will include unique combinations of lead data for each
heart disease class. we use leads V1-V3 for PVCs, leads II,V1,V2,V4,V5,V6 for PACs, leads
V1, V2,V5, V6 for RBBB, leads III,aVL,aVF,V1,V5,V6, for LBBB, leads II, III, aVF,V1, V2
for APCs, leads II,V1,V2,V4,V5,V6 for APBs, leads II,V1,V2,V3,V4,V5,V6 for VEBs, leads
II, III, aVF, V1-V4 for MI, leads II, III, aVF,V1, V2, V5, V6 for AF, and leads II, III, aVF,
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V1-V6 for Normal (NOR). The CNN model will be trained using these segmented images
from our proposed data set that precisely classifies each image into its corresponding heart
disease class. We will evaluate the proposed model performance using several performance
metrics such as precision, accuracy, recall, and F1 score. To demonstrate the effectiveness of
our proposed model in real-time scenarios, the proposed model integrates with 12 lead ECG
device that produce 12 different types of waveforms. Subsequently the ECG signals will be
transform into images using an ECG wave to image generator. Subsequently, the images will
be segmented based on the R-R interval through heartbeats segmentation. Moreover, those
split ECG images will be processed using the proposed model, and the resulting heart disease
predictions will be presented in real-time shown in Figure 6.

Table 6. Implemented model comparison with existing works

Citation Dataset
Used Proposed Method Model Architecture Accuracy

[153] MIT-BIH
High-accuracy ECG
heartbeat classification
using a CNN

4 convolutional layers
and 2 fully connected
layers with dropout

99.43%

[154] MIT-BIH
Deep 2D CNN for
ECG arrhythmia
classification

Tae Joon Jun et al.
[2] Deep 2D CNN
for ECG arrhythmia
classification MIT-BIH
arrhythmia database 4
convolutional layers,
2 max-pooling layers,
and 3 fully connected
layers with dropout and
batch normalization

99.05%

[155] PTB ECG
Database

Deep CNN for auto-
mated recognition of
MI on ECG signals

5 layers, including con-
volutional, max pool-
ing, and dropout

99%

[156] MIT-BIH Deep CNN
11-layer deep network,
normalization using Z-
score, and SMOTE for
imbalance data

Precision:
98.30%

[157]
AF, VF, ST,
and normal
dataset

Accurate classification
of four ECG patterns
using transfer learning

Transfer learning using
pre-trained DenseNet
with 161 convolutional
layers and a linear
SVM

97.23%

[122] MIT-BIH
Accurate classification
of ECG signals using a
novel 1D and 2D CNN
model

Novel 1D and 2D CNN
model

1D CNN:
97.38%
2D CNN:
99.02%

Our Study

Lead-
specific
patterns in
diagnosing
cardiac
conditions
dataset

Neural network for 12-
lead ECG

DenseNet 201 config-
ured with focal loss and
Adam optimization

99.57%
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However, a major issue encountered in this research was the imbalance in the data set.
For example, when considering the lead aVF from the 12-Lead ECG, it was found that this
lead could represent any disease. However, certain classes such as NOR, LBB, APC, MI,
and AF had pictures of aVF leads, which were not present in other classes such as PVC,
PAC, RBB, APB, and VEB. This made it difficult for the model to accurately predict diseases
that did not have aVF lead data. Due to the absence of certain types of leads in different
types of heart disease classes, the use of 12-Lead ECG data as input for the model resulted
in data ambiguity. To mitigate this issue, the research team applied a threshold value of
85%. This meant that if the aVF signal was determined to be PVC, PAC, RBB, APB, or
VEB with a confidence level below 85%, the prediction would not be made, and the model
would discourage misclassification. Dealing with unknown data is a challenge in this solution,
especially in the sensitive medical sector. A promising result was obtained in our research
with DenseNet 201, achieving an accuracy of 99.57%. The accuracy is assessed using various
metrics such as F1 score, precision, and recall shown in Table 5. Based on the evaluation
metrics, the classification model is exhibiting excellent performance. It is achieving high
scores for most of the classes, with precision, recall, and F1-score metrics above 0.95 for
every class, indicating that the model can accurately classify a substantial portion of instances
for each class.

Furthermore, the precision of our metric is nearly flawless, achieving an impressive
score of 0.99. This signifies that the model exhibits exceptional accuracy, effectively
categorizing almost every instance with precision. When we examine the macro average
of precision, recall, and F1-score, we consistently observe a strong performance at 0.98
across all classes, underscoring the model’s consistent and reliable performance. Even the
weighted average remains notably high at 0.99, emphasizing the model’s capability to
correctly classify instances across a diverse array of classes, maintaining consistently high
performance levels. A comparison with the existing models has been incorporated in Table
6 that shows the efficiency of our proposed model. In summation, the results presented
in this report unequivocally demonstrate the model’s proficiency in accurately classifying
instances spanning a wide spectrum of categories, featuring exceptional precision, recall, and
F1-score metrics. This compelling performance lends itself to practical utilization in real-
world medical applications for the automated classification of ECG reports.

8. CONCLUSION

Heart disease stands as a pressing global public health concern, with a particularly
pronounced impact on low-income countries where the scarcity of qualified cardiologists
exacerbates the problem. Electrocardiography (ECG) serves as the primary diagnostic tool for
heart ailments, yet the process of interpreting ECG reports proves to be both time-consuming
and financially burdensome, demanding the expertise of a certified cardiologist. To confront
this challenge, the imperative of automated ECG signal interpretation emerges. This article,
in response, conducts a comprehensive examination of the existing literature, encompassing
popular datasets, tools, and techniques within this domain. Noteworthy datasets such as the
MIT-BIH dataset, the PTB database, the BIDMC dataset, and the PTB dataset have gained
prominence in the realm of heart disease diagnosis. These datasets are available to the public
and easily accessible, simplifying their utilization for researchers. Furthermore, various
methodologies like Convolutional neural Networks (CNN), Long Short-Term Memory
(LSTM), Bidirectional LSTM (BiLSTM), and hybrid models like CNN-LSTM and CNN-
BiLSTM have emerged as widely adopted approaches to addressing the heart disease
detection challenge. In light of these observations, we propose a comprehensive framework
that takes into account the 12-lead ECG, diverse lead types, waveform patterns, and their
interrelation with heart diseases. This proposed framework holds substantial promise for
enhancing the diagnosis and management of heart ailments. It empowers a broader spectrum
of healthcare providers and individuals to decipher ECG reports with greater reliability and
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accuracy. This, in turn, facilitates earlier detection and treatment of heart diseases, ultimately
leading to improved patient outcomes. Furthermore, this study underscores the importance
of incorporating various types of leads when developing a CNN model, aiming to simplify
the intricacies of detecting unknown patterns in the context of heart disease diagnosis. The
proposed framework and observations from the existing works contribute significantly to the
field of ECG analysis and can aid in the development of more accurate diagnostic tools for
detecting heart diseases. Therefore, we recommend further research to validate and refine our
proposed framework, which is based on the existing literature, to improve automated ECG
signal interpretation and ultimately contribute to better heart disease management.

9. DISCLAIMER

This research work is an extension of the undergraduate thesis submitted at Daffodil
International University, Dhaka, Bangladesh.
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57. Keskin, M., Uzun, A. O., Hayıroğlu, M. I., Kaya, A., Cınar, T., et al. (2019). The
association of right ventricular dysfunction with in-hospital and 1-year outcomes in
anterior myocardial infarction. The International Journal of Cardiovascular Imaging,
35, 77–85.

Copyright © 2024 ASSA. Adv Syst Sci Appl (2024)

https://doi.org/10.3390/s21072311
https://doi.org/10.1016/j.compbiomed.2021.104457.
https://doi.org/10.1016/j.compbiomed.2022.105550
https://doi.org/10.1038/s41598-021-92997-0
https://doi.org/10.1038/s41598-021-92997-0
https://doi.org/10.1016/j.bspc.2022.103731
https://doi.org/10.1016/j.bspc.2022.103731


EXPLORING THE RELATIONSHIP BETWEEN CARDIAC DISEASE... 87

58. Khaire, U. M., & Dhanalakshmi, R. (2020, November). High-dimensional microarray
dataset classification using an improved Adam optimizer (iAdam). Journal of Ambient
Intelligence and Humanized Computing, 11(11), 5187–5204. https://doi.org/10.1007/
s12652-020-01832-3.

59. Khan, A. H., Hussain, M. & Malik, M. K. (2021). ECG images dataset of cardiac
and COVID-19 patients. Data in Brief, 34, 106762. https://doi.org/10.1016/j.dib.2021.
106762.

60. Kiernan, M.C., Vucic, S., Talbot, K., McDermott, C. J., Hardiman, O., et al. (2021).
Improving clinical trial outcomes in amyotrophic lateral sclerosis. Nature Reviews
Neurology, 17(2), 104–118.

61. Kim, B. G., Kim, K. H., Nah, J. C. & Cho, S. W. (2019). Simultaneous left and right
ventricular apical thrombi after occlusion of the wrapped left anterior descending artery.
Journal of Cardiology Cases, 19(5), 153–156.

62. Kim, J., & Shin, H. (2016). Simple and robust real-time QRS detection algorithm based
on spatiotemporal characteristic of the QRS complex. PloS One, 11(3), e0150144.

63. Kim, Y. G., Choi, Y. Y., Han, K.-D., Min, K. J., Choi, H. Y., et al. (2021).
Premature ventricular contraction increases the risk of heart failure and ventricular
tachyarrhythmia. Sci Rep., 11(1), 1269.

64. Kim, Y. G., Han, K.-D., Choi, J.-I., Choi, Y. Y., Choi, H. Y.,et al. (2021). Premature
ventricular contraction is associated with increased risk of atrial fibrillation: a
nationwide population-based study. Scientific Reports, 11(1), 1601. https://doi.org/10.
1038/s41598-021-81229-0.

65. Kumar, A., Komaragiri, R. & Kumar, M. (2022). A review on computation methods
used in photoplethysmography signal analysis for heart rate estimation. Archives of
Computational Methods in Engineering, 29(2), 921–940.

66. Kumar, A., Kumar, S., Dutt, V., Dubey, A.K. & Garcı́a-Dı́az, V. (2022). IoT-based ECG
monitoring for arrhythmia classification using Coyote Grey Wolf optimization-based
deep learning CNN classifier. Biomedical Signal Processing and Control, 76, 103638.
https://doi.org/10.1016/j.bspc.2022.103638.

67. Kusuma, S., & Jothi, K. (2022). ECG signals-based automated diagnosis of congestive
heart failure using deep CNN and LSTM architecture. Biocybernetics and Biomedical
Engineering, 42(1), 247–257. https://doi.org/10.1016/j.bbe.2022.02.003.

68. Kwok, C. S., Rashid, M., Beynon, R., Barker, D., Patwala, A., et al. (2016). Prolonged
PR interval, first-degree heart block and adverse cardiovascular outcomes: a systematic
review and meta-analysis. Heart, 102(9), 672–680.

69. Lee, A., Walters, T. E., Gerstenfeld, E. P. & Haqqani, H. M. (2019). Frequent ventricular
ectopy: Implications and outcomes. Heart, Lung and Circulation, 28(1), 178–190.
https://doi.org/10.1016/j.hlc.2018.09.009.

70. Li, Q., Liu, C., Li, Q., Shashikumar, S.P., Nemati, S., et al. (2019). Ventricular
ectopic beat detection using a wavelet transform and a convolutional neural network.
Physiological Measurement, 40(5), 055002. https://doi.org/10.1088/1361-6579/ab17f0.

71. Li, X., Fan, X., Li, H., Ning, X., Liang, E., et al. (2020). ECG patterns of successful
permanent left bundle branch area pacing in bradycardia patients with typical bundle
branch block. Pacing and Clinical Electrophysiology, 43(8), 781–790. https://doi.org/
10.1111/pace.13982.

72. Liu, X., Wang, H., Li, Z. & Qin, L. (2021). Deep learning in ECG diagnosis: A
review. Knowledge-Based Systems, 227, 107187. https://doi.org/10.1016/j.knosys.2021.
107187.

73. Madias, J. E. (2021). On the nonpathological nature of ST-segment elevation in lateral
leads in patients with CRBBB. Pacing and Clinical Electrophysiology, 44(4), 755–757.

74. Mahmud, S., Ibtehaz, N., Khandakar, A., Tahir, A.M., Rahman, T., et al. (2022).
A shallow U-Net architecture for reliably predicting blood pressure (BP) from
photoplethysmogram (PPG) and electrocardiogram (ECG) signals. Sensors, 22(3), 919.

Copyright © 2024 ASSA. Adv Syst Sci Appl (2024)

https://doi.org/10.1007/s12652-020-01832-3
https://doi.org/10.1007/s12652-020-01832-3
https://doi.org/10.1016/j.dib.2021.106762
https://doi.org/10.1016/j.dib.2021.106762
https://doi.org/10.1038/s41598-021-81229-0
https://doi.org/10.1038/s41598-021-81229-0
https://doi.org/10.1016/j.bspc.2022.103638
https://doi.org/10.1016/j.bbe.2022.02.003
https://doi.org/10.1016/j.hlc.2018.09.009
https://doi.org/10.1088/1361-6579/ab17f0
https://doi.org/10.1111/pace.13982
https://doi.org/10.1111/pace.13982
https://doi.org/10.1016/j.knosys.2021.107187
https://doi.org/10.1016/j.knosys.2021.107187


88 A. SUFIUN, N. R. CHAKRABORTY, S. A. SHAMMI, S. K. BANSHAL

https://doi.org/10.3390/s22030919.
75. Makimoto, H., Hockmann, M., Lin, T., Glöckner, D., Gerguri, S., et al. (2020, May).
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and quantitative estimation of left atrial fibrosis based on P waves of the 12-lead
ECG—a large-scale computational study covering anatomical variability. Journal of
Clinical Medicine, 10(8), 1797.

83. Nahak, S., Pathak, A. & Saha, G. (2023). Evaluation of handcrafted features and learned
representations for the classification of arrhythmia and congestive heart failure in ECG.
Biomedical Signal Processing and Control, 79, 104230. https://doi.org/10.1016/j.bspc.
2022.104230.

84. Nakayama, C., Fujiwara, K., Sumi, Y., Matsuo, M., Kano, M., et al. (2019).
Obstructive sleep apnea screening by heart rate variability-based apnea/normal
respiration discriminant model. Physiological Measurement, 40(12), 125001.

85. Nasario-Junior, O., Benchimol-Barbosa, P.R. & Nadal, J. (2018). Validity of P-peak
to R-peak interval compared to classical PR-interval to assess dynamic beat-to-beat AV
conduction variability on surface electrocardiogram. Biomedical Physics & Engineering
Express, 4(3), 035037.

86. Nawaz, M. S., Shoaib, B. & Ashraf, M. A. (2021). Intelligent cardiovascular disease
prediction empowered with gradient descent optimization. Heliyon, 7(5), e06948.

87. Nguyen, Q. H., Nguyen, B. P., Nguyen, T. B., Do, T. T., Mbinta, J. F., et al. (2021).
Stacking segment-based CNN with SVM for recognition of atrial fibrillation from
single-lead ECG recordings. Biomedical Signal Processing and Control, 68, 102672.
https://doi.org/10.1016/j.bspc.2021.102672.

88. Nielsen, J. B., Pietersen, A., Graff, C., Lind, B., Struijk, J. J., et al. (2013). Risk of
atrial fibrillation as a function of the electrocardiographic PR interval: results from the
Copenhagen ECG study. Heart Rhythm, 10(9), 1249–1256.

89. Ntalla, I., Weng, L.-C., Cartwright, J. H., Hall, A.W., Sveinbjornsson, G., et al.
(2020). Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202

Copyright © 2024 ASSA. Adv Syst Sci Appl (2024)

https://doi.org/10.3390/s22030919
https://doi.org/10.1038/s41598-020-65105-x
https://doi.org/10.1038/s41598-020-65105-x
https://doi.org/10.3390/s22020476
https://doi.org/10.1109/TBME.2019.2913913
https://doi.org/10.1109/TBME.2019.2913913
https://doi.org/10.1007/s00521-021-05820-2
https://doi.org/10.1016/j.bspc.2021.102835
https://doi.org/10.1016/j.bspc.2021.102835
https://doi.org/10.1016/j.bspc.2020.102262
https://doi.org/10.1016/j.bspc.2020.102262
https://doi.org/10.1016/j.artmed.2021.102059
https://doi.org/10.1016/j.bspc.2022.104230
https://doi.org/10.1016/j.bspc.2022.104230
https://doi.org/10.1016/j.bspc.2021.102672


EXPLORING THE RELATIONSHIP BETWEEN CARDIAC DISEASE... 89

loci underlying cardiac conduction. Nature Communications, 11(1), 2542.
90. Osei, E. & Mashamba-Thompson, T. P. (2021). Mobile health applications for disease

screening and treatment support in low- and middle-income countries: A narrative
review. Heliyon, 7(3), e06639.

91. Pachón, M., Arias, M.A., Salvador-Montanés, O., Calvo, D., Penafiel, P., et al. (2019). A
scoring algorithm for the accurate differential diagnosis of regular wide QRS complex
tachycardia. Pacing and Clinical Electrophysiology, 42(6), 625–633.

92. Paul, A., Bhatia, K.S., Alex, A.G., Thomson, V.S., Mani, T., et al. (2020).
Electrocardiographic predictors of mortality in acute anterior wall myocardial infarction
with right bundle branch block and right precordial Q-waves (QRBBB). Canadian
Journal of Cardiology, 36(11), 1764–1769.

93. Palczynski, K., Smigiel, S., Ledzinski, D. & Bujnowski, S. (2022). Study of the few-
shot learning for ECG classification based on the PTB-XL dataset. Sensors, 22(3), 904.
https://doi.org/10.3390/s22030904. Retrieved from https://www.mdpi.com/1424-8220/
22/3/904
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