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Abstract: A given special case of NP-complete scheduling problem can be approximated by
solving a special case of similar problem with the same precedence graph. We construct a metric
space over a set of special cases of this problem and consider the statistical relationship between
distance between a pair of special cases of the under consideration and the average error of the
approximated solution. Sethi, Gabow, Coffman’s and Fujii’s algorithms for this problem are used.
It is shown that the absolute and the relative error of the objective function decreases over the
density of a graph with a fixed number of jobs. In general case, relative non-zero error value
increases with the number of jobs.
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1. INTRODUCTION

Nowadays various polynomial algorithms for many combinatoric optimization problems have
been developed, but there remain many of them for which the question of existence of
polynomial algorithm is still open. At the same time absolute approximate algorithms are
known for very few NP-hard optimization problems and in most cases only relative error
of objective function value estimates are available. Therefore, it is important to develop
approximate algorithms that allow to obtain solutions of the problem with an acceptable error
estimation.

The metric approach as one of the effective modern approach is considered in this paper.
The main idea of this is following. Assume a metric ρ between a pair of instances A, B of
some problem:

ρ(A,B) ≥ fA(x∗
B)− fA(x∗

A), (1.1)

where fA(x) is objective function values of instance A, and the arguments x∗
A and x∗

B are
an optimal solution of instances A and B corresponding. Then, the metric become an upper
bound of the absolute error of using the optimal solution x∗

B of instance B as an approximate
solution of instance A. If the searching for an optimal solution of instance A is significantly
more time-consuming compared to finding that of B, and we know a rather small upper bound
of ρ(A,B), we can use x∗

B as a approximate solution of instance A.
In this paper we investigate the feasibility and practicability of applying the metric

approach to solve the NP-complete scheduling problem of processing jobs on two parallel
machines with a partial ordered set of jobs: P2 | prec, pj ∈ {1, 2} | Cmax, where processing
times of jobs equal 1 or 2.
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There exist a little of experiments conducted as a proof of method applicability to
problems of different types. Our research is based on Lazarev’s papers [1] and [2], in which
the way of metric’s construction for multiple problems is discussed. Moreover, we conducted
an experiment for a single machine scheduling problem.

To fulfill the existing knowledge of feasibility to apply metric approach for various types
of problems, we conduct experiments for problem P2 | prec, pj ∈ {1, 2} | Cmax. We chose
this simplification of the problem P2 | prec, pj = k | Cmax for conduction the experiments
due to the existence of the variety of polynomial algorithms for the problem P2 | prec, pj =
1 | Cmax, to which we can easily apply metric approach. Nevertheless, we apply the proof of
metric construction for the problem P2 | prec, pj = k | Cmax, where k ∈ Z+.

One of the first papers concerning an algorithm for optimal solution obtaining for problem
P2 | prec, pj = 1 | Cmax is the work of Fujii [4], in which the algorithm based on finding the
maximum matching in precedence graph was proposed. The upper bound of the number of
operations required to find the optimal sequence is O(n3) operations where n is number of
jobs.

The Coffman [5] and Sethi [6] proposed algorithms which, as the Fujii’s algorithm, are
based on a list of jobs, the list is used to sequentially take elements for distribution on two
machines. Coffman’s algorithm has found the upper bound is O(n2) operations, and Sethi’s
work presents two algorithms, one of which makes the labeling for O(e+ n) operations, and
the other makes the schedule for O(e+ nα(n)) operations, where e – the number of edges
in the precedence graph, and α(n) – Ackerman’s function, which slowly grows. The labeling
algorithm proposed by Sethi is largely based on Coffman’s algorithm, but it adds an additional
examination of the structure at each level of the graph.

Gabow’s algorithm [7] works according to the ”high level first” (HLF) principle and
requires O(e+ nα(n)) operations.

The NP-completeness of the problems P2 | prec, pj = 1 | Cmax and P2 | prec, pj ∈
{1, 2} | Cmax was first proved Ullman [8]. Furthermore, the Bevern in paper [9] proves that
the problem P2 | prec, pj ∈ {1, 2} | Cmax is W [2]-hard parameterized by the width of the
partial order. However it is an open question if Pm | prec, pj = 1 | Cmax is NP-hard for
m ⩾ 3.

In literature there are references to the work of [10], which gives an algorithm whose
complexity is O(n log n) operations for the problem P2 | prec, pj ∈ {1, 2} | Cmax, and a
heuristic algorithm [11], in the worst case giving error equal to one for the problem P2 |
prec, pj ∈ {1, 2} | Cmax. In addition, in [12] an algorithm is given that yields the optimal
solution for the problem P2 | prec, pj ∈ {1, 2} | Cmax using O(n2 log n) operations. Hu [13]
demonstrates polynomial algorithm for the problem P2 | prec, pj = 1 | Cmax, if graph of
ordering restrictions is a tree and number of jobs satisfies some conditions.

By the way, Dolev’s methods [14] lead to polynomial algorithms for the problem P2 |
prec, pj = 1 | Cmax if the number of machines is fixed and the precedence graph has a certain
form. In particular, if the precedence graph contains only in-trees or out-trees, the result leads
to linear algorithms for finding an optimal schedule on two and three machines.

The structure of the paper is organized as follows. In Section 2 the mathematical
formulation of the problem P2 | prec, pj ∈ {1, 2} | Cmax is given. In Section 3 we define
the metric we use. In Section 4 we describe our motivation and approach for the problem. In
Section 5 the experiment’s result is given.

2. THE PROBLEM DEFINITION

We consider scheduling the problem P2 | prec, pj ∈ {1, 2} | Cmax. Each instance A has a
set of n jobs NA = N and set of m machines MA = M . Each job j ∈ N can be processed
on one machine during pj time units. Each machine can process only one job at a time. Set
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N has a partial order ≺ that from j1 ≺ j2 follows j2 can not be started processing until j1 be
complete. The partial order is defined by a dag (Directed Acyclic Graph) called a precedence
graph.

We denote πA = π as a permutation (j1, j2, . . . , jn) over the job set N . In order of
constructing a schedule we put each job from π sequentially to the earliest possible place of
processing in the schedule. For simplicity, we call π a schedule as well. If sAj (π) is a starting
time of job j ∈ N processing and CA

j (π) = sAj (π) + pj is the completion one, the schedule
π has the following features:

1. If mj1 = mj2 then [sj1(π), Cj1(π)) ∩ [sj2(π), Cj2(π)) = ∅ for j1, j2 ∈ N .
2. If j1 ≺ j2 then Cj1(π) ≤ sj2(π).

The first condition means that a machine cannot process more than one job at a time. The
second condition is nothing more than the fulfilltime of precedence relations between jobs.

A schedule π of an instance A is feasible if it does not disrupt the conditions above. One
schedule π can be feasible for a number of instances with the same precedence graphs.

As is usually denoted in scheduling theory, we will denote makespane by Cmax(π):

Cmax(π) = max
j∈N

Cj(π).

A schedule π∗ is called an optimal schedule for an instance A of the problem P2 | prec, pj ∈
{1, 2} | Cmax if Cmax(π

∗) ≤ Cmax(π) for each feasible π.
As indicated [9], the problem P2 | prec, pj ∈ {1, 2} | Cmax is NP-complete with respect

to the width of the partial order. Therefore, this is the reason why approximate solutions of
the problem are considered.

3. METRIC OVER THE SET OF INSTANCES OF THE PROBLEM P2 | prec, pj ∈
{1, 2} | Cmax

We consider the metric approach application for the problem P2 | prec, pj ∈ {1, 2} | Cmax.
Let π∗

A be an optimal solution of instance A, and π∗
B is that of instance B. Using Cmax instead

of f into (1.1) gives us, the following:

ρ(A,B) ≥ CA
max(π

∗
B)− CA

max(π
∗
A). (3.2)

There is a metric for the problem P2 | pj | Cmax [3]:

ρ(A,B) =
∑
j∈N

|pAj − pBj |, (3.3)

where instances A and B have the same number of jobs n. This is Minkowski of order 1. In
case of the problem P2 | prec, pj ∈ {1, 2} | Cmax there is no known metric for the problem
with partial ordered over N . So we believe that for pairs of instances A and B that do not
differ otherwise than a partial order over N the metric takes the minimal solution only when
the partial order of both A and B is the same.

Lemma 3.1:
Let A and B be instances of the problem P2 | prec, pj ∈ {1, 2} | Cmax, and π∗

A, π∗
B are

optimal solutions of A, B corresponding. Then:

CA
max(π

∗
B)− CA

max(π
∗
A) ≤

∑
j∈N

|pAj − pBj |. (3.4)
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Proof
Let’s consider the following difference:

|CA
max(π)− CB

max(π)| (3.5)

for any A, B, π and give an upper bound of this.
Now we prove that the maximum of (3.5) reaches on π on which every job is processed

on only one machine, so the other one processes no one job. Obviously, the decrease value of
the target function value is not greater than the difference between sums of processing times
of all jobs in terms of each instances A and B:

|CA
max(π)− CB

max(π)| ≤

∣∣∣∣∣∑
j∈N

pAj −
∑
j∈N

pBj

∣∣∣∣∣ .
Using the following commonly known inequality:

|a+ b| ≤ |a|+ |b|,

we obtain

|CA
max(π)− CB

max(π)| ≤

∣∣∣∣∣∑
j∈N

pAj −
∑
j∈N

pBj

∣∣∣∣∣ ≤ ∑
j∈N

|pAj − pBj |. (3.6)

Finally, using (3.6), we get

CA
max(π

∗
B)− CA

max(π
∗
A) =

=
(
CA

max(π
∗
B)− CB

max(π
∗
B)
)
+
(
CB

max(π
∗
B)− CB

max(π
∗
A)
)
+
(
CB

max(π
∗
A)− CA

max(π
∗
A)
)
≤

≤
(
CB

max(π
∗
B)− CB

max(π
∗
A)
)
+ 2

∑
j∈N

|pAj − pBj |.

That is (
CA

max(π
∗
B)− CA

max(π
∗
A)
)
+
(
CB

max(π
∗
B)− CB

max(π
∗
A)
)
≤ 2

∑
j∈N

|pAj − pBj |.

From symmetry considerations, we finally obtain the following result:

CA
max(π

∗
B)− CA

max(π
∗
A) ≤

∑
j∈N

|pAj − pBj |.

Theorem 3.1:
The function ρ from (3.3) is a metric over the sets of instances of the problem P2 | prec, pj ∈
{1, 2} | Cmax.

Proof
That (3.4) corresponds to the axioms of the metric is obvious:

1. ρ(A,B) = 0 ⇐⇒ A = B:

ρ(A,B) =
∑
j∈N

|pAj − pBj | = 0 ⇐⇒ pAj = pBj , ∀j ∈ N.
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2. ρ(A,B) ≥ 0:
ρ(A,B) =

∑
j∈N

|pAj − pBj | ≥ 0.

3. ρ(A,B) = ρ(B,A):

ρ(A,B) =
∑
j∈N

|pAj − pBj | =
∑
j∈N

| − pAj + pBj | = ρ(B,A) =

4. ρ(A,C) ≤ ρ(A,B) + ρ(B,C): since |a+ b| ≤ |a|+ |b|,

ρ(A,C) =∑
j∈N

|pAj − pCj | =
∑
j∈N

|pAj − pBj + pBj − pCj | ≤
∑
j∈N

|pAj − pBj |+
∑
j∈N

|pBj − pCj | =

ρ(A,B) + ρ(B,C).

4. THE POLYNOMIAL-TIME APPROXIMATION SCHEME

As stated above, an instance of the problem P2 | prec, pj = 1 | Cmax can be solved by
polynomial algorithms. It is possible to convert an instance A of the problem P2 | prec, pj ∈
{1, 2} | Cmax to an instance B of the problem P2 | prec, pj = 1 | Cmax by setting pj = 1 for
all j ∈ N . This leads to a polynomial-time approximation scheme (PTAS) that can be seen
on Fig. 4.1.

B π∗
B πA

A π∗
A

O(n) O(n)

O(n)

O(2n)

Fig. 4.1. The PTAS scheme for the problem P2 | prec, pj ∈ {1, 2} | Cmax.

An instance of the problem P2 | prec, pj ∈ {1, 2} | Cmax has a set of feasible schedules.
But some of them differs from the other only by the order of jobs on each machine, not by
the makespan value. Since we aim to minimize target function Cmax, we take only those
schedules that have the minimal value of Cmax.

No solving instance B algorithm from the ones above must be better than others in
general case. Indeed, let F∗(A) ⊆ F(A) be a subset of optimal schedules from F(A). Since
G(A) = G(B), the sets F(A) and F(B) are equal too. But sets F∗(A) and F∗(B) are
completely different in general case. It means that the polynomial algorithms one use for the
instance B of the problem P2 | prec, pj = 1 | Cmax generally just take a random schedule
from F(A) as an approximate solution πA for the instance A.

5. COMPUTER EXPERIMENTS

Four polynomial algorithms for the problem P2 | prec, pj = 1 | Cmax: Fujii’s Algorithm
[4], Coffman’s Algorithm [5], Sethi’s Algorithm [6] and Gabow’s Algorithm [7] were
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implemented. Optimal solution of NP -hard problem P2 | prec, pj ∈ {1, 2} | Cmax was
obtained by GLPK solver†.

The following indicators were chosen as efficiency evaluation criteria:

1. µ determines the share of cases for which no optimal solution was obtained by the
approximate algorithm:

µ =
K̄

K
,

where K is the number of generated examples, and K̄ is the one for which the found
solution was not optimal, i.e:

Cmax(πi)− Cmax(π
∗
i ) > 0;

2. Average relative non-zero error βnre:

βnre =
1

K̄

K̄∑
i=1

Cmax(πi)− Cmax(π
∗
i )

Cmax(π∗
i )

;

3. Average absolute non-zero error βnae:

βnae =
1

K̄

K̄∑
i=1

(
Cmax(πi,A)− Cmax(π

∗
i,A)

)
;

4. Average relative error βre:

βre =
1

K

K∑
i=1

Cmax(πi)− Cmax(π
∗
i )

Cmax(π∗
i )

;

5. Average absolute error βae:

βae =
1

K

K∑
i=1

(
Cmax(πi,A)− Cmax(π

∗
i,A)

)
.

There were calculated 1000 of uniformly distributed random instances of the problem
P2 | prec, pj = {1, 2} | Cmax for instance with number of jobs N ∈ {3, 4, . . . , 13} with the
density D = 0.3, where the density is the ratio of the number of edges of the given graph
to the one of the complete graph, and 250 of uniformly distributed random instances for
each problem for density values D ∈ {0.1, 0.2, . . . , 1.0} for problems with number of jobs
N ∈ {3, 4, . . . , 13}.

As can be seen from Fig. 5.2, the share of cases for which the algorithm obtained a non-
optimal solution, µ grows no more than linearly with increasing the number of vertices (jobs)
n. The fluctuations in the graph at odd n are caused by the fact that there are two machines in
the problem P2 | prec, pj ∈ {1, 2} | Cmax. When a number of jobs n is odd, on average the
last job can be put into the schedule, leaving an empty space on another machine.

An important result is the dependence of the relative non-zero error βnre and the absolute
non-zero error βnae on the number of vertices n. As can be seen from Fig. 5.3, respectively,
βnre decreases with increasing number of vertices, and βnae grows slowly, which makes it
possible to apply the method to graphs with a large number of vertices. The absolute error
βnae remains approximately at the same level for all n. This is a consequence of the fact that
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Fig. 5.2. Graph of the dependence of the share of cases µ for which the algorithm obtained a non-optimal
solution on the number of vertices n. It slowly grows with the growth of n. Fluctuations between even and odd

values of n is due to the fact that there are two machines in considered problem

(a) (b)

Fig. 5.3. Graphs of the dependence of the relative non-zero error βnre (a) and the absolute non-zero error βnae
(b) indicators on the number of vertices n at 1000 generations. The cases n ≤ 4 are trivial, and the polynomial

algorithms always get an optimal solution

the polynomial algorithms absolute errors do not tend to accumulate overtime and ”fixes”
each other due to the presence of two machines.

But if we start count cases of zero error, the full picture changes. As can be seen from
Fig. 5.4, the graphs of relative and absolute errors on the number of vertices show a pairwise
relationship between the algorithms. During the near-constant graph of βnae, the growth of
βae means growth of the rate of errors.

All indicators show a decrease in the value of the error when the density of the graph D
increases, as look in Fig. 5.5. It seems that the less the graph density D, the smaller a space
of feasible schedules, and the remain are closer to an optimal one.

†https://www.gnu.org/software/glpk/glpk.html
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(a) (b)

Fig. 5.4. Graph of the dependence of the relative error βre (a) and the absolute error βae (b) on the number of
vertices n at 1000 generations

Fig. 5.5. Graph of the dependence of the absolute error βae on the density D of the graph at 250 generations

6. CONCLUSIONS

In this paper we consider the possibility of applying the metric approach to solve the
NP -complete problem P2 | prec, pj ∈ {1, 2} | Cmax. It was shown that if the number of
restrictions increases, the absolute and relative error of Cmax change slowly. Besides, the
relative non-zero error value decreases, if the number of vertices in the graph grows. In
addition, it turned out to be more efficient to use the Coffman’s and Gabow’s algorithms
in finding an approximate solution of this problem by the method discussed in this paper.

The obtained average absolute error Cmax(πA)− Cmax(π
∗
A) seems to be depends only on

n and D on sets of all dags of classes considered above. However, this result could not be
proved analytically at this moment.
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