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Abstract

In this paper, adaptive CFAR tests are described which allow one to classify
radar clutter into one of several major categories, including bird, weather, and
target classes. These tests do not require the arbitrary selection of priors as in
the Bayesian classifier. The decision rule of the recognition techniques is in the
form of associating the p-dimensional vector of observations on the object with
one of the m specific classes. When there is the possibility that the object does
not belong to any of the m classes, then this object is to be classified as belonging
to one of the m classes or to class m+ 1 whose distribution is unspecified. The
tests are invariant to intensity changes in the clutter background and achieve a
fixed probability of a false alarm. The results obtained in this paper agree with
the simulation results, which confirm the validity of the theoretical predictions of
performance of the suggested adaptive CFAR tests.
Keywords Radar clutter, target signal, detection, recognition, adaptive CFAR
tests

1 Introduction

Modern air traffic control radar systems rely heavily on automatic target detec-
tion and tracking to maximize air traffic safety. Moving target indicator and
moving target detector algorithms achieve good target detection performance
through the suppression of most or all forms of radar clutter. Unfortunately,
real-time information on airborne hazards to aircraft, such as birds and storm
systems, is also suppressed. The ability to classify clutter and hence identify
these hazards can thus contribute significantly to air traffic safety.

The process of classification can be formalized as follows. The unprocessed
radar data are passed through a feature extractor, which transforms the avail-
able data samples into a set of separable features. These features are derived
from the reflection coefficients computed using the multisegment version of Burgs
formula[1]. The aforementioned coefficients (that contain all spectral information,
including the mean Doppler shift) are then transformed and grouped to satisfy
the requirements for multivariate Gaussian behaviour. Only information that is
different from class to class is maintained, and in such a form that a reliable
decision, based on a discriminant function derived from the above features, may
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be made.
The classification problem consists in the following. There are m classes (pop-

ulations), the elements (objects) of which are characterized by p measurements
(features). Next, suppose that we are investigating a certain object on the basis
of the corresponding p measurements. We postulate that this object can be re-
garded as a random drawing from one of the m populations but we do not know
from which one. We suppose that m samples are available, each sample being
drawn from a different class. The elements of these samples are realizations of
p-dimensional normal random variables with unknown parameters. After a sam-
ple of p-dimensional vectors of observations on the object is drawn from a class
known a priori to be one of the above set of m classes, the problem is to infer
from which class the sample has been drawn. The decision rule should be in the
form of associating the sample of observations on the object with one of the m
samples and declaring that the object has come from the same class as the sample
with which it is associated. When there is the possibility that the object does not
belong to any of the m classes, then this object is to be classified as belonging to
one of the m classes or to class m+ 1 whose distribution is unspecified.

Stehwien and Haykin [2] solved the problem of statistical classification of radar
clutter in a Bayesian framework. In this paper, the problem is treated in a non-
Bayesian setting. A classification technique is described which allows one to clas-
sify radar clutter into one of several major categories, including bird, weather,
and target classes. This technique is based on applying the theory of generalized
maximum likelihood ratio testing for composite hypotheses. The unknown pa-
rameters are then estimated using maximum likelihood estimators. This approach
does not require the arbitrary selection of priors as in the Bayesian classifier. Yet
the generalized likelihood ratio test (GLRT) is widely preferred because of its
nice asymptotic (large sample size) properties such as consistency, unbiasedness,
and constant false alarm rate (CFAR). It is also called the uniformly most pow-
erful invariant (UMPI) test since it exhibits the UMP property among the class
of tests that are invariant to a natural set of transformations. The asymptotic
performance of the GLRT becomes equivalent to the test with perfectly known
parameters. The main feature of the proposed classification technique is the class
elimination rule. When certain conditions are met, the decision is taken to elim-
inate specific class from further considerations, and the classification process is
continued with a reduced number of classes. The class elimination rule is based
on the generalized likelihood ratio.

The outline of the paper is as follows. A problem of signal detection in clutter
is considered in Section 2. Section 3 is devoted to a problem of target signal
recognition.
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2 Signal detection in clutter

The problem of detecting the unknown deterministic signal s in the presence
of a clutter process, which is incompletely specified, can be viewed as a binary
hypothesis-testing problem. The decision is based on a sample of observation
vectors xi = (xi1, ..., xip)

′, i = 1(1)n, each of which is composed of clutter wi =
(wi1, ..., wip)

′ under the hypothesisH0 and a signal s = (s1, ..., sp)
′ added to clutter

wi under the alternativeH1, where n > p. The two hypotheses that the detector
must distinguish are given by

H0 : X = W(clutteralone) (1)

H1 : X = W + cs
′
(signalpresent) (2)

Where

X = (x1, ...,xn)
′

(3)

W = (w1, ...,wn)
′

(4)

are n > p random matrices, and

c = (1, ..., 1)
′

(5)

is a column vector of n units. It is assumed that wi, i = 1(1)n, are independent
and normally distributed with common mean 0 and covariance matrix (positive
definite) Q, i.e.

wi ∼ Np(0,Q), ∀i = 1(1)n. (6)

Thus, for fixed n, the problem is to construct a test, which consists of testing the
null hypothesis

H0 : xi ∼ Np (0,Q) , ∀i = 1(1)n. (7)

versus the alternative

H1 : xi ∼ Np (s,Q) , ∀i = 1(1)n. (8)

where the parameters Q and s are unknown.
Remark 1. Characterization of the multivariate normality is given by the

following theorem.
Theorem 1 (Characterization of the multivariate normality). Let xi, i = 1(1)n,

be n independent p-multivariate random variables (n ≥ p+2) with common mean
bfa and covariance matrix (positive definite) bfQ. Let zk, k = p+2, , n, be defined
by

zk =
k − (p+ 1)

p

k − 1

k
(xk − x̄k−1)

′S−1
k−1 (xk − x̄k−1)



132 Konstantin N. Nechval: Adaptive CFAR Tests for Detection and Recognition of Target...

=
k − (p+ 1)

p

(
|Sk|
|Sk−1|

− 1

)
, k = p+ 2,...,n, (9)

where

x̄k−1 =
k−1∑
i=1

xi/(k − 1), (10)

Sk−1 =

k−1∑
i=1

(xi − x̄k−1)(xi − x̄k−1)
′, (11)

then the xi (i = 1, . . . , n) areNp (a,Q) if and only if zp+2, ..., zn are independently
distributed according to the centralF distribution with p and 1, 2, ...n− (p+ 1)
degrees of freedom, respectively.

Proof. The proof is similar to that of the characterization theorems [3-4] and
so it is omitted here.

2.1 Goodness-of-fit testing for the multivariate normality

The results of Theorem 1 can be used to obtain test for the hypothesis of the
form H0 : xi follows Np (a,Q) versus Ha : xi does not follow Np (a,Q) , ∀i =
1(1)n The general strategy is to apply the probability integral transforms [5] of
zk, ∀k = p + 2 (1)n, to obtain a set of i.i.d. U(0, 1) random variables under H0.
Under Ha this set of random variables will, in general, not be i.i.d. U(0, 1). Any
statistic, which measures a distance from uniformity in the transformed sample
(say, a Kolmogorov-Smirnov statistic), can be used as a test statistic.

2.2 GMLR statistic and its distribution

One of the possible statistics for testing H0 versus H1 is given by the generalized
maximum likelihood ratio (GMLR)

GMLR=max
θ∈Θ1

LH1(X; θ)

/
max
θ∈Θ0

LH0(X; θ), (12)

where q = (s,Q) ,Q0 = {(s,Q) : s = 0,Q ∈ Qp},Q1 = Q − Q0,Q = {(s,Q) :
s ∈ Rp,Q ∈ Qp}, Qp denotes the set of p × p positive definite matrices. Under
H0, the joint likelihood for X based on (7) is

LH0(X; θ)= (2π)−np/2|Q|−n/2 exp

(
−

n∑
i=1

x′iQ
−1xi/2

)
., (13)

Under H1, the joint likelihood for X based on (8) is

LH1(X; θ)= (2π)−np/2|Q|−n/2 exp

(
−

n∑
i=1

(xi − s)′Q−1(xi − s)/2

)
. (14)
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It can be shown that

GMLR=
∣∣∣Q̂0

∣∣∣n/2∣∣∣Q̂1

∣∣∣−n/2
, (15)

where
Q̂0=X ′X/n, (16)

Q̂1= (X ′ − ŝc′)(X ′ − ŝc′)′/n, (17)

and
ŝ=X ′c/n (18)

are the well-known maximum likelihood estimators of the unknown parameters
Q and s under the hypotheses H0 and H1, respectively. It can be shown, after
some algebra, that (15) is equivalent finally to the statistic

y = T ′
1T

−1
2 T1/n, (19)

where T1 = X′c,T2 = X′X.It is known that(T1,T2) is a complete sufficient
statistic for the parameter q = (s,Q) Thus, the problem has been reduced to
consideration of the sufficient statistic (T1,T2). It can be shown that under H0 ,
the result (19) is a Q-free statistic y which has the property that its distribution
does not depend on the actual covariance matrixQ. This is given by the following
theorem.

Theorem 2 (PDF of the GMLR statistic y). Under H0, the statistic y is subject
to a noncentral beta-distribution with the probability density function (PDF)

fH1(y;n, q) =
[
B
(p
2 ,

n−p
2

)]−1
y

(p
2

)
−1

(1− y)

(n−p
2

)
−1

×e−q/2
1F1

(n
2
;
p

2
;
qy

2

)
, 0 <y< 1, (20)

where F1(a; b;x) is the confluent hypergeometric function [6],

q = n
(
s′Q−1s

)
(21)

is a noncentrality parameter representing the generalized signal-to-noise ratio
(GSNR). Under H0, when q = 0, (20) reduces to a standard beta-function density
of the form

fH0(y;n) =

[
B

(
p

2
,
n− p

2

)]−1

y
( p2 )−1

(1− y)
(n−p

2 )−1

, 0 <y< 1. (22)

Proof. The proof is given by Nechval [7] and so it is omitted here.
It is clear that the statistic y is equivalent to the statistic

v = [(n− p)/p] y/(1− y) = [n(n− p)/p]

(
ŝ′
[
Ĝ1

]−1
ŝ

)
, (23)
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where

Ĝ1 = nQ̂1 = (X ′ − ŝc′)(X ′ − ŝc′)′ =

n∑
i=1

(xi − ŝ)(xi − ŝ)′. (24)

Here the following theorem clearly holds.
Theorem 3 (PDF of the GMLR statistic v). Under H1, the statistic v is subject

to a noncentral F -distribution with p and n−p degrees of freedom, the probability
density function of which is

fH1(v;n, q) =

[
B

(
p

2
,
n− p

2

)]−1

(
p

n−p

)p/2
vp/2−1(

1 + p
n−pv

)n/2
× e−q/2

1F1

(
n

2
;
p

2
;
q

2

(
p

n− p
v

(
1 +

p

n− p
v

)−1
))

, 0 < v < ∞, (25)

where q is a noncentrality parameter given by (21). Under H0, when q = 0, (25)
reduces to a standard F -distribution with p and n− p degrees of freedom,

fH0(v;n) =
[
B
(p
2 ,

n−p
2

)]−1

(
p

n−p

)p/2
vp/2−1(

1 + p
n−pv

)n/2 ,0 < v < ∞, (26)

Proof. The proof follows by applying Theorem 2 and being straightforward it
is omitted.

2.3 Test for signal detection based on the GMLR statistic

The test of H0 versus H1, based on the GMLR statistic v, is given by

v

{
> h, then H1 (signalpresent),
≤ h, then H0 (clutteralone),

(27)

and can be written in the form of a decision rule u(v) over {v : v ∈ (0,∞)} ,

u(v) =

{
1, v > h (H1),
0, v ≤ h (H0),

(28)

where h > 0 is a threshold of the test which is uniquely determined for a pre-
scribed level of significance α so that

sup
θ∈Θ0

Eθ {u(v)} = α. (29)
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For fixed n, in terms of the probability density function (26), tables of the central
F -distribution permit one to choose h to achieve the desired test size (false alarm
probability PFA ),

PFA = α =

∞∫
h

fH0(v;n)dv. (30)

Furthermore, once h is chosen, tables of the noncentral F -distribution permit one
to evaluate, in terms of the probability density function (25), the power (detection
probability PD) of the test,

PD = γ=

∞∫
h

fH1(v;n, q)dv. (31)

The probability of a miss is given by

β = 1− γ. (32)

It follows from (30) that the GMLR test is invariant to intensity changes in the
clutter background and achieves a fixed probability of a false alarm, i.e. the re-
sulting analyses indicate that the test has the property of a constant false alarm
rate (CFAR). Also, no learning process is necessary in order to achieve the CFAR.
Thus, operating in accordance to the local clutter situation, the test is adaptive.

When the parameter q = (s,Q) is unknown, it is well known that no the uni-
formly most powerful (UMP) test exists for testing H0 versus H1 [8]. However,
some hypothesis testing problems that do not admit UMP decision rules (tests)
nevertheless exhibit certain natural invariance properties [8-9]. These properties
suggest restricting attention to a limited class of decision rules, viz., the invariant
decision rules. It is then sometimes possible to derive decision rules that are UMP
within this limited class. In this sense, invariance is a concept of fundamental
importance in hypothesis testing. The following theorem shows that the test (27)
is UMPI for a natural group of transformations on the space of observations.

Theorem 4 (UMPI test). For testing the hypothesis H0(1) versus the alter-
native H1(2), the CFAR test given by (27) is uniformly most powerful invariant
(UMPI).

Proof. The proof is similar to that of Nechval [10] and so it is omitted here.
A robustness property of the v-test can be studied in the following set-up. Let

X = (x1, ...,xn)
′ be an n × p random matrix with a PDF φ,let Cnp be the class

of PDF s on Rnp with respect to Lebesque measure dX, and let H be the set of
nonincreasing convex functions from [0,∞) into [0,∞). We assume n ≥ p + 1.
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For s ∈ Rp and Q ∈ Qp define a broad class of PDFs on Rnp as follows

Cnp(s,Q) =


f ∈ Cnp : f(X; s,Q)

= |Q|−n/2η

(
n∑

i=1
(xi − s)′Q−1(xi − s)

)
, η ∈ H

 (33)

In this model, it can be considered the testing problem

H0 : ϕ ∈ Cnp(0, Q), Q ∈ Qp (34)

versus
H1 : ϕ ∈ Cnp(s,Q), s ̸= 0, Q ∈ Qp (35)

and shown that v-test is UMPI. Clearly if (x1, ...,xn) is a random sample of
xi ∼ Np(s,Q), i = 1(1)n, or X ∼ Nnp(cs

′, In ⊗Q), the PDF φ of X belongs to
Cnp (s,Q) . Further if f (X; s,Q)) belongs to Cnp (s,Q), then

g∗(X; s,Q) =

∞∫
0

f(X; s, rQ)dG∗(r) (36)

also belongs to Cnp (s,Q) where G∗ is a distribution function on (0,∞), and so
Cnp (s,Q) contains the (np-dimensional) multivariate t-distribution, the multi-
variate Cauchy distribution, the contaminated normal distribution, etc. [10-12].
Here the following theorem holds.

Theorem 5 (Robustness property). For problem (34)-(35), the CFAR v-test is
UMPI and the null distribution of v is F -distribution with d.f.s p and n− p, i.e.,
the CFAR test is still UMPI in a broad class of distributions given by (33), and
the null distribution under any member of the class is the same as that under
normality.

Proof. The proof is similar to that of Nechval [10] and so it is omitted here.

2.4 Risk minimization

For fixed n, in terms of the above probability density functions in (25) and (26),
the probability of making the first type of wrong decision (false alarm probability)
is found by

α(h;n) =

∞∫
h

fH0(v;n)dv (37)

and the probability of making the second type of wrong decision (the probability
of a miss) by

β(h;n, q)=

h∫
0

fH1(v;n, q)dv. (38)
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Any value of s will result in a value for q that is greater than zero. As the value of
s increases, the value of q will also increase. A good detector is certainty expected
to minimize α and β in some manner. For example, the Neyman-Pearson criterion
defines optimality to be that of maximizing 1− β subject to the constraint that
α ≤ α0, where α0 is a fixed constant between zero and unity. For this criterion,
the optimum threshold can be found from (30). In general the structure of an
optimum detector depends on the signal (or the signal-to-noise ratio).

Let us assume that a noncentrality parameter q representing the generalized
signal-to-noise ratio (GSNR) is given. If we let wα and wβ be the unit weight
(cost) of the probability of making the first type of wrong decision (α) and the
probability of making the second type of wrong decision (β), respectively, then the
optimal threshold of test, h∗, can be found by solving the following optimization
problem (with respect to h):

Minimize

R(h;n, q) = wαα(h;n) + wββ(h;n, q) (39)

subject to

h ∈ (0, 1), (40)

where R (h;n, q) is a risk representing the weighted sum of the false alarm risk
and the miss risk. It can be shown that h∗ satisfies the equation

wαfH0(h
∗;n) = wβfH1(h

∗;n, q). (41)

Generally, the miss risk is more important that the false alarm risk, so that
wa ≤ wb.

If the sample size of observations, n is not bounded above, then the optimal
value n∗ of n can be found as

n∗ = inf n :

(
α(h∗;n)+β(h∗;n,q) ≤ ϑ,
h∗= arg min

h∈(0,1)
R(h;n, q)

)
, (42)

where ϑ is a preassigned value of the sum of the false alarm risk and the miss
risk.

3 Target signal recongnition

Suppose that the hypothesis H0: (clutter alone) is rejected. Then the target (sig-
nal in clutter) classification problem using the target identity information consists
in the following. Let the target signal belong to one of m classes and each class
has equal a priori probability. There is available a sample of radar measurements
of size n from each class. The elements of the sample from the jth class are real-
izations of p-dimensional random variables si (j) ∼ Np (s (j) ,Q (j)) , i = 1 (1)n,
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with unknown parameters s (j) and Q (j) for each j ∈ {1, . . . ,m}. We are in-
vestigating a detected target signal on the basis of the corresponding sample of
size n of p-dimensional radar measurements ri = (ri1, ..., rip)

′ , i = 1 (1)n, where
ri ∼ Np (s,Q) . We postulate that this target signal can be regarded as a random
drawing from one of the m classes but we do not know from which one. The
problem is to classify a detected target signal as belonging to one of the m speci-
fied classes. When there is the possibility that a target signal does not belong to
any of the m above classes, it is desirable to recognize this case.

Let ri and si (j) be the ith observation of the target and jth class variable,
respectively. It is assumed that all observation vectors,ri = (ri1, ..., rip)

′ , si (j) =
(si1 (j) , ..., sip (j))

′ , i = 1 (1)n, are independent of each other, where n is a num-
ber of paired observations. Let xi (j) = ri − si (j) , i = 1 (1)n, be paired compar-
isons leading to a series of vector differences. Thus, for classification of a detected
target signal as belonging to the jth class, it can be obtained and used a sample
of n independent observation vectors X (j) = (x1 (j) , ...,xn (j)) , j ∈ {1, . . . ,m} .
It is assumed that under H0 (j),xi (j) ∼ Np (0,Q+Q (j)) , ∀i = 1 (1)n, where
Q+Q (j) is a positive definite covariance matrix. Under H1 (j),
xi (j) ∼ Np (a (j) ,Q+Q (j)),∀i = 1 (1)n, where a (j) = (a1 (j) , ..., ap (j))

′ ̸=
(0, ..., 0)′ is a mean vector. For fixed n, the problem is to construct a test which
consists of testing the null hypothesis H0 (j) : xi (j) ∼ Np (0,Q+Q (j)) , ∀i =
1 (1)n, versus the alternative H1 (j) : xi (j) ∼ Np (a (j) ,Q+Q (j)) ,∀i = 1 (1)n,
where the parameters a (j) ,Q and Q (j) are unknown. The CFAR test of H0(j)
versus H1 (j) (j ∈ {1, ...,m}) is based on the statistic given by (23),

v(j) = [n(n− p)/p]

(
â′(j)

[
Ĝ1(j)

]−1
â(j)

)
, (43)

where

Ĝ1(j) = (X ′(j)− â(j)c′)(X ′(j)− â(j)c′)′

=

n∑
i=1

(xi(j)− â(j))(xi(j)− â(j))′. (44)

The test of H0 versus H1, based on the GMLR statistic v(j), is given by

v(j)

{
> h(j), then H1(j) (targetdoesnotbelongtoclassj),
≤ h(j), then H0(j) (targetbelongstoclassj),

(45)

where h (j) > 0 is a threshold of the test which is uniquely determined for a
prescribed level of significance α(j) so that

sup
θ(j)∈Θ0(j)

Eθ(j) {u(v(j))} = α(j), (46)
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where θ (j) = (a (j) ,Q+Q (j)) ,Θ0 (j) = {(a (j) ,Q+Q (j)) : a (j) = 0, (Q +
Q (j)) ∈ Qp} ,

u(v(j)) =

{
1, v(j) > h(j) (H1(j)),
0, v(j) ≤ h(j) (H0(j)).

(47)

Thus, if v(j) > h(j) then the jth target class is eliminated from further consid-
eration.

If (m− 1) target classes are so eliminated, then the remaining class (say, kth)
is the one to which a detected target signal being classified belongs.

If all the target classes are eliminated from further consideration, we decide
that a detected target signal belongs to the (m+1)th class whose distribution is
unspecified.

If the set of target classes not yet eliminated has more than one element, then
we declare that a detected target signal belongs to the class j∗ if

j∗ = arg max
j∈D

(h(j)− v(j)), (48)

where D is the set of target classes not yet eliminated by the above test.
Now consider the situation in which a detected target signal s is related to the

true target signal of the jth class, s(j), by

s = us(j) = u(s1(j), ...sp(j))
′, j ∈ {1, ...,m} (49)

where ν is a scalar amplitude parameter. It is assumed that the target signal
vectors s(j), j = 1(1)m, are known. The generalized maximum likelihood ratio
statistics for this recognition problem are given by

max
υ

{max
Q

LH1(j)(X; υ,Q)}

/
max
Q

LH0(j)(X;Q), (50)

where

LH0(j)(X;Q)= (2π)−np/2|Q|−n/2 exp

(
−

n∑
i=1

x′iQ
−1xi/2

)
, (51)

LH1(j)(X; υ,Q)= (2π)−np/2|Q|−n/2 exp

(
−

n∑
i=1

(xi − υs(j))′Q−1(xi − υs(j))/2

)
(52)

are the likelihood functions under H0(j) and H1(j), j ∈ {1, . . . ,m} , respectively,
and

max
υ

{max
Q

LH1(j)(X; υ,Q)}

= max
υ

1

(2π)np/2
∣∣∣⌢Q1(j)

∣∣∣n/2 exp
(
−np

2

)
, (53)
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max
Q

LH0(j)(X;Q) =
1

(2π)np/2
∣∣∣⌢Q0

∣∣∣n/2 exp
(
−np

2

)
. (54)

The well-known maximum likelihood estimates (MLEs) of the unknown covari-
ance matrix Q under the respective hypotheses, H0(j) and H1(j), are given by

⌢

Q0 =
1

n

n∑
i=1

xix
′
i =

1

n
XX ′, (55)

⌢

Q1(j) =
1

n

n∑
i=1

(xi − υs(j))(xi − υs(j))′

=
1

n
(X − υs(j)c′)(X − υs(j)c′)′. (56)

After several algebraic manipulations, (28) reduces to the following clutter-adaptive
test of detection of the jth target signal, j ∈ {1, . . . ,m} :{

> h(j), then H1(j),
≤ h(j), then H0(j),

(57)

where

z(j) =
[s′(j)(XX ′)−1Xc]

2

[s′(j)(XX ′)−1s(j)][1− c′X ′(XX ′)−1Xc]
, (58)

h(j) > 0 is a threshold of the test which is uniquely determined for a prescribed
level of significance α(j) so that the probability of a false alarm is equal to α(j).

Theorem 6 (PDF of the GMLR statistic v(j)). The probability density function
of v(j) under hypothesis H1(j) is given as follows:

fH1(j)(v(j);n, q(j)) =

1∫
0

f(v(j);g, n, q(j))f(g;n)dg, (59)

where

f(g;n) =
Γ
(
n−1
2

)
Γ
(n−p

2

)
Γ
(
p−1
2

)(1− g)
p−3
2 g

n−p−2
2 , (60)

for 0 ≤ g ≤ 1, and

f(v(j); g, n, q(j)) =
Γ
(
n−p+1

2

)
exp

(
− q(j)g

2

)
Γ
(n−p

2

)
Γ
(
1
2

)
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×[1− v(j)]
n−p−2

2 [v(j)]−
1
2 1F1

(
n− p+ 1

2
;
1

2
;
q(j)gv(j)

2

)
(61)

for 0 < v(j) < 1. In (61) 1F1 (a; b;x) is the confluent hypergeometric function,
and q(j) is the generalized signal-to-noise ratio (GSNR) defined by

q(j) = GSNR = nυ2s′(j)Q−1s(j). (62)

Under hypothesis H0(j), no signal is present. Thus, if one sets q(j) = 0 in (61),

fH0(j)(v(j);n) =
Γ
(
n−p+1

2

)
Γ
(n−p

2

)
Γ
(
1
2

) [1− v(j)]
n−p−2

2 [v(j)]−
1
2 , 0 < v(j) < 1. (63)

Proof. The proof is similar to that of Theorem 2 and so it is omitted here.
Finally, in terms of the above probability density functions in (59) and (63) the
probability of false alarm is given by

PFA(j) =

1∫
h(j)

fH0(j)(v(j);n)dv(j) (64)

and the probability of detection of the jth target signal is

PD(j) =

1∫
h(j)

fH1(j)(v(j);n, q(j))dv(j). (65)

Thus, if v(j) < h(j) then the jth target class is eliminated from further consid-
eration.

If (m− 1) target classes are so eliminated, then the remaining class (say, kth)
is the one to which a detected target being classified belongs.

If all the target classes are eliminated from further consideration, we decide
that we deal with a clutter alone.

If the set of target classes not yet eliminated has more than one element, then
we declare that a detected target belongs to the class j∗ if

j∗ = arg max
j∈D

(v(j)− h(j)), (66)

where D is the set of target classes not yet eliminated by the above test.
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4 Conclusion

The main idea of this paper is to find a test statistic whose distribution, under
the null hypothesis, does not depend on unknown (nuisance) parameters. This
allows one to eliminate the unknown parameters of noisy processes, which are
changing with time and position, from the problem.

The authors hope that this work will stimulate further investigation using the
approach on specific applications to see whether obtained results with it are fea-
sible for realistic applications.
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