
Adv Syst Sci Appl 2024; 03; 73-89
Published online at https://ijassa.ipu.ru.

The Introduction of Cloud Storage as One of the Ways
to Save the Organization's Data Management Resource

Dmitriy Kornienko1*, Alexander Nikulin1, Nikita Kornienko2

1Bunin Yelets State University, Yelets, Russia
2National Research University Higher School of Economics, Moscow, Russia

Abstract: The article discusses the use of cloud technologies in enterprise data management,
provides examples of the use of cloud technologies. The analysis of the problems of
implementation and functioning of cloud data storages in organizations has been carried out.
Based on the analysis, the technological and functional problems of implementing cloud data
storages are highlighted. The attention is focused on unsolvable problems of building distributed
data transmission systems. The practical implementation of cloud storage and data exchange
processes through it has been carried out. A comparative analysis of the proposed methods with
existing ones is demonstrated and their effectiveness is proved.

Keywords: cloud technologies, data, distributed storage system, protocols.

1. INTRODUCTION

Improving information technology occupies an important place among the many new
directions in the development of organizations. It is aimed at the development of the
information environment, which involves the introduction and effective use of new
information services. One of the promising directions of development of modern information
technologies is cloud technologies. Cloud technologies are understood as technologies of
distributed data processing, in which computer resources and capacities are provided to the
user as an Internet service. Let us analyze the essence and main characteristics of cloud
technologies in order to substantiate the possibility and expediency of their application in
organizations. Cloud computing is a model for providing ubiquitous and convenient network
access (on an as-needed basis) to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be quickly provisioned and
released with minimal management effort and need interaction with the service provider. In
cloud computing, data is permanently stored on virtual servers located in the cloud, and is
also temporarily cached on the client side on computers, laptops, netbooks, mobile devices,
etc. One of three basic models is used to build a cloud: software as a service, platform as a
service, infrastructure as a service. The cloud is not the Internet itself, but the entire set of
hardware and software that ensures the processing and execution of client requests. Cloud
computing is a new paradigm that involves distributed and remote processing and storage of
data. The essence of cloud technologies is as follows: you can not have any programs on
your computer, but only have access to the Internet. Remote access to data in the cloud can
be found anywhere on the planet where there is access to the Internet.

A cloud data storage system, or data storage as a service is an abstract concept that
corresponds to a data storage system, which can be administered on demand using a special
interface [1-3]. This interface abstracts the location of the system, so it does not matter
whether it is local, remote, or hybrid. Cloud storage infrastructures form new architectures
that support different levels of service on top of a potentially large group of users and

* Corresponding author: dmkornienko@mail.ru

74 D. KORNIENKO, A. NIKULIN, N. KORNIENKO

Copyright ©2024 ASSA Adv. in Systems Science and Appl. (2024)

geographically distributed storage devices. It is important that clients can control and manage
how their data are stored as well as how their money is spent. Numerous cloud service
providers offer management tools that provide users with enhanced control over costs.

Storage efficiency is an important characteristic of a cloud storage infrastructure,
especially given its emphasis on overall savings. To make the storage system more efficient,
you need to store more data. A common solution is to reduce the amount of source data so
that they occupy less physical space. There are two ways to achieve this goal: compression,
i.e., packaging data by encoding them using different representations and deduplication, i.e.,
excluding all duplicate data [4; 5]. Although both methods are useful, compression involves
processing (transcoding data to and from the infrastructure), and deduplication involves
calculating signatures to search for duplicates.

Saving is one of the most important features of cloud data storage. This involves
purchasing storage devices, their power supply, repair, as well as storage management.
Considering cloud storage from this standpoint (including a Service Level Agreement and
the increased storage efficiency), it can be beneficial for certain usage models. A storage
access API (application programming interface) is an essential component of the services.
Many applications require access to storage services using an API that is optimised for a
particular storage system, either on their own hardware or cloud-based. The Amazon S3 API
cloud storage system provides developers with an SDK (software development kit) for .NET
and Java, as well as libraries for additional platforms and languages. These interfaces usually
use Representational State Transfer (REST) protocols and/or Simple Object Access Protocol
(SOAP) [6-8].

When considering the architecture, it is necessary to take into account its operating
parameters. They are understood as various characteristics of the architecture, taking into
account the cost, performance, remote access, etc. The architecture of cloud data storage is
primarily the delivery of data storage resources on-demand in a highly scalable and multi-
agent environment. In general, the cloud storage architecture is an external interface that
provides an API to access storage devices. In traditional storage systems, this is the SCSI
(Small Computer System Interface) protocol, but the cloud requires new ones. Among them,
you can find external protocols of Web services, file protocols and even more traditional
external interfaces (Internet SCSI, iSCSI, etc.). Middleware i.e. the data storage logic is
behind the external interface. This middleware functions as data replication and data
reduction, according to traditional data placement algorithms taking into account
geographical location. Finally, the internal interface organises the physical storage of data.
This can be an internal protocol that functions specifically or a traditional server with
physical disks.

2. THEORETICAL OVERVIEW

The rapid increase in the bandwidth of computer networks allows the development of
numerous applications that provide for intensive data processing [1]. These new applications
can perform tasks ranging from mass data transmission (SDSS (Sloan Digital Sky Surve) and
electronic Very Long Baseline Interferometry) to high-bandwidth interactive systems
(GeoWall) [2]. However, different applications have different requirements for data
transmission services [3]. For example, the GeoWall application may require a long-term
speed variation of data transmission, whereas data should be transmitted at the maximum
possible speed in private networks for the SDSS application [4]. However, the current
Internet system is designed to provide support for a variety of different types of applications.
This Internet design philosophy affects fundamentally the development of transport protocols.
On the Internet, most of the traffic is generated by TCP (Transmission Control Protocol), but
there are applications, which are not provided with a sufficient level of efficiency by TCP. In

 THE INTRODUCTION OF CLOUD STORAGE… 75

Copyright ©2024 ASSA. Adv. in Systems Science and Appl. (2024)

the context of high-performance computing, TCP is well known for its low efficiency and
network fair sharing with threshing [5; 6].

Modifications to the network stack of the protocol kernel (for example, new variants of
TCP) usually require several years for standardisation, implementation and widespread
deployment. Indeed, since the advent of TCP, about three decades ago, only four versions of
this protocol have been widely deployed, namely Tahoe, Reno, NewReno, and SACK [7].
Although today the data transmission speed is 1 Gbit / s and higher for a growing number of
networks, a wide bandwidth remains an urgent problem for web applications because of the
limitations of existing network transport protocols. The limitations of the implemented
network transport protocols are one of the main reasons why it is so difficult to scale
applications with intensive use of network connections from local clusters to global networks
[8].

The Transmission Control Protocol (TCP) has been successfully used for decades as the
main transport layer protocol of the network protocol stack. However, it has recently been
shown that TCP loses performance when used for high-speed Wide Area networks,
especially for geographically remote networks. TCP uses the additional
increase/multiplicative decrease congestion control algorithm, which cannot provide all the
available bandwidth and has sufficiently large latency in the case of large packet loss in high-
performance networks [9].

Computer network researchers labour at new transport protocols and congestion
avoidance algorithms to support next-generation high-speed networks. Many studies,
including the TCP variants (FAST, BiC, Scalable, and HighSpeed) and XCP showed higher
performance when modelling them [10]. However, the practical use of these protocols is still
very limited in real applications due to the difficulties of their deployment, installation and
hardware restrictions [11]. Network users usually turn to application-level solutions when
they need to transfer a large bulk of data, among which UDP-based (User Datagram
Protocol) protocols are very popular, for example, SABUL, UDT (Data Transfer Protocol),
Tsunami, RBUDP (Reliable Blast UDP), FOBS and GTP [12]. Such UDP-based protocols
provide much better algorithm strength and are easy to install. However, despite the
simplicity of deployment at the user level, the protocols are quite difficult to configure in the
kernel to make them as efficient as possible [13]. Since the user-level deployment cannot
change the kernel code, there may be additional context switches and copying process of
memory sections between the user level and the kernel one. At high data transfer rates, these
operations are very sensitive to processor load and protocol performance [14].

3. MATERIALS AND METHODS

For the practical application of the developed methods, it is necessary to design and develop
a distributed data storage system. The specifics of modern data storage are in their transition
to distributed systems. Therefore, a necessary condition is to ensure the redundancy of
critical network nodes. It is also an important condition that network nodes have information
about other nodes and their data. In the conditions of distributed operations, their necessary
functionality is to ensure timely identification of an inoperable data exchange/storage node
and their extraction from the operation. Also, after the node is restored, it should join the data
exchange/storage process as soon as possible. Designing such a system requires a
preliminary analysis of the requirements and planning its internal processes.

The software of the system must ensure complete functionality and have the means to
organise all the required processes of processing, transmitting and storing data in all
regulated modes of operation. The system software must be universal; functionally
sufficient; reliable; adaptive; upgradeable and scalable; have an intuitive user interface;
protected from external influences; able to record all actions of software users. The software

76 D. KORNIENKO, A. NIKULIN, N. KORNIENKO

Copyright ©2024 ASSA Adv. in Systems Science and Appl. (2024)

should be developed using the principles of structural and modular programming. Each of
the system tasks should be as independent as possible from the others.

Quality control of developed software tools should be provided by testing and conducting
a trial operation. The system architecture should be based on the principles of high-load and
fault-tolerant systems. It must meet the following basic requirements: the system should
support total scaling-out (both data storage nodes and satellites to improve the efficiency of
data access); the system should be able to duplicate all critical network nodes and data
storage to ensure system fault tolerance.

The system should include the following functional components:
1. Data storage is a component that provides data storage for solving the following tasks:

data storage; data access; accounting for user actions.
2. Satellite is a component that provides fast information and hardware interaction of the

system with its users.
3. Adaptive DNS (Domain Name System) server is a component that provides logistics

of requests from a user to the system.
General requirements for the system reliability:
1. The software and hardware complex should function around the clock, in a continuous

mode, except for force majeure circumstances.
2. The databases should be backed up regularly (at least once a day). It is necessary to

have at least two backups of all data. Backups should be stored in physically remote
locations.

3. Failures and malfunctions of workstations and network devices should not result in
data destruction and affect the performance of the whole system.

4. Failure of one of the subsystems should not shut down other subsystems, i.e., all other
subsystems must function.

5. A planned stop or failure of the information resource should not lead to a software
failure.

6. Incorrect user actions should not result in an emergency.
7. Errors of technical personnel should be minimised, including by clearly delineating

access rights to the system, as well as logging system events.
The reliability of an information system is understood as the general system ability to

preserve its main specified properties in time. With this understanding, the software should:
be resistant to erroneous actions of users (errors in the actions of personnel should not lead to
failures (failures) in the operation of the information system software); provide guaranteed
control of incoming and outgoing information; ensure rapid recovery after failure (failures).

The software is developed on the basis of common operating systems, programming tools
and DBMSs (database management systems). The system should use standard solutions
based on standard protocols and interaction interfaces, which provide for the possibility of
interfacing and collaboration of hardware and software from various manufacturers, as well
as for interfacing with information systems of other organisations. All hardware and software
solutions used in the system design must comply with the requirements of national standards
or international standards (if applicable). The hardware and software used as part of the IS
must be certified or otherwise documented by a supplier company confirming their
compliance with the specifications.

Unified solutions are preferred due to the great social significance of the project, and the
tight deadlines for commissioning. Such solutions should have the following properties:
access to the system should be provided via the global Internet; modularity (component
solution); be able to integrate with external automated systems. The system must provide the
following functions: registration of system clients; creation of a company cloud record in the
system; creation of an administrator account for the company; administrative part;
registration of system users for the company; editing user profiles; providing access to data
via protocols: HTTP (HyperText Transfer Protocol); HTTPS (HyperText Transfer Protocol

 THE INTRODUCTION OF CLOUD STORAGE… 77

Copyright ©2024 ASSA. Adv. in Systems Science and Appl. (2024)

Secure); FTP (File Transfer Protocol); FTPS (File Transfer Protocol + SSL); SFTP (Secure
File Transfer Protocol); error handling; storage errors; errors satellites; script errors;
communication interruptions; heavy load; registration of user actions.

4. RESULTS AND DISCUSSION

Since the list of necessary functions and the relationships between them have been analysed,
it is advisable to present them in the form of system use cases (Fig. 1, 2). The system should
provide effective information exchange between internal components. Information exchange
should be carried out between the system components using local computer networks and
global data transmission networks [15; 16]. Appropriate specified information exchange
protocols should determine the composition, structure, volume and frequency of transmission.
Information exchange protocols should provide measures to exclude the possibility of
unauthorised access to data.

There should also be means for monitoring the transmitted input/output data and means
for monitoring information in databases. The requirements for information exchange
between the system components should be determined at the development stage, based on
the capabilities to deploy the platform [17; 18].

Fig. 1. Use Cases of the System from the Point of View of a User and a Client of the System

78 D. KORNIENKO, A. NIKULIN, N. KORNIENKO

Copyright ©2024 ASSA Adv. in Systems Science and Appl. (2024)

Fig. 2. Options for using the system from the point of view of the System Owner

The overall architecture of the system consists of an adaptive DNS server, several data
containers (DCs) and many satellites (Fig. 3). Each data container should include (Fig. 4):
two firewalls; two application servers; two storage units with disks. Such an architecture is
necessary to ensure the fault tolerance of the system in case of loss of a physical network
node [19; 20]. At the first stage, requests come to the firewall level, which is displayed with
the same IP (Internet Protocol) address with indexes 0 and 1 for external nodes. If a device
with 0 exits, then all requests are readdressed to a device with 1.

Fig. 3. General architecture of the system

 THE INTRODUCTION OF CLOUD STORAGE… 79

Copyright ©2024 ASSA. Adv. in Systems Science and Appl. (2024)

After a firewall receives a user request, the request gets in turn to the available
application server, the availability status of which is constantly monitored at the first level.
After the hardware connection, the two storage units are connected at the hardware level as a
single storage unit. Also, at the software level, data synchronisation is configured between
the units to ensure data backup. Since the speed of processors and the amount of RAM
increase extremely quickly, the application servers cannot make full use of them without
complex mathematical algorithms and are limited by the number of users, therefore, it is
advisable to use containers (virtualisation at the operating system level). Then, structurally,
the application server will consist of several containers and a load balancer (Fig. 5).

Fig. 4. Single Storage General Architecture

Fig. 5. Application Server General Structure

There are several software tools aimed at monitoring the availability of services in
containers, and KeepAlived is the most popular of them. Their operational disadvantage is
that they cannot group services when used in our architecture. Since the data accessibility of
different users from different companies via FTP is one of the key requirements (each
company has its own hostname), one needs different access IP address for each company
(FTP specifics). An FTP server can support the simultaneous use of many IP addresses. In
this case, KeepAlived will try to create connections and check availability for each IP
address, and the load will increase exponentially on the server to check the availability of
containers if there are a lot of them. To solve this problem, a system has been designed that
completely replaces the KeepAlived one with the following features:

– grouping IP addresses and services as one service (in case of unavailability, this service
ceases to be available at all specified IP. And vice versa, the services become available again
at all IP addresses if available);

– storing statistics for all IP addresses and services, taking into account the number of
requests; the data transmitted; the data received; inoperability; restoration of operability.

80 D. KORNIENKO, A. NIKULIN, N. KORNIENKO

Copyright ©2024 ASSA Adv. in Systems Science and Appl. (2024)

Architecturally, a satellite corresponds to the architecture of an application data storage
server. It does not require a large and reliable data warehouse, since it acts exclusively as a
"proxy server" between clients and their data. In addition, there is no need to completely
duplicate it, since it does not contain critical data and all input requests will be automatically
resent to other nearby satellites.

Modern cloud data warehouses must provide both the most rational data flow and a
significant increase in its rate, i.e., acceleration of source-consumer data transmission and
processing. First, data flows are analysed to solve these problems, when designing an
information system:

– all the links of the data processing and storage system, starting with initial information,
its gradual transformation and formation of final data sent to the managed system as a
reporting command and other information. At the same time, the role is determined of each
system element in the cloud storage and recorded in the data processing scheme, as well as
their structure and functions are specified;

– a data communication diagram of all system elements between themselves and the
external environment. The diagram may contain information about specific forms of data
links and indicate their quantitative and temporal characteristics;

– find primary (output) system data. An information flow analysis is the most important
stage in the deployment of an existing data storage system, which will meet the design
objectives.

Studying information flows gives a general idea of how a system functions and is the first
step in analysing the effective design of a highly loaded data processing, storage and
transmission system. Further study of data flows allows identifying the elements of the
information display of objects, their relationships, as well as the structure and dynamics of
data flows. The movement of data, accompanied by appropriate information flows, is the
basis for ensuring the operation of a cloud data warehouse in the system. There is a
continuous movement of information flows between all the elements of the system
functioning in the data warehouse environment, that provide the receipt of information data
necessary for the analysis and transmission of client data. The main elements of the system
are (Fig. 6):

1) a data warehouse, which is one of the main elements of the system, where client data
are physically and long-term stored (Fig. 7);

2) A data access satellite, which is a data access element in the system that is located as
close as possible to users (data consumers), and may be used as temporary storage (caching)
(Fig. 8);

3) A DNS server is an element of the system that receives dynamic updates from its other
elements and provides data users with reliable and up-to-date information.

Fig. 6. Main System Elements Interaction Diagram

 THE INTRODUCTION OF CLOUD STORAGE… 81

Copyright ©2024 ASSA. Adv. in Systems Science and Appl. (2024)

Fig. 7. Satellite Deployment Diagram

Fig. 8. Storage Deployment Diagram

A DNS server is used to update information about the location of available system
elements and their availability. It acts as a key element of the information interaction of other
elements of the system. To do this, each element of the system sends information about itself
with a certain frequency and is authorized on the DNS server using a TCP connection (Fig.
6). In turn, other elements of the system exchange information using a data protocol based on
UDT (Fig. 9). Data warehouses, as an element of a data management system, actively
consume information and, accordingly, are the recipients and senders of data flows. A
satellite, as an element of data consumption, also actively consumes information resources in
a two-way direction. For a more detailed analysis of data flows, it is necessary to consider
each element of the system in the context of data and subsystems of this element.

82 D. KORNIENKO, A. NIKULIN, N. KORNIENKO

Copyright ©2024 ASSA Adv. in Systems Science and Appl. (2024)

Fig. 9. Storage Units and Satellites Interaction Diagram (self-engineered)

To maximise the use of system resources, each physical server will be divided into the
most independent units (containers). The containers are an operating system-level
virtualization system intended for running multiple isolated instances of the Linux operating
system on a single computer. They do not use virtual machines but create a virtual
environment with its own process space and network stack. All the containers use a single
OS kernel to maximise efficiency. To ensure the operation of a system consisting of several
containers, two types are used as one system (Fig. 7, 8): a load balancer container and an
application container.

The load balancer acts like a proxy server that checks the availability of containers and
redirects the received requests to an available container for processing them. The application
container is a full-fledged copy of the software application that processes user requests and
returns the result. The data storage container (Fig. 10) receives and executes requests
exclusively using the UDT protocol, for which independent UDT server and UDT client
processes are running in the container. Using this protocol, the container receives data from
other data storage or from clients via satellites and sends data to other data storage and
clients using data access satellites.

Fig. 10. Storage Container Deployment Diagram

The satellite application container (Fig. 11) contains:
1. A UDT server and UDT client for data exchange with other elements of the global data

warehouse system.
2. A web server for users’ easy access to data.
3. The Proftpd server is designed to expand the functionality of data access using FTP,

FTPS, SFTP.

 THE INTRODUCTION OF CLOUD STORAGE… 83

Copyright ©2024 ASSA. Adv. in Systems Science and Appl. (2024)

Having considered the functionality of the system as its separate business processes, one
will get:

1. Search for the nearest data access satellite.
2. Uploading data to the storage.
3. Access to data.
4. Data replication.
The search for the nearest data access satellite is shown in Figure 12.

Fig. 11. Satellite Container Deployment Diagram

Fig. 12. Nearest Satellite Searching Sequence Diagram

When a client needs to access the data, the software application addresses the DNS client
of the operating system with a request to get the IP address of the system using the domain
name. In turn, the DNS client uses a network of DNS servers to access the NS servers of the
system and, using the client's IP addresses, it calculates the optimal data access satellite that
is "closest" (the minimum number of steps and the maximum speed) to it.

Fig. 13. Data Loading Sequence Diagram

84 D. KORNIENKO, A. NIKULIN, N. KORNIENKO

Copyright ©2024 ASSA Adv. in Systems Science and Appl. (2024)

Data is loaded to the storage according to Fig. 13. After receiving the IP addresses of the
nearest satellite, the client logs in to the service and only can access the data after that. When
the client needs to download a document, he or she sends the document to the satellite using
TCP and a software application. The satellite, in turn, caches the data and sends them to the
receiving storage directly, or through the nearest storage using UDT.

Fig. 14. Data Access Sequence Diagram

Figure 14 demonstrates data access. If it is necessary to receive the document, the user
sends a request to the satellite using TCP protocol a software application to receive the
document. The satellite, in turn, receives the document from the storage directly or through
another storage using UDT. The document is temporarily cached on the satellite and sent to
the client (TCP).

There are two approaches to data exchange in the global network: serial data transmission
i.e. data transmission using one communication channel; parallel data transmission i.e. data
transmission using several communication channels. Speed is the advantage of parallel data
transmission. This method is used in computer peripherals for data exchange in data buses.
The quality and conductivity of conductors is the main disadvantage of this approach. With
different properties of the conductors, the bits in the data transmission may arrive with a
delay, which leads to significant errors. In turn, serial data transmission is less dependent on
conductors, since data are transmitted using one communication channel, but it is much
slower compared to parallel data transmission. This approach is the most common in global
networks.

 THE INTRODUCTION OF CLOUD STORAGE… 85

Copyright ©2024 ASSA. Adv. in Systems Science and Appl. (2024)

Data transmission methods are also divided into synchronous data transmission;
asynchronous data transmission. Asynchronous exchange is the most common form of serial
communication, which involves the transmission of a data packet that contains information
about the beginning and the end of data transmission, information for error control and data
themselves. Since the architecture of the cloud data storage assumes both simultaneous data
transmission in different directions and receiving data from different data sources,
asynchronous serial data transmission was chosen. An asynchronous approach to the system
design was also chosen for efficient resource allocation.

A system data transmission module can be represented as a system of states and
transitions (Fig. 15). When the process is started, a data channel is created, which switches to
the "waiting for events" status. Since this communication channel provides for both data
transmission and data reception, this communication channel responds to the following
events:

1. Input connection: during this event, the system needs to authenticate the client and add
this connection to the connection pool.

2. Input data: get the data, decrypt and perform the actions provided in this data package.
If there is no data for the communication channel to read, and data packets are not received,
this packet is placed in the queue of data packets that are not received, and the system waits
for the possibility of receiving data through this communication channel.

3. Data transmission envisages checking a connection with a remote client, forming data
packets, encrypting them and transmitting them over a communication channel. If it is
impossible to transmit data immediately, the data packets are moved to the packet queue and
wait for the possibility of transmission (when the output communication channel is free).

4. Connection error: in this case, the system evaluates an error and makes a decision. If
the system receives a false packet, or an unexpected one, the system "asks" the client to
retransmit the data. If a larger system failure has occurred, such as a data encryption
synchronization failure, the system breaks the connection with this client, and the client re-
creates the connection and re-sends the data for which the server did not send confirmation.

Since client data is stored in the cloud data storage as a file structure, data transfer in the
system is reduced to file transfer. The transfer of an individual file can be represented as the
transfer of individual data packets (Fig. 16).

Fig. 15. Data Channel Status Diagram

86 D. KORNIENKO, A. NIKULIN, N. KORNIENKO

Copyright ©2024 ASSA Adv. in Systems Science and Appl. (2024)

During the transmission of any amount of data, the system generates data transfer packets
and adds them to the data transfer queue. After that, the system performs several functions:

1. Checking for a connection to the data destination.
2. If there is no connection: creating a connection with the destination; authentication at

the destination;
3. Sequential encryption and transmission of data packets (from the queue) over this

communication channel.
4. If the output cache is full, the system goes into waiting for other events.

Fig. 16. If the output cache is full, the system goes into waiting for other events.

After successfully sending a data packet, the system notices the packet as sent in the data
transfer queue. After the client successfully receives the data packet, it sends a confirmation
packet. The server part deletes the packet from the data transfer queue after receiving this
packet. In case of disconnection with the data receiver, the system automatically changes the
status of the sent data packets to new ones for retransmission of data (Fig. 17). The logical
model of the data transmission system can be represented in the form of a class diagram in
the cloud data storage (Fig. 18). It is obvious from the class diagram that the conceptual
model of the data transfer system is similar in the data warehouse and the satellite. This
approach simplifies the construction of systems of this nature. It is also obvious from this
structure that "Connection" is an abstract class and can be used by protocols such as TCP or
UDT to transport data. This approach provides significant advantages in cases with a single
limited communication channel, which is very relevant for the current state of
communication.

Fig. 17. Data Packet Transmission Status Diagram

 THE INTRODUCTION OF CLOUD STORAGE… 87

Copyright ©2024 ASSA. Adv. in Systems Science and Appl. (2024)

Fig. 18. System Class Diagram

If it is necessary to transfer data (a file), the system performs several simple actions:
1. Creating an instance of the "File" class.
2. Adding it to the "Source File Queue".
3. Getting a link to the connections (create it, if needed).
4. Creating instances of the "Packet" class within the free window size for the connection.
5. If the connection is ready to receive a "Packet" from the "Outgoing Packet Queue",

encryption and transmission over the communication channel.
6. Receiving confirmation of the end of the file.
7. Deleting the instance of the "File" class.
On the far side of the connection, the recipient of the data (file) performs the following

actions:
1. Getting a data packet with information about the data (file) and decrypting it
2. Creating an instance of "File".
3. Adding it to the "Input File Queue".
4. Creating a physical file.
5. Receiving data packets, decrypting and filling the physical file with them, sending

confirmation of receiving data packets.
6. Getting a file completion package.
7. Closing the file.
8. Deleting the instance of the "File" class.
9. Sending confirmation of receipt of the full file.
The process of receiving a data packet can be divided into two stages:
– getting the packet header;
– getting the main body of the packet.
The message header contains information about:
1) The communication channel for multiplex data transmission of several files at one

time;
2) The size of the data packet body;

88 D. KORNIENKO, A. NIKULIN, N. KORNIENKO

Copyright ©2024 ASSA Adv. in Systems Science and Appl. (2024)

3) The command is a type of data that is transmitted in the packet body (creating a
directory, a file, data from the file, confirming receipt of the packet...); additional
information may also be contained, depending on the command.

5. CONCLUSION

A session-level protocol for such networks was developed taking into account the difficulties
and disadvantages of the existing state of large-volume data transmission through high-
performance regionally distributed networks, which were identified during the study of the
problem. The new session layer protocol is compatible with the standard OSI TCP and UDP
stack protocols. In addition, it is adapted for modern networks, i.e., it has the functionality
for efficient use of network bandwidth, regardless of its characteristics. When using such a
protocol, the transmission delays between different types of networks do not increase. Thus,
the protocol ensures efficient use of the resources of the extreme nodes of the network. In the
matter of security, it supports data encryption, i.e. it can allow the connection of encryption
protocols. The efficiency of the UDP-based protocol was optimised and it was shown that
these ideas could be used to deploy effective and practical applications based on UDP. For
example, using the UDT protocol environment (based on UDP) can easily support various
congestion control algorithms, for example, high-speed TCP or explosive RBUDP.

The use of this approach made it possible to increase the performance of both the data
transfer element and the system as a whole, in contrast to the methods proposed in [21; 22].
The use of multi-channel communication allowed simultaneous data transmission over one
communication channel, and the universalization of the architecture allowed the use of
various data exchange protocols on different parts of the network, depending on efficiency.

The authors would like to thank the management of Bunin Yelets State University for
financial support of this study.

REFERENCES

1. Cong, W., Zheng, Y., Zhang, Z., Kang, Q., & Wang, X. (2017). Distributed Storage
and Management Method for Topology Information of Smart Distribution Network,
Dianli Xitong Zidonghua/Automation of Electric Power Systems, 41(13), 111–118,
doi: 10.7500/AEPS20161228008

2. Benbelgacem, S., Guezouli, L., & Seghir, R. (2020). A Distributed Information
Retrieval Approach for Copyright Protection. In: ACM International Conference
Proceeding Series. Piscataway: Institute of Electrical and Electronics Engineers,
doi: 10.1145/3386723.3387882

3. Tong, B. B., Zou, G. B., & Shi, M. L. (2013). A distributed protection and control
scheme for distribution network with DG, Advanced Materials Research, 732–733,
628–633, doi: 10.4028/www.scientific.net/AMR.732-733.628

4. Jiao, J., Yang, Y., Feng, B., Wu, S., Li, Y., et al. (2017). Distributed rateless codes
with unequal error protection property for space information networks, Entropy, 19(1),
38, doi: 10.3390/e19010038

5. Kornienko, D. V. (2006). On the spectrum of the Dirichlet problem for systems of
operator-differential equations, Differential Equations, 42(8), 1124–1133,
doi: 10.1134/S0012266106080076

6. Zhu, X., Ning, Z., Fei, H., Li, Q., & Li, D. (2013). Study on protection scheme for low-
voltage distribution network with distributed generation, Information Technology
Journal, 12(16), 3655–3659, doi: 10.3923/itj.2013.3655.3659

7. Tian, J., Gao, H., Hou, M., Liang, J., & Zhao, Y. (2010). A fast-current protection
scheme for distribution network with distributed generation. In: IET Conference
Publications. Piscataway: Institute of Electrical and Electronics Engineers,
doi: 10.1049/cp.2010.0319

 THE INTRODUCTION OF CLOUD STORAGE… 89

Copyright ©2024 ASSA. Adv. in Systems Science and Appl. (2024)

8. Zhong, S., Liu, C., Yang, Z., & Yan, D. (2009). Privacy protection model for
distributed service system in converged network, Proc. of International Conference on
E-Business and Information System Security (Wuhan, China),
doi: 10.1109/EBISS.2009.5138026

9. Chen, X., Li, Y., Zhao, M., Wen, A., & Liu, N. (2014). A coordinated strategy of
protection and control based on wide-area information for distribution network with
the DG, Proc. of International Conference on Power System Technology: Towards
Green, Efficient and Smart Power System (Chendgu, China),
doi: 10.1109/POWERCON.2014.6993803

10. Song, X., Zhang, Y., Zhang, S., Song, S., Ma, J., et al. (2018). Active distribution
network protection mode based on coordination of distributed and centralized
protection, Proc. of 2017 China International Electrical and Energy Conference.
(Piscataway, NJ), doi: 10.1109/CIEEC.2017.8388442

11. Kornienko, D. V. (2006). On a spectral problem for two hyperbolic systems,
Differential Equations, 42(1), 101–111, doi: 10.1134/S0012266106010083

12. Abbaspour, E., Fani, B., & Heydarian-Forushani, E. (2019). A bi-level multi agent-
based protection scheme for distribution networks with distributed generation,
International Journal of Electrical Power and Energy Systems, 112, 209–220,
doi: 10.1016/j.ijepes.2019.05.001

13. Kornienko, D. (2019) Spectral Properties of the Cauchy Problem for Some Linear
Systems of Partial Differential Equations, Journal of Computational and Theoretical
Nanoscience, 16, 2780–2789, doi: 10.1166/jctn.2019.8128

14. Zhou, C., Zou, G., Yang, J., & Lu, X. (2019). Principle of Pilot Protection based on
Positive Sequence Fault Component in Distribution Networks with Inverter-interfaced
Distributed Generators, Proc. of IEEE PES GTD Grand International Conference and
Exposition Asia (Bangkok, Thailand), doi: 10.1109/GTDAsia.2019.8716011

15. Maximov, R. V., Ivanov, I. I., & Sharifullin, S. R. (2017). Network topology masking
in distributed information systems, CEUR Workshop Proceedings, 2081, 83–87.

16. Kornienko, D. V. (2020). Organization of a system of digital education practices in the
municipal sphere of general education, Journal of Physics: Conference Series, 1691(1),
012108, doi: 10.1088/1742-6596/1691/1/012108

17. Kornienko, D. V., Shcherbatykh, S. V., Mishina, S. V., & Popov, S. E. (2020). The
effectiveness of the pedagogical conditions for organizing the educational process
using distance educational technologies at the university, Journal of Physics:
Conference Series, 1691(1), 012090, doi: 10.1088/1742-6596/1691/1/012090

18. Ruan, W., & Zhan, H. (2014). A new protection algorithm for distribution network with
distributed generation based on intelligent electronic device information, Lecture Notes
in Electrical Engineering, 237 LNEE, 275–282, doi: 10.1007/978-3-319-01273-5_30.

19. Al Sukhni, E. M., & Mouftah, H. T. (2008). Availability-guaranteed distributed
provisioning framework for differentiated protection services in optical mesh networks,
IEEE Globecom Workshops, doi: 10.1109/GLOCOMW.2008.ECP.46

20. Alexandrovich, G. P. (2006). The applying sets graph protection model to the detection
information threats in distributed networks and data base management systems, Proc.
of 8th International Conference on Actual Problems of Electronic Instrument
Engineering (Novosibirsk, Russia), doi: 10.1109/APEIE.2006.4292398

21. Mishina, S. V., & Kornienko, D. V. (2021). Setting up data exchange between
information systems that automate accounting at the enterprise, Journal of Physics:
Conference Series, 2094(3), 032018, doi: 10.1088/1742-6596/2094/3/032018

22. Kornienko, D. V., Mishina, S. V., & Melnikov, M. O. (2021) The Single Page
Application architecture when developing secure Web services, Journal of Physics:
Conference Series, 2091(1), 012065, doi: 10.1088/1742-6596/2091/1/012065

