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Abstract: Nowadays, the application of mathematical models in geology becomes more and more rele-
vant. The steady trend towards the global digitalization has led to the possibility of using the most modern 
computational methods in the construction of mathematical models. Digitalization, further processing of 
digital data, their analysis and subsequent modeling contributes to the improvement of production effi-
ciency. The purpose of this paper is the development of various methods of classification of kimberlite 
wells. The paper presents neural network, statistical and geometric mathematical models for solving the 
problem of kimberlite well classification. The problem was solved using geological and exploration data 
from wells drilled in the Süldükar and Ulakhan-Kurung-Yuryakh areas located in Western Yakutia. For 
the constructed models the estimations of the models' qualities were obtained, the comparative analysis 
of the models was carried out. The analysis of mathematical models showed that the most accurate mod-
els are neural network models and models using geometric methods. 

Keywords: five factor analysis, neural network, kimberlite wells, classification, persistent diagram, 
curvature, topological data analysis. 

1. INTRODUCTION 

Nowadays in geology there is a lot of quantitative data obtained during exploration subjected to 
digitization. This makes it possible to use geological and exploration data in mathematical mod-
eling to predict certain processes and phenomena of interest to geologists. In particular, such a 
task arises in the exploration of diamond deposits where kimberlite is present. Since its search is 
very costly, it is desirable to use mathematical models to predict the presence of kimberlite based 
on samples taken from the wells. 

A kimberlite pipe [1] is understood as a vertical or near-vertical geologic body formed when 
magma breaks through the Earth's crust. A kimberlite pipe is usually filled with kimberlite [2], a 
series of magmatic ultramafic rocks of extrusive facies that form explosion tubes as well as dikes 
and sills. They often contain xenoliths of mantle rocks and sometimes contain diamonds of in-
dustrial concentrations. 

The purpose of the study is the development of mathematical models to solve the problem of 
classifying wells by the presence of kimberlite based on the data of geological exploration of 
wells. 

1.1. Data 

The material for the study was the data of geological surveys of kimberlite wells drilled in the 
Süldükar and Ulakhan-Kurung-Yuryakh areas located in Western Yakutia. The object of the 
study is two data sets of geologic features, where such important parameters as: their occurrence, 
their presence and their number in each drill hole are indicated. The data were collected from two 
areas located geographically in Western Yakutia: Süldükar, where kimberlite was found, and 
Ulakhan-Kurung-Yuryakh, where kimberlite is absent. 

During special documentation of core [3,4] – rock samples extracted from wells of two areas 
in Western Yakutia – with kimberlite (46 wells, Süldükar) and without kimberlite (103 wells, 
Ulakhan-Kurung-Yuryakh), tectonic and mineralogical features in the host strata of the Lower 
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Paleozoic were recorded. The total area of both sites under consideration is 4 km2. The core is a 
cylindrical column (pillar) of rock strong enough to maintain monolithicity. The density of drill-
ing networks is correlated, and for a competent comparison of areas, wells of near-tubular space 
were excluded on a 20x20m network. Also, for correct mathematical analyses, the parameter of 
feature occurrence per drilled meter of rock was adopted. 

1.2. Method 

To solve the problem of object classification, several parallel models were built: a model using 
factor and cluster analysis, neural network models, models using methods of differential geome-
try and topological data analysis. All models showed a satisfactory solution to the problem. Ac-
cording to the analysis of solutions, all models have an acceptable calculation error. 

Methods and models of factor analysis, as well as the method of principal components [6], 
are aimed at compression of information, i.e. reduction of the dimensionality of the feature space 
(this premise of the possibility of reducing the feature space in factor analysis is based on the 
mutual correlation of the initial features). Within the development of the factor analysis model, 
the methods proceed from a common basic idea, in which the structure of relationships between 
p analyzed features (𝑋(ଵ), 𝑋(ଶ), … , 𝑋(௣)), can be explained in such a way that all these variables 
depend (either linearly or otherwise) on a smaller number of other, not directly measurable (la-
tent) factor ൫𝑓(ଵ), 𝑓(ଶ), … , 𝑓(௥)൯, (𝑟 < 𝑝), which are called common and which in most models 
are constructed so that they turn out to be mutually uncorrelated. Cluster analysis was performed 
on the constructed factors using the k-means method. The action of the clustering algorithm is 
such that it seeks to minimize the total quadratic deviation of cluster points from the centers of 
these clusters: 

𝑉 = ∑ ∑ (𝑧 − 𝜇௜)
ଶ

௭∈ௌ೔

௞
௜ୀଵ , 

where 𝑘 is the number of clusters, 𝑆௜ is the clusters obtained, 𝑖 = 1,2, … , 𝑘 , 𝜇௜ is the centers of 
masses of all vectors 𝑧 from the cluster. 

Neural networks [7] are mathematical models that do well in the task of classification. Clas-
sification is the process of finding a function that helps to divide a set of data into classes. The 
task of a classification algorithm is to find a mapping function to map an input vector X to a 
discrete output y. In neural network modeling, a neural network is first trained on a training da-
taset and then, the trained neural network can be used to classify new data. The quality of the 
solution depends on the choice of neural network architecture, the amount of data, and the degree 
of data noise. To evaluate the accuracy of the solution of the problem, the solution of the neural 
network on the test set is used. 

Geometric mathematical models are based on the idea that topology and geometry provide a 
powerful approach to obtaining reliable qualitative and sometimes quantitative information about 
the structure of data. They are developed from the incorporation of geometric and topological 
methods, dealing with point clouds, i.e. finite sets of points equipped with a distance function. 
Point clouds can be viewed as finite samples taken from a geometric object, possibly with noise. 
Mathematical models adapt tools from different sections of geometry to study point clouds. 

The classical Ricci curvature plays an important role in the geometric analysis of Riemannian 
manifolds. The Ricci curvature at a given point characterizes the average curvature of 
sectional curvatures in all directions. The notion of Ricci curvature for metric spaces of general 
form was first introduced by Bakri and Emery [8], Ollivier [9] in 2009 gave a definition of rough 
Ricci curvature on Markov chains, which can be used for metric spaces generated by graphs. And 
in 2011, Lin, Lu and Yau [10] modified Ollivier's definition for the Ricci curvature of Markov 
chains on metric spaces. 

This paper uses a method that combines network analysis techniques with classical correla-
tion, graph theory and local clustering coefficient. This provides a novel graphical representation 
of the features that solves the problem. By analogy with curvature in Riemannian geometry, we 
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interpret Ricci curvature as the amount of overlap between the neighborhoods of two neighboring 
vertices. 

For the solution we use the notion of local clustering coefficient, which shows the density of 
triangular relations. Studies show that curvature is usually extremely low in random graphs. Clus-
ters of high curvature have a very non-random structure. Depending on the problem to be solved, 
different methods of Ricci curvature estimation are used. To solve the clustering problem, the 
Watts-Strogatz formula [11] is used in this paper: 

𝑐𝑢𝑟𝑣(𝐴) = 𝑡

(
𝑣(𝑣 − 1)

2
)

൘ . 

Here 𝑐𝑢𝑟𝑣(𝐴) is the vertex curvature, 𝑣 is the numbers of vertices and 𝑡 is the number of 
triangles that are formed by the edges of the graph containing vertex 𝐴. This function is a 
function of two variables. Note that the value 𝑣(𝑣 − 1)/2 is the maximum number of triangles 
that can be formed by all vertices of the graph, hence 𝑐𝑢𝑟𝑣(𝐴) lies between 0 and 1. Figure 1 
shows examples of graphs and vertex curvature. 

  
(a) (b) 

Fig 1. (a) The graph has vertices 𝑉 = 6, for vertex 5 : 𝑐𝑢𝑟𝑣(5)=0; 
(b) The graph has vertices V = 6, for vertex 3 : 𝑐𝑢𝑟𝑣(3) = 1

5ൗ . 

Recently, there has been an increasing interest in topological data analysis (TDA) [12- 17]. 
Topological data analysis is a valuable tool for data analysis and visualization, which can be 
applied in various fields such as computer vision, bioinformatics and graph theory. The tools of 
topological analysis include barcodes, Battie numbers and persistence diagrams. We propose a 
method to compare two data representations of two clusters in feature space. To investigate the 
point cloud in this problem, we used the Vietoris-Rips complex. The Vietoris-Rips complex is a 
symplectic complex whose simplexes are all possible sets of points of a given metric space in 
which pairwise distances between points do not exceed a given positive number. The constructed 
persistence diagram can be used to understand the features and relationships between features in 
the data. 

2. RESULTS AND DISCUSSION 

Mathematical statement of the problem. We are given 10 attributes of 46 objects of class ‘0’and 
10 attributes of 107 objects of class ‘1’. Objects of class ‘0’ – wells where there is kimberlite; 
objects of class ‘1’ – wells where there is no kimberlite. It is necessary to build a mathematical 
model to classify objects by 10 features. 

The features investigated were: 
0) tectonic fractures (r) 
1) extensive pyritization (Q) 
2) fluidizite breccias (L) 
3) gaping fractures (m) 
4) recrystallization (T) 
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5) drag folds (X) 
6) microfossils (A) 
7) subhorizontal stylolite seams (V) 
8) ogling (d) 
9) slip mirrors with subvertical grooves (F). 
We will use the number in the list later in the article as a feature code. 

2.1. Statistical Models 

Initially we have 10 geological features under consideration, but only 4 of them, namely tectonic 
fractures (r), extensive pyritization (Q), fluidisite breccias (L) and drag folds (X), were used in 
the factor analysis because they occur in both areas. 

The factor analysis is based on the correlation matrix between variables. Tables 2.1 and 2.2 
present the correlation matrices calculated using IBM SPSS Statistics 23 program. The table 2.3 
and 2.4 below presents two different tests: the Kaiser-Meyer-Olkin (KMO) Measure of Sampling 
Adequacy and Bartlett's test of Sphericity and Bartlett's test of Sphericity for Süldükar and Ulahan 
respectively, found using Statistics. 

Table 2.1 Correlation matrix of indicators (Süldükar) 

Variable r Q L X 

r 1 0.02 -0.07 0.2 

Q 0.02 1.0 -0.05 -0.07 

L -0.07 -0.05 1.0 0.11 

X 0.2 -0.07 0.11 1.0 

Table 2.2 Correlation matrix of indicators (Ulahana) 

Variable r Q L X 

r 1.00 -0.06 -0.02 -0.13 

Q -0.06 1.00 -0.06 -0.09 

L -0.02 -0.06 1.00 -0.01 

X -0.13 -0.09 -0.01 1.00 

The table 2.3 and 2.4 below presents two different tests: the Kaiser-Meyer-Olkin (KMO) 
Measure of Sampling Adequacy and Bartlett's test of Sphericity and Bartlett's test of Sphericity 
for Süldükar and Ulahan respectively, found using Statistics. 

Table 2.3 KMO and Bartlett’s (Süldükar) 

KMO 0,461 

Bartlett’s test of Sphericity 

Approx.Chi-Square 2.956 

df 6 

Sig. 0.814 

Table 2.4 KMO and Bartlett’s (Ulahana) 

KMO 0.456 

Bartlett’s test of Sphericity 

Approx.Chi-Square 3.336 

df 6 

Sig. 0.766 

Both tables do not show high values of correlations, therefore, the variables are not correlated 
with the same factors. We accept the null hypothesis in both cases according to Bartlett's criterion 
of sphericity. The approximate values of 𝜒ଶ statistics are 2.956 and 3.336 respectively with 6 
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degrees of freedom, they are insignificant at 0.05 level of significance. The values of KMO sta-
tistics (0.461 and 0.456) are also smaller (< 0.5); significance 0.814 and 0.766. Thus, it is ques-
tionable to consider factor analysis as an acceptable method for analyzing correlation matrix data. 

Tables 2.5, 2.6 show the eigenvalue tables and Figures 2.1, 2.2 stony scree plots for Süldükar 
and Ulahan, respectively, plotted using Statistica program. 

Table 2.5 Table of eigenvalues (Süldükar) 

 The initial eigenvalues 

Component Total % variance Total % 

1 1,213 30,328 30,328 

2 1,101 27,526 57,853 

3 0,951 23,786 81,640 

4 0,734 13,360 100,000 

 

 
Fig. 2.1. Graph of rocky scree (Süldücar) 

Table 2.6 Table of eigenvalues (Ulahana) 

 The initial eigenvalues 

Component Total % variance Total % 

1 1,133 28,321 28,321 

2 1,077 26,919 55,240 

3 0,988 24,688 79,927 

4 0,803 20,073 100,000 
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Fig. 2.2. Graph of rocky scree (Ulahana) 

The result of this clustering method is as follows: 
Süldükar 32 out of 46, Ulahan 37 out of 103. 
In summary, the classification accuracy of the factor analysis method was approximately 
46.3%. 

2.2. Neural Network Models 

Tuples were used to build and implement the neural network model <X,Y> : input vector X 
consisting of 10 elements (geologic features), one output Y producing 0 or 1 (class number 
– Süldükar and Ulahan respectively). Neural networks of multilayer perceptron (MLP) architec-
ture were chosen to solve the problem. Deep learning neural network was not considered because 
the data sample size is small. The architecture and parameters of the constructed MLP: two hidden 
layers of dimensionality 20 and 15 neurons respectively, one output producing 0 or 1 (class num-
ber - Süldükar and Ulahan respectively), number of epochs - 200, learning rate - 0.2 (const), ac-
tivation function - logic function (sigmoid). 65% of the total data sample was used for training 
the neural network, while the remaining 35% (53 wells) was used for testing the network. The 
model was implemented using the open-source web application Jupyter notebook in the Python 
programming language. The MLP multilayer perceptron model performed better than the factor 
analysis method, namely, the total percentage of correctly classified objects, i.e. wells, in the two 
classes was approximately 85 % while the factor model performed approximately 46 %. 

2.3. Modelling Using Differential Geometry Methods 

To solve the problem, we used methods of graph curvature estimation using the Watts–Strogatz 
formula. Curvature estimates were found for each cluster separately. First, we switched from 
continuous space to discrete space and constructed a complete graph. Each vertex of the graph 
was assigned one of 10 features and connected all vertices in pairs by edges. Each edge has a 
weight equal to the sample correlation coefficient of adjacent vertices. The constructed graph is 
called a correlation network. 
 
Algorithm 1 
Step 1. Construct the correlation network. 
Step 2. Remove edges with weight less than h, where h is the selected threshold value. 
Step 3. For the resulting connected graph, compute the curvature estimate for all vertices 
using the Watts-Strogatz formula. 
 

An example of correlation network for Süldükar cluster is presented in Fig. 2.3.  
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An example of correlation network for Ulahan cluster is presented in Fig. 2.4.  
The arithmetic mean of the vertex curvature is taken as the curvature of graph G: 

𝑐𝑢𝑟𝑣(𝐺௜) =
1

𝑛௜
෍ 𝑐𝑢𝑟𝑣(𝑗)

௝ୀீ೔

 (1) 

where 𝑖 is the cluster number, 𝑗 is the vertex (feature) number, 𝑛𝑖 is the number of vertices 
of the graph 𝐺𝑖. 

 
Fig. 2.3. The graph of cluster ‘0’ (Süldükar) 

 
Fig. 2.4. The graph of cluster '1' (Ulahana) 

Curvature estimates calculated by formula (1): 𝑐𝑢𝑟𝑣(𝐺0) = 0.1, 𝑐𝑢𝑟𝑣(𝐺1) = 0.  
We obtained that 𝑐𝑢𝑟𝑣(𝐺0)  > 𝑐𝑢𝑟𝑣(𝐺1). 
This indicates that the feature space of cluster ‘1’ is flat, while the feature space of cluster ‘0’ 

is convex. 
The graphs in Fig. 2.3, 2.4. give a visualization of the observation points of each cluster. For 

the study, it is important which vertices are included in the connected graph and the shape of the 
vertex connectivity. The research conducted using this method identified the features of cluster 
‘0’ that have the most stable connection with each other. These features were used in the topo-
logical analysis of the data. 

Algorithm 2 is a well classification algorithm. 
 
Algorithm 2 
1. Identify the vertices (features) that form a connected graph for each cluster. 
2. Compute the centers of each cluster 
3. For new features, calculate distances to the centers 
4. Assign the object to the cluster for which the distance to the center is smaller. 

 
Classification of objects that were not used in the solution of the problem showed the 

correctness of the solution 88%. 

2.4. Topological Data Analysis 

Let X be the space to which the observation points belong, and let X have a Euclidean metric. 
Vjetoris–Rips complexes with different radii have been constructed for the considered metric 
space (X,d). The symplectic complexes are filtered by successively increasing the radius. The 
algorithm for their construction from the point cloud and the metric contains information about 
the filtering of the complex, that is, the increasing chain of embeddings of subcomplexes. The 
filtering thus contains, among other things, geometric information about the original point cloud, 
which is encoded in the form of a so-called persistence diagram computed on it [7]. We have 
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constructed persistence diagrams using the package Ripser. Figures 2.5, 2.6 shows the persistence 
diagram. In the persistence diagram, the abscissa axis marks the time of birth of the complex 
(Birth), the ordinate axis - time of death (Death). The difference between the time of death and 
birth of the simplex is taken as the lifetime of the complex. Fig. 2.5 shows the persistence diagram 
for cluster ‘0’ (Süldükar). Fig. 2.6 shows the persistence diagram for cluster ‘1’(Ulahana). Bar-
codes were constructed from the persistence diagrams. Let us denote by 𝐿௜ the total length of 
barcodes for homologs 𝐻௜. Then the average value of the Euler characteristic can be defined by 
the formula 𝜒 = 𝐿଴ − 𝐿ଵ + 𝐿ଶ. 

 
Fig. 2.5. The persistence diagram for cluster ‘0’ (Süldükar)  

 
Fig. 2.6. The persistence diagram for cluster ‘1’ (Ulahana) 

As a result of the calculations, we obtained that the Euler characteristic is larger for cluster 
‘0’, than for cluster ‘1’. The results of calculating barcode lengths are summarized in Table 2.7. 

Table 2.7. The Euler characteristic 

 Cluster ‘0’ Cluster ‘1’ 

L(H0) 7.4 3.8 

L(H1) 2.8 0.4 

L(H2) 2.6 0 

𝜒 7.1 3.4 

Algorithm 2 is chosen as the classification algorithm. 

CONCLUSION 

Neural network models and mathematical models constructed using the tools of statistical analy-
sis, differential geometry and topology are the main tools in the ongoing research. 

Algorithms for solving the problem by different methods have been developed and compara-
tive analysis has been carried out. 

At the first stage, the classification problem was solved using mathematical statistics and neu-
ral networks. The comparison of the accuracy of the problem solution showed the advantage of 
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neural network models. However, neural network models do not always allow to interpret the 
results of the problem solution. In contrast to NS models, geometric models allowed not only to 
qualitatively solve the classification problem, but also gave visual and numerical description of 
the observation points in the feature space. As numerical characteristics of the observation point 
arrays of the two clusters, we used the estimates of the Ricci curvatures of the correlation net-
works and the estimates of the Euler features computed from barcodes. The solution to the prob-
lem of computing the Ricci curvature estimates identified the most significant relationships in the 
feature space for wells with the presence of kimberlite. The study showed that the integration of 
digitalization, neural network modeling, and geometric mathematical models can qualitatively 
solve the classification problem on exploration data. 
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