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Abstract: In this paper we consider a class of generalized nonlinear hyperbolic partial
differential equations of the Hunter–Saxton–Calogero type, which arise in the theory of control
of liquid crystals and in the control of unsteady gas flows. We found such conditions that the
original equation can be reduced to linear one by contact transformations. The general exact
multivalued solutions of the Hunter–Saxton–Calogero equation are found. The obtained solutions
are visualized.
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1. INTRODUCTION

Let us consider the generalized nonlinear second-order Hunter–Saxton–Calogero partial
differential equation

utx = uuxx +G(ux), (1.1)

where u(t, x) is an unknown function, t and x are the time and the spatial coordinates,
respectively.

Such equations withG(ux) = κu2x and k = 1
2

arise in the theory of nematic liquid crystals.
If, initially, all molecules of a liquid crystal are aligned, then some of them will shift
slightly and disorientation will spread throughout the crystal. In this case, the function u(t, x)
describes the propagation of weak linear orientation waves in the nematic liquid crystal [1].

The equation with κ ̸= 1
2

is used in hydrodynamics [2], in the geometry of Einstein–Weyl
spaces [3]. The contact equivalence of equation (1.1) and the Euler–Poisson equation was
established for G(ux) = κu2x in [4]. Calogero [5], while studying waves in shallow water,
found a complex solution of equation (1.1).

In this article we present conditions, under which nonlinear equation (1.1) is equivalent
to a linear equation with respect to a pseudo-group of contact transformations. This allows
us to construct its exact multivalued solutions. These solutions can be used to control the
propagation of orientation waves in a nematic crystal.

This paper continues the series of articles [6–9] on the application of geometric theory
of nonlinear differential equations to constructing their exact solutions. We use the methods
developed in [10–12].
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2. GEOMETRY OF THE GENERALIZED
HUNTER–SAXTON–CALOGERO EQUATION

Let J1 be the 1-jet space of functions on R2 with two independent variables t, x and let
t, x, u, p1, p2 be the canonical coordinates on this space. The Cartan form

κ = du− p1dt− p2dx

defines a contact structure on J1 (the so called Cartan distribution)

C : J1 ∋ θ 7→ C(θ) = kerκθ ⊂ TθJ
1.

The Cartan distribution C is generated by the vector fields

∂

∂t
+ p1

∂

∂u
,

∂

∂x
+ p2

∂

∂u
,

∂

∂p1
,

∂

∂p2
. (2.2)

A two-dimensional surface

Γ1
v =

{
u = v(t, x), p1 =

∂v

∂t
, p2 =

∂v

∂x

}
⊂ J1

is called a 1-graph of a function v(t, x).
Let Ω2(R2) be the module of differential 2-forms on R2. For an arbitrary differential 2-

form ω on J1, we can construct the Lychagin differential operator ∆ω, which acts by the
following rule (see [13]):

∆ω : C∞(R2) → Ω2(R2), ∆ω(v) = ω|Γ1
v
.

Here ω|Γ1
u

is a restriction of ω to Γ1
v. The equation

∆ω(v) = 0 (2.3)

is a second-order differential equation of the Monge–Ampere class.
The restriction of ω to the surface Γ1

v vanishes if and only if the function v is a solution of
equation (2.3).

A surface L ⊂ J1R2 is called a multivalued solution of equation (2.3) if ω|L = 0 and
κ|L = 0.

Equation (1.1) belongs to the class of Monge–Ampere equations and, therefore, it can be
associated with the differential 2-form

ω = −2G(p2)dt ∧ dx+ dt ∧ dp1 − dx ∧ dp2 − 2udt ∧ dp2. (2.4)

Let us introduce a “non-holonomic symplectic structure” Ω ∈ Ω2(C):

Ω = dκ|C
Since the Cartan distribution is not completely integrable, this 2-form is defined on vector
fields that belong to C only. Differential form (2.4) is effective, i.e., ∂u⌋ω = 0 and ω ∧ Ω = 0.
Moreover, it is hyperbolic:

ω ∧ ω + Ω ∧ Ω = 0. (2.5)

Define the linear operator Aω : D(C) → D(C) as follows:

AωX⌋Ω = X ⌋ω,
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where D(C) is a module of vector fields that belong to the Cartan distribution C. The operator
Aω has the following matrix representation in basis (2.2):

Aω =

 1 0 0 0
−2u −1 0 0
0 −2G(p2) 1 2u

2G(p2) 0 0 −1

 .

Its square is scalar: A2
ω = 1, therefore, its eigenvalues are ±1. The eigenvectors define two

2-dimensional characteristic distributions

C+ =

{
X+ =

∂

∂t
− u

∂

∂x
+ (−p2u+ p1)

∂

∂u
+G(p2)

∂

∂p2
, Y+ = G(p2)

∂

∂p1

}
,

C− =

{
X− = −u ∂

∂x
− up2

∂

∂u
+G(p2)

∂

∂p2
, Y− =

∂

∂x
+ p2

∂

∂u
+G(p2)

∂

∂p1

}
.

The vector fields X±, Y± form a basis of the module D(C±). The first derivatives of
distributions

C
(1)
± = {X±, Y±, [X±, Y±]}

are 3-dimensional. Therefore, in the 5-dimensional space J1, they intersect along a 1-
dimensional distribution l = C

(1)
+ ∩ C(1)

− , which is generated by the vector field

Z = G (p2)
∂

∂u
+G(p2) (G

′′ (p2)− p2)
∂

∂p1
.

At any point a ∈ J1, the tangent space TaJ1 can be decomposed into a direct sum

TaJ
1 = C+(a)⊕ l(a)⊕ C−(a).

Denote the distributions C+, l, and C− as P1, P2, and P3, respectively. Let Dj be the
module of vector fields from the distribution Pj and let Pj : D(J1) → Dj be projectors.
Define the tensors qsj,k ∈ Ω2(J1)⊗D(J1) (see [12]):

qsj,k(X, Y ) := −Ps[PjX,PkY ],

where j, k, s = 1, 2, 3; s ̸= j, k, and skew contraction of two decomposable tensors α⊗
X, β ⊗ Y ∈ Ω2(J1)⊗D(J1):

⟨α⊗X, β ⊗ Y ⟩ = (Y ⌋α) ∧ (X⌋β) .
This definition is extended to the remaining tensors by linearity. Tensor invariants of equation
(1.1) have the form:

q12,3 = (p2dt ∧ dx+ dt ∧ du)⊗
(
G(p2)

2 ∂

∂p1
−G (p2)

∂

∂x
+G (p2) p2

∂

∂u

)
,

q31,2 = (p2dt ∧ dx− dt ∧ du+ p1dt ∧ dp2 + p2dx ∧ dp2 − du ∧ dp2)

⊗
(
− (G′′ (p2)− 2) (G (p2))

2 ∂

∂p1

)
,

q21,1 = (G (p2) dt ∧ dx+ udt ∧ dp2 + dx ∧ dp2)⊗
(
−G (p2)

∂

∂u
+ (G′ (p2)− p2)G(p2)

∂

∂p1

)
,

q23,3 =
((
G′ (p2) p2 − p22 −G (p2)

)
dt ∧ dx+ (−G′ (p2) + p2) dt ∧ du+ dt ∧ dp1 − udt ∧ dp2

)
⊗
(
G (p2)

∂

∂u
− (G′ (p2)− p2)G (p2)

∂

∂p1

)
.
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The invariant Laplace forms for equation (1.1) are

λ+ =
〈
q21,1, q

1
2,3

〉
= −dt ∧ dp2, λ− =

〈
q23,3, q

3
1,2

〉
= −(G′′(p2)− 2)dt ∧ dp2.

Equation (1.1) satisfies the conditions of contact linearization

λ− = 0, λ+ ∧ λ+ = 0, dλ+ = 0

if and only if the function G(p2) has the form

G(p2) = p22 + 2k1p2 + k0,

where k0, k1 are arbitrary constants. Then equation (1.1) has the form

utx − uuxx − 2k1ux − u2x − k0 = 0. (2.6)

Let us construct a linearizing contact transformation. Equation (2.6) corresponds to the
differential 2-form

ω = −2(u2x + 2k1ux + k0)dt ∧ dx+ dt ∧ dut − 2udt ∧ dux − dx ∧ dux. (2.7)

We apply the partial Legendre transform to this 2-form:

Φ: (t, x, u, p1, p2) 7→ (t, −p2,−xp2 + u, p1, x) .

Applying this transformation to differential form (2.7), we obtain a new form

ω1 = Φ∗(ω) = (2xp2 − 2u)dt ∧ dx+ dt ∧ dp1 +
(
2x2 + 4k1x+ 2k0

)
dt ∧ dp2 − dx ∧ dp2,

which corresponds to the linear equation

utx + (x2 + k1x+ k0)uxx + xux − u = 0. (2.8)

Equation (2.8) can be solved by cascade integration method:

u(t, x) = ek1t

(∫ t

t0

F1(τ)e
−k1τ cosh

(
(τ − t)

√
k21 − k0 − arctanh

(
x+ k1√
k21 − k0

))
dτ+

+F2

−t−
arctanh

(
x+k1√
k21−k0

)
√
k21 − k0



√

2k1x+ x2 + k0
k0 − k21

, (2.9)

where F1, F2 are arbitrary functions.
Note that the Legendre transformation maps the multivalued solutions of equation (2.6)

to the solutions of equation (2.8). But the inverse Legendre transformation maps classical
solutions (2.9) to multivalued ones.

Apply the inverse transformation

Φ−1 : (t, x, u, p1, p2) 7→ (t, p2,−xp2 + u, p1,−x)

to (2.9). Let us choose t and p2 as parameters β, α, respectively. Then we get general
multivalued solution of equation (2.6):
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L :



t =β,

x =− 1√
−(α2 + 2αk1 + k0)γ

(
ek1β

(
(α + k1)

(∫ β

β0

F1(τ)e
−k1τ cosh(ψ)dτ

)
+(α + k1)F2(η) + γ

(∫ β

β0

F1(τ)e
−k1τ sinh (ψ) dτ + F ′

2(η)

)))
,

u =− 1√
−(α2 + 2αk1 + k0)γ

((
(αk1 + k0)

(∫ β

β0

F1(τ)e
−k1τ cosh (ψ) dτ

)
+(αk1 + k0)F2(η)− α

(
γ

(∫ β

β0

F1(τ)e
−k1τ sinh (ψ) dτ

)
+ F ′

2(η)

))
ek1β

)
,

ut =e
k1β

√
α2 + 2αk1 + k0

−γ

(
−γ
(∫ β

β0

F1(τ)e
−k1τ sinh (ψ) dτ

)
+k1

(∫ β

β0

F1(τ)e
−k1τ cosh (ψ) dτ

)
− F ′

2(η) + k1F2

)
+ F1(β),

ux =α,

where F1, F2 are arbitrary functions, α, β are parameters, γ =
√
k21 − k0,

η =

−
βγ + artanh

(
α + k1
γ

)
γ

 , ψ =

(
−arctanh

(
α + k1
γ

)
+ (τ − β)γ

)
.

To show that L is indeed a multivalued solution, it is enough to check that the restriction
of the 2-form ω to it vanishes.

3. VISUALIZATION

Let us consider an example of visualization for constructed solution. Let k0 = 2, k1 = 0.
Choose the functions F1(τ) = −τ, F2(η) = −η. Then we have

t =β,

x =
β + (arctan (α)α + 1− βα)

√
α2 + 1 + α2β

α2 + 1
,

u =
(β + α− arctan (α))

√
α2 + 1− α2 − 1

α2 + 1
.

The graph of this solution is shown in Fig. 3.1. Solution graphs for other F1 and F2 are
presented in Fig. 3.2 and Fig. 3.3.
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Fig. 3.1. Solution of equation (2.6) with F1(τ) = −τ, F2(η) = −η.

Fig. 3.2. Solution with F1(τ) = τ2, F2(η) = η2 Fig. 3.3. Solution with F1(τ) = τ3, F2(η) = η3
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