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Abstract:
We present a method of the forecasting and the data filtering of a linear dynamic system based
on the dimension reduction of the space of unobservable states. The method relies on the singular
value decomposition of the Hankel matrix. The decomposition is used to calculate unknown
parameters of the model. The elements of the singular value decomposition are separated into
blocks enabling to estimate the initial state and the system matrices and predict the system
dynamics and the data filtering by identifying exponential trends and periods of seasonal
fluctuations.
To illustrate the quality of fitting and the determined periods of an oscillatory system with
trends and the white noise, we conducted numerical simulations of such systems. The parameter
estimates were obtained with high precision. Then, daily electricity price data from the NordPool
system from 2016 to 2020 were used to generate in-sample and out-of-sample forecasts.
The advantages of the proposed method include the ability to handle ill-conditioned matrices
and to determine the periods of oscillatory systems. This is significant due to the presence of
seasonality in many economic indicators. In the analyzed daily electricity price data, the method
identified the presence of biweekly and monthly seasonality.

Keywords: state space method, principal components, time series, singular value decomposi-
tion, filter, electricity price forecasting

1. INTRODUCTION

The representation of systems in the state space is a common way to describe the dynamics of
linear systems. State space models constitute one of the classes of time series models that are
successfully applied in management of technical systems and solving system identification
problems, as well as in the fields of filtering and forecasting in economics and finance.
Descriptions of these models in economic and financial contexts can be found in [13,15,17].
These works also discuss parameter estimation methods for such models, including maximum
likelihood and Bayesian methods.

One of the first approaches in this paradigm is the renowned Kalman filter, see, e.g., [12].
Among the earliest applications of state space methods and the Kalman filter, particularly in
economics and finance, notable works include [5, 8].

In this work, in addition to filtering, the problem of estimating the hyperparameters
of the state space model is considered. In such situations, making forecasts includes
preliminary estimation of unknown hyperparameters. In this regard, we rely on and develop
the methodology described in [2, 16].

The model used in this work is as follows: there is a linear evolution of hidden states,
where observed variables are obtained by projecting from the space of hidden unobservable
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variables. Algebraically, this concept is expressed as a system of two vector linear equations,
where one difference equation describes the change in the hidden state xt over time t, while
the other relates the observed parameters yt and the unobservable parameters xt. Random
factors influence the system, causing the proposed dynamics not to be fully reproduced.
Random deviations are modeled as mutually independent random variables.

To identify the system, it is necessary to estimate the dimension of the vector xt of
hidden variables, the initial state x1, and the corresponding representation matrices in state
space. The dimension of the hidden state space is a hyperparameter that is either externally
specified or determined by cross-validation methods. The approach based on the singular
value decomposition of the Hankel matrix is used to calculate the unknown parameters of the
model [2, 3, 10, 16].

This study focuses on forecasting daily electricity prices from 2016 to 2020, and
additionally proposes a data filtering method. On a sample of 1170 observations, it was
found that the short-term out-of-sample forecast is comparable to traditional econometric
models and to the well-known Holt–Winters’ filtering method based on the mean absolute
error indicator even in a stationary segment of the time series.

In addition to modeling on real data and comparing the forecast quality of the
proposed method with well-known models, we present several numerical simulations. These
simulations demonstrate the specific characteristics of data behavior that the proposed state
space model can identify.

2. BASICS

In general, an autoregressive system can be represented in the state space as follows:

xt+1 = Axt + ξt,
yt = Cxt + ηt,

where t ∈ N, xt is an unobservable k × 1 state vector, x1 is deterministic (but unobservable),
yt is an observable l × 1 vector, (ξt, ηt)t∈N is an unobservable white noise, and A and C are
state space matrices. It is easily seen that the expected value

Eyt+1 = CAtx1.

For the sake of simplicity, we set ξt = 0 and ηt = 0 for all t. In such a case,

yt+1 = CAtx1. (2.1)

Having a sample of size T the Hankel matrix H can be written as follows for an odd-sized
sample:

H =


y1 y2 . . . yn
y2 y3 . . . yn+1
...

... . . . ...
yn yn+1 . . . y2n−1

 = Γ1:nΩ1:n (2.2)

and for an even-sized sample:

H =


y1 y2 . . . yn+1

y2 y3 . . . yn+2
...

... . . . ...
yn yn+1 . . . y2n.

 = Γ1:nΩ1:(n+1), (2.3)
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where n =
[
T
2

]
. By virtue of formula (2.1) the Hankel matrix is the product of the

observability matrix

Γ1:n =


C
CA

...
CAn−1


and the controllability matrix

Ω1:n = [x1 Ax1 . . . An−1x1]

for an odd-sized sample, or

Ω1:(n+1) = [x1 Ax1 . . . Anx1]

for an even-sized sample.
Therefore, if we find a decomposition of the Hankel matrix as a product of two matrices

as in (2.2) or (2.3), we can estimate the matrices of the system:

Ĉ = Γ̂1:1, Â =
(
Γ̂1:(n−1)

)+

Γ̂2:n, x̂1 = Ω̂1:1, (2.4)

where
(
Γ̂1:(n−1)

)+

is the Moore–Penrose pseudoinverse of the matrix Γ̂1:(n−1) excluding the

last block, and the matrix Γ̂2:n does not include the first block. The hat sign indicates that
these are estimates of matrices Γ and Ω that will be suggested now. As in [16], we apply
the singular value decomposition of the observed matrix Ĥ = Û ŜV̂ ′, where Ŝ is a diagonal
matrix of singular values arranged in decreasing order, and Û and V̂ are orthogonal matrices.
We consider an odd T since the case for even T is similar. These matrices can be split into
parts corresponding to, as we assume, the signal and noise:

Û =
[
Û1:k Û(k+1):n

]
, V̂ =

[
V̂1:k V̂(k+1):n

]
, Ŝ =

[
Ŝ1:k 0
0 Ŝ(k+1):n

]
,

where Û1:k and V̂1:k are the matrices consisting of first k columns of matrices Û and V̂
correspondingly, while Ŝ1:k is the square k × k matrix having in its diagonal first k singular
values of Ĥ . The estimates for the observability and controllability matrices can be found as
follows:

Γ̂1:n = Û1:kŜ
1/2
1:k , Ω̂1:n = Ŝ

1/2
1:k V̂

′
1:k.

Once the estimates Ĉ, Â and x̂1 are obtained from (2.4), formula (2.1) can be used for
forecasting.

It should be noted that matrices C, A and vector x1 are determined, in general, up to
a non-degenerate linear transformation with matrix P : C̃ = CP−1, Ã = PAP−1, x̃1 = Px1.
But, for forecasting and filtering, it doesn’t matter.

However, in practice, formula (2.1) can lead to significant computational errors, as the
matrix A is multiplied by itself many times. To find a more accurate estimate, let us
express (2.1) as yt = CAn−1At−TAn−1x1 = Γn :nA

t−TΩn :n, considering odd T . A suggested
estimate for t ≥ T is the following

ŷt = Γ̂n :nÂ
t−T Ω̂n :n.

In addition to the forecasting task, we propose a possible solution to the data filtering
problem. Let’s consider the case for odd T , as for even T the calculations are similar. It is
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noted that for t ≤ T
yt = Γk : kΩ(t−k+1) : (t−k+1),

where 1 ≤ k ≤ t. The proposed estimate is set as an average value of estimates with different
parameters k in the following way

ŷt =
1

min(t, n)−max(0, t+ 1− n)

min(t,n)∑
k=max(0,t+1−n)

Γ̂k : kΩ̂(t−k+1) : (t−k+1).

In order to select the dimension k of the state vector (State Space Dimension, SSD), one
may apply any cross-validation method, e.g. the Mean Absolute Error (MAE) of the one-day-
ahead (or n-days-ahead) forecast in a rolling-sample scheme.

3. MODELING

3.1. Simulation modeling
Let us consider three model examples that illustrate the method’s performance on noisy data
with some oscillations.

1) Oscillatory system with two periods

yt = sin(πt/15) + sin(πt/20) + εt/2,

where (εt) are independent identically distributed random variables with εt ∼ N (0, 1). A grid
with t = 0, . . . , 299 of length 300 was taken, and a trajectory was simulated on it.

To estimate the oscillation period, the method described in [2, 3] was applied. According
to this method, the spectrum of the matrix log(A) is found. We assume that matrix A does not
have multiple eigenvalues. Under this condition, oscillation with angular frequency ω will
correspond to a pair of complex conjugate numbers z = α + iω and z̄ = α− iω, where the
oscillation period is given by π/ω.

In the first example, the estimated periods of oscillation were 30.49 and 39.93, while the
original periods in the system before noise were 30 and 40 (see Fig. 3.1). In the two following
examples, the estimated oscillation periods were the same as in the first one, up to rounding
accuracy (see Fig. 3.2 and 3.3).
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Fig. 3.1. Filtration and forecast of a noisy wave.

Copyright © 2023 ASSA. Adv Syst Sci Appl (2023)



12 A. BELYAKOV, A. KURBATSKII, A. SIDORENKO

0 50 100 150 200 250 300
Time

−4

−2

0

2

4

6

W
av

e

Filtration and foreca t of a noi y wave
Original Wave with Noi e
Predicted Wave
Filtered Wave
Separation line between in-sample and out-of-sample

Fig. 3.2. Filtration and forecast of a noisy wave with exponents.
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Fig. 3.3. Filtration and forecast of a noisy wave with exponential trend.

2) Oscillatory system with variable amplitude

yt = e0.005t sin(πt/15) + e−0.001t sin(πt/20) + εt/2.

3) System with oscillations and exponential trend

yt = e0.01t + e0.005t sin(πt/15) + e−0.001t sin(πt/20) + εt/2.

3.2. Electricity price modeling
For modeling based on real data, we will consider electricity prices. The electricity market is
of interest due to the presence of high volatility, multiple seasonality and calendar effects.
In [11], it is shown that hourly electricity prices exhibit intraday, weekly, and monthly
periodicities, as well as variable volatility.
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We use daily NordPool system data prices† from 2016 to 2020, as considered in the
paper [9], because it serves as the unconstrained market clearing reference price for the
European Nordic region. Daily prices were transformed into $/kWh.

The sample consists of 1170 observations from January 01, 2016, to June 26, 2020. For
out-of-sample forecasting, a rolling window of 22 ∗ 6 days (number of working days in a
month multiplied by the number of months) is used (see Fig. 3.4).
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Fig. 3.4. Electricity price with the model filtration and 1-day-ahead forecasts with a 6 month floating window.
The estimated periods on the interval 2016-01-01 to 2016-06-30 are 11.22 and 22.34.

To determine the state space dimension k, we used the mean absolute error for 1, 5, 22
days in a rolling-sample scheme with an interval size for modeling of 226 days (half a year).
From the graph, it can be observed that the optimal dimensions for forecasting are k = 5
for daily and weekly predictions (see Fig. 3.6 and 3.7). It should be noted that for large
dimensions k, out-of-sample errors increase, although in-sample errors decrease.

A comprehensive review of literature on electricity price forecasting (EPF) methods
and their comparison from 2012 to 2022 is presented in the article [14]. Notably, during
relatively stable times, when conditions for building traditional econometric models are met,
such methods work well and demonstrate high predictive characteristics. Even considering
high volatility, the combined ARMA-type model and GARCH-type model are still applied
[4, 6, 11].

To make a comparison with ARMA-type models, for which we selected a stationary series
from January 01, 2016, to June 30, 2016. The results of corresponding tests are provided in
table 3.1.

Table 3.1. Stationarity tests results

Test Statistic p-value
ADF −5.3567 4.17× 10−6

KPSS 0.2103 > 0.1
DF-GLS −4.6647 5.38× 10−6

†The Nord Pool exchange has free data https://www.nordpoolgroup.com/en/Market-data1/Dayahead/Area-
Prices/SYS1/Daily/?view=table
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Besides, an alternative and well-established data filtering method with seasonality, Holt–
Winters exponential smoothing, was considered.

Fig. 3.5 shows the mean absolute error dependencies for our method for different values
of k, as well as for the ARMA(1,1) model, which proved to be the best model of this class
on the training set, and the ETS model using Holt–Winters’ method. One-day-ahead, weekly,
and monthly forecasts were made using a rolling-window scheme for all models.

Over an extended period, the markets often exhibit a complex nonlinear structure as well
as natural non-stationarity. An attempt to forecast the price for the next six months is shown
in Fig. 3.5. It can be seen that our presented model captures the trend, while the ARMA
model and the Holt–Winters’ method, even though it gives more accurate in-sample forecast,
degenerate into a horizontal line. The fact that these models struggle to predict the behavior
of such data has long been known, so researchers seek approaches to improve their quality. A
survey on subspace methods for estimating linear dynamic models can be found in [1].
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Fig. 3.5. State-space filtration and forecast and comparison with ARIMA forecast and Holt–Winters ETS
filtration. The periods calculated by the State Space model are 11.22 and 22.34 days.

Fig. 3.6, 3.7 and 3.8 show how the MAE of considered method changes depending on
the dimension of the state space k. For the short-term forecasts, the optimal value of k is 5,
whereas for monthly forecasts, it is equal to 1.

The implementation of our forecasting and filtering method in the Python programming
language can be found at the following link [7].

4. CONCLUSION

Methods of forecasting based on the state space representation of a system have a wide
range of applications for estimating various dynamic systems. However, in different research
contexts and on different types of data, choosing the appropriate method is a non-trivial
task, considering the inherent advantages and disadvantages of each method. Our proposed
forecasting method and an improved filtering method allow working with ill-conditioned
system matrices. The ability to identify periods of fluctuations is also of interest for
understanding the behavior of cyclical indicators, particularly economic ones.
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Fig. 3.6. 1-day-ahead MAE over 2016 (6 month window).
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Fig. 3.7. 5-days-ahead MAE over 2016 (6 month window).
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Fig. 3.8. 22-days-ahead MAE over 2016 (6 month window).

To illustrate the method, simulation modeling was conducted on typical types of
oscillatory systems, and the forecast quality was evaluated with different horizons for
electricity prices.
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During the comparison of model forecasts on electricity price data, it was found that the
forecasts of the proposed method yield a comparable mean absolute error to the forecasts
of traditional econometric models such as ARMA on stationary series and a well-known
seasonal data filtering method like Holt–Winters’ method. The mean absolute error was
calculated for forecasts with a rolling window of 6 months.

It is worth noting that the method performs well in handling multiple seasonality and
exponential trends inherent in data with such a complex structure as electricity prices.
Additionally, oscillation periods were calculated, and they turned out to be 11 and 22 days,
corresponding to two-week and monthly seasonality.
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