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Abstract: The paper considers the principles of building reliable data storage and processing
systems in cloud-fog environment. The factors affecting the reliability and survivability of
systems are an-alyzed and the main types of failures are given. The principles of introducing
information re-dundancy to improve reliability, as well as corrective capabilities and error
detection algorithms of RNS codes are considered. A scheme of data processing and storage in fog
with increased re-liability is proposed. Monte Carlo modeling is carried out, and the results and
conclusions are given, the probability distribution of failure occurrence is constructed, showing
that failure probabilities obey the gamma probability distribution.
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1. INTRODUCTION

As the volume of stored data continues to grow, an increasing number of users are
transitioning to cloud storage solutions. In today’s context, the demands for data storage
reliability within cloud environments are consistently escalating. Reliability in cloud
storage refers to its capacity to uphold data management and retention, all while uphold-
ing predefined quality benchmarks within operational conditions over time. This concept
primarily encompasses the influence of intersystem factors, particularly the occurrence of
unforeseen technological breakdowns, on the performance of cloud storage systems [1].

Fog computing, often referred to as fog networks or edge computing, represents a de-
centralized computing model that draws data processing and storage closer to the devices
and individuals responsible for generating and utilizing the data. It entails processing data
at the network’s periphery, in close proximity to the data’s origin, rather than relying on a
central server like a data center or cloud infrastructure. This approach notably di-minishes the
volume of data necessitating transmission through the network, effectively curbing latency,
bandwidth demands, and associated expenses. It also empowers re-al-time processing,
expediting decision-making processes and enhancing overall respon-siveness [2, 3].

Fog computing is particularly useful in the Internet of Things (IoT) and other applications
where devices are distributed and have limited processing power and connectivity. They allow
these devices to process data locally and make decisions autonomously, without the need to
constantly interact with the cloud. This can also improve security and privacy, as sensitive
data can be processed and stored locally rather than being transmit-ted over a network. Fog
computing also provides a bridge between the cloud and the net-work edge, allowing data
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to be processed and analyzed at different levels of granularity depending on the application
requirements. They can be used in a variety of applications such as industrial control systems,
smart city, transportation and healthcare [4].

One of the key advantages of edge computing lies in its capability to swiftly gather
and analyze data in actual time, facilitating accelerated decision-making and heightened
responsiveness. Moreover, edge computing can serve to shift computational and storage
burdens away from cloud environments, subsequently mitigating the expenses and de-lays
typically linked with cloud-based solutions. Nevertheless, this approach also intro-duces
novel hurdles, including issues related to security, unpredictability, efficient data handling,
and seamless deployment.

Fog computing infrastructure can include various devices such as routers, gateways, and
embedded systems. These devices are capable of running various applications and providing
services in a decentralized manner, in interaction with each other and with the cloud [5].

The survivability of a cloud-fog system refers to the robustness of its control and
transceiver system against the action of causes from outside aimed at disabling the storage,
as well as resistance to cascading failures.

The causes of reduced survivability are divided into two types: spontaneous, deliber-ate,
and suboptimal in terms of the choice of technical solutions in the construction of the system.

The notions of reliability and survivability share commonalities while also present-ing
notable distinctions. What binds them is the underlying principle of ”sustain-ability,” which
encompasses a wide range of factors, encompassing diverse failures that can transpire. The
sustainability index emerges as a composite metric that incorporates aspects of reliability,
survivability, and fault tolerance indices.

Discrepancies between the concepts of reliability and survivability stem from distinct
ways they manifest and their varying natures within the context of cloud and fog
systems. Factors leading to disruptions in their regular functioning vary significantly,
including the nature and scope of failures, their duration, and the strategies employed for
rectification and augmenting fault tolerance. Consequently, the foundational data, calculation
methodologies, precision, and fundamental nature of reliability and survivability metrics di-
verge substantially. The former group benefits from substantial statistical data, encompasses
essential influencing factors, and boasts robust theoretical foundations. They prove useful for
reasonably precise projections, calculations, design work, and simulations. On the other hand,
the cluster of survivability metrics tends to convey a qualitative perspective on the behavior of
the examined cloud-fog system when subjected to external impacts or the sequential spread
of failures. Now, let’s delve into the primary factors that impact system reliability:

• Mistakes associated with incorrect technical choices when designing and building a
cloud storage system;

• Hard disk failures;
• Technical factors, factors that depend on the structure of the object and its operating

modes, the use of redundancy, the organization of control and recovery after failure,
the characteristics of component elements, the protection of elements from adverse
factors, the quality of technological processes in the manufacturing process, the degree
of adaptability for operation;

• Program factors depend on the quality of microprocessor software development;
• Operational factors depend on the external environment surrounding the object during

operation;
• Climatic factors, temperature, humidity, solar radiation, wind loads, etc.;
• The impact of maintenance on reliability is determined by the fact that facilities are

often automated rather than automatic systems. A human being is a kind of link that fits
into the structure of the system.

Relationship between man and technology. With the development of technology, the
complication of its structure, the expansion of its functions, the question of the relationship
between man and technology is becoming more and more acute.
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The paper is further organized as follows. Section 2 analyzes the factors affecting the
reliability and survivability of control and communication systems. In Section 3, the types
of redundancy and redundancy introduction in RNS are discussed. Corrective capacity
estimation and error correction algorithms in RNS are given. Section 4 deals with structural
redundancy in cloud storage systems. Section 5 considers the reliability of nonrepairable
redundant objects and redundancy methods. Section 6 is devoted to the principles of fault
tolerant cloud systems. Section 7 gives the structure of fault tolerant storage system in cloud
fog environment. Section 8 deals with the structure of a fault tolerant data processing system
in fog environment. Section 9 is devoted to the modeling of the proposed system for reliable
data storage and processing in fog environment and the results obtained are described.

2. ANALYSIS OF FACTORS AFFECTING RELIABILITY AND SURVIVABILITY
OF CONTROL AND COMMUNICATION SYSTEMS

The reliability of both cloud and fog storage systems becomes evident through instances
of failures. The notion of failure is intricately connected to that of operability. Operability
represents the condition of a system in which it can execute designated functions in
alignment with specified parameters and the quality demands of the services rendered. Failure
constitutes an arbitrary occurrence characterized by the disruption of the system’s operability.
Failures can be categorized as follows:

• Sudden – system parameters change instantly;
• Gradual – gradual change of system parameters due to wear and tear or aging;
• Work-in-progress – presence of defective elements, assembly and installation errors.

Enhancing the reliability of cloud and fog systems can be achieved through the utilization
of mathematical tools, standardization practices, load distribution techniques, safeguarding
against external influences, and the strategic selection of data storage schemes [6]. If the
above-mentioned methods did not give the desired result, then redundancy should be used.

At the stage of development of models and schemes of data storage the main reliability
characteristics of the future system are laid down. It is necessary to reasonably choose
the mathematical apparatus, the accuracy of the system, redundancy and, consequently, the
optimal form of data representation (data packets) during their transmission and processing.
The choice of the number system essentially and determines the reliability model of cloud
storage. When building cloud storage, alternative non-positional and ad hoc number systems,
which are oriented to solve a wider range of problems, are often not considered. In addition
to applying mathematical approaches to improve reliability and survivability, structural
approaches are also used, which consist in improving reliability by introducing additional
redundancy and applying redundancy. The use of information methods in the form of
corrective codes can improve the reliability and survivability of data storage systems.

Let’s examine the elements influencing the survivability of cloud systems. A notable
distinction between evaluating survivability and other comparable concerns, like assessing
reliability, is the general inability to apply probability concepts for the occurrence of specific
scenarios. To enhance survivability, it becomes feasible to adopt a numerical system where
the failure of a specific component does not result in the complete cessation of the entire
system’s operation.

It should be borne in mind that the number system significantly affects the algorithms
of operation, exchange protocols, technical characteristics, reliability and survivability of the
data storage system. For example, the decimal number system is irrational for use in computer
technology, but is optimal for human perception of data.

Hence, the significance of selecting the operational numbering system for cloud
storage systems is heightened. This choice primarily shapes the system’s reliability
model, redundancy methodology, counteracting cascading failures, and the mitigation of
accumulating errors. An intrinsic qualitative measure of survivability is the system’s
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resilience, denoted by E survived, subsequent to a predefined series of influences. For cloud
and fog systems, the main reliability metrics are:

1. Probability of uptime operation in the time interval from 0 to t0

p(t0) = p(0; t0) = p{ε ≥ to] = 1− F1(t0),

where F1(t) = p[ε1 ≤ t] – distribution of failures in time to first failure;
2. Probability of uptime operation of the object in the time interval from t to t+ t0

p(t, t+ t0) = p{ε1 ≥ t+ t0|ε1 > t] =
p(0, t+ t0)

p(0, t)
=

p(t+ t0)

p(t)
;

3. Failure distribution density

f(t) =
d

dt
F (t) = − d

dt
p(t);

4. Intensity of object failures at the moment of time

µ(t) =
1

1− F (t)
· d

dt
F (t);

5. Average time to failure

Ti = M(ε1) =

∫ ∞

0

xdQ(x) =

∫ ∞

0

p(x)dx.

Presently, the primary pragmatic approach to enhance the dependability and survivability of
storage systems involves the implementation of redundancy and error correction codes.

Redundancy entails augmenting the reliability of a cloud system by incorporating
supplementary clouds beyond the minimum necessary for the system’s regular functioning.

The main types of reservations:

• Time redundancy – utilizing excess time to accomplish tasks;
• Functional redundancy – the use of additional elements with which functions can be

performed autonomously;
• Structural redundancy – a method of increasing reliability by introducing additional

redundant elements included in the overall system structure;
• Information redundancy – improving reliability by storing multiple copies of data.

Optimal stability, reliability, and survivability emerge when a system seamlessly
integrates and interweaves these methods. This state is exemplified by the Residue Number
System (RNS), which encompasses these attributes. When constructing cloud storage systems
utilizing RNS, a blend of redundant and operational clouds will be present (for each RNS
base), facilitating the harmonious incorporation of the various redundancy strategies outlined
earlier.

3. INFORMATION REDUNDANCY IN CLOUD STORAGE SYSTEMS

Information redundancy is one of the main types of redundancy that is used to ensure the
reliability and availability of information. It is the process of backing up data in order to
restore it in case of data loss or corruption [7, 8].

The main task of information redundancy is to guarantee the safety of data in case of
equipment failure, operator errors, natural disasters or other unforeseen circumstances.
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There are various methods of information redundancy, including.
Full Backup. With this method, a complete copy of all data is made, which requires a large

amount of disk space and time to create a backup. However, data recovery after a failure is
fast and easy.

Incremental Backup. This method creates a copy of only the changed data since the last
full or incremental backup. This method reduces the size of backups and backup creation
time, but restoring data may take longer and require more complex procedures.

Differential Backup. This method copies only the changed data since the last full backup.
The difference from the incremental method is that the differential backup contains only
changes since the last full backup, not since the last incremental backup. This method takes up
more space than the incremental method, but the data recovery procedure is usually simpler
and faster.

Snapshots. This method of data backup, which stores the state of the file system at a
particular point in time. Snapshots do not require additional copies of data, but they do require
operating system support and are stored within the file system.

Replication is a method of creating copies of data on other servers or disk arrays in order
to ensure availability and reliability of information in case of failure of the primary server.
Replication allows you to reduce the time it takes to recover data because if the primary server
fails, you can switch to a backup that is already up and running.

Every information backup approach comes with its own strengths and weaknesses, and
the selection of a method hinges on the distinct needs and constraints of the system. For
instance, a complete backup might prove optimal for smaller systems handling modest
data volumes, whereas in larger systems managing substantial data loads, incremental or
differential backups could offer a more fitting solution.

Also an important aspect of information backup is the choice of storage location for
backups, as they must be protected from potential threats such as hacking or natural disasters.
In this case, it can be effective to use cloud data storage, which provides a high level of
security and availability.

Diverse strategies are employed to enhance the dependability of data storage within cloud
environments. The use of approaches that allow to perform error control contributes to greater
utilization of cloud storage systems. To the code, which allows to control errors that occur in
the process of information processing, we present the requirement of arithmetic.

By arithmeticity of the code allowing to perform error control we will understand such a
property of the code when we will have ”correct” information in the result when performing
any actions with ”correct” information, i.e. we require transparency of performing actions
with information.

It is also necessary for the code to be able to fix error packets. This property is necessary
to ensure system survivability.

3.1. Principles of Introducing Information Redundancy in the RNS
The residue number system is a numerical framework in which numbers are depicted
as a collection of non-negative subtractions x1, x2, . . . , xn by mutually prime moduli
p1, p2, . . . , pn [9, 10].

Let the number X be represented by residues x1, x2, . . . , xn on the bases p1, p2, . . . , pn.
Let us assume that k residues are sufficient to uniquely represent the number X , k < n,
p1 < p2 < · · · < pn, with working bases p1, p2, . . . , pk.

The range of single-valued representation by selected modules is equal to the product of
these modules Pn =

∏n
i=1 pi.

Corrective properties of the modular code appear when redundancy is introduced. Let the
number X be represented by residues x1, x2, . . . , xn on the bases p1, p2, . . . , pn. The number
X in general case can vary in the range of |·|+Pn

. Let us impose a restriction on the range of
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possible variation, for this purpose we will assume that k residues are sufficient for a one-to-
one representation of a number X , and k < n. Let’s assume that p1 < p2 < · · · < pk < · · · <
pn, whereby the working bases will be considered as p1 < p2 < · · · < pk.

The range of single-digit representation of numbers on these bases is equal to Pn =∏k
i=1 pi.
Consequently, in the depiction of a number X using residues x1, x2, ..., xn, any subset

of r residues can be omitted without compromising the clarity of the representation of the
number X . This attribute empowers RNS to manage errors effectively and establishes it as a
non-linear code, recognized as an R-code.

Let us show by example the ability of R-code in RNS to control errors. Let some number
0 ≤ x ≤ 100. For representation in residues, we choose bases p1 = 3, p2 = 5, p3 = 7. The
residues x1, x2, x3 on the corresponding bases can be used to represent a number in the
range from 0 to 104. Thus we have an almost lossless representation X = (x1, x2, x3). Let
X = 49 = (1, 4, 0). Let’s add one more base p4 = 11. to the three existing bases. Then our
number X = 49 be represented by four residues X = (1, 4, 0, 5). Suppose a fault occurred
during data transmission and as a result an error occurred on the basis of p2 = 5. In the
received data, we will leave only three parts of the data corresponding to the grounds
p1 = 2, p2 = 7, p3 = 11, (1, 0, 5). Let’s restore the data from the three parts and get that
they correspond to the transmitted number 49. This erase operation can be performed with
any of the bases and the data will be restored correctly as a result.

A linear corrective L-code can also be constructed in RNS. To construct the L-code it is
enough to remove the restrictions on pairwise mutual simplicity of bases.

Removing the conditions of pairwise mutual simplicity leads to the fact that redundancy
in the representation of a number X will appear not only due to the reduction of the number
of working bases, but also due to the fact that the range of representation of a number X by
k residues will be less than the power of the range of number representations.

3.2. Estimation of Corrective Capacity of Codes in RNS
In order to evaluate the ability of RNS to detect, localize and correct errors we introduce the
notion of weight WPn(|X|+Pn

) of a number X .
We will define the weight WPn(|X|+Pn

) of a number X as the count of non-zero residues.
This delineation of a number’s weight aligns with the description of code weight in the
Hemming metric.

In WPn(|X|+Pn
), the lower index of Pn at W indicates that the number X is depicted using

a quantity of residues such that X ∈ | · |+Pn
.

Evidently, the count of residues through which the number X , is represented is equal to
ω in this case. Writing the argument |X|+Pn

means that X ∈ | · |+Pn
.

WPn (|X|) =
n∑

i=1

σi (xi) , where σi =

{
0, if xi = 0
1, if xi ̸= 0

Utilizing this delineation of a number’s weight, WPn(|X|+Pn
) it is possible to compute it

both directly on X , and on the set of residuals x1, x2, . . . , xn.
The concept of weight attributed to a number X depicted using residues can be employed

to establish the concept of distance between two points in a space, where each point
corresponds to the numbers X1 and X2 [11].

We denote the distance dX1,X2 between points in space X1 and X2 as the weight of the
disparity between X1 and X2.

dX1,X2 = WPn(|X1 −X2|+Pn
)
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To ascertain the error-correcting capabilities of the code, we calculate the mean weight
W Pn(| · |+Pn

) of non-zero complexes. If the value of number X is modified within the range
| · |+Pn

, the division period of zeros becomes pi, and the count of zeros in base pi will be
equivalent to

ωi =
Pk

pi
− 1, (i = 1, k)

Subsequently, the quantity of non-zero elements within the base becomes identical to

ωi = Pk − 1− ωi = Pk −
Pk

pi

The sum of weights S of residues xi(i = 1, 2, .., k) when X changes from zero to Pk − 1
is determined from the expression

S =
k∑

i=1

(
Pk −

Pk

pi

)
= Pk

(
k −

k∑
i=1

1

pi

)

Average weight W Pn(| · |+Pn
) can be defined as

W Pn(| · |+Pn
) =

S

Pk − 1
=

Pk

Pk − 1
·

(
k −

k∑
i=1

1

pi

)
The more adept the code is in error correction, the greater the distinctions among numbers
within the code representation, resulting in an increased code distance. Consequently, the
distance will vary between distinct numbers.

When we compute the mean weight of the numbers composing the null space, the
minimum code distance will always remain below the upper limit of the minimum code
distance. The minimal weight of elements within the null code space is equivalent to

dmin = min{WPn(| · |+Pn
)] = ω − k + 1 ≈ r + 1

When dmin ≈ r + 1 we can ensure the detection of any error. Simultaneously, the
utilization of RNS empowers us to identify a greater quantity of errors. As an illustration,
when utilizing RNS with a single supplementary base exceeding the values of any worker,
we can detect 100% of single errors and 95% of double errors.

Additionally, it’s feasible to identify all errors of a multiplicity t if t < dmin. This signifies
that RNS facilitates the detection of errors with a specific multiplicity, and the ascertainable
error multiplicities are determined by the minimum code distance dmin.

3.3. Algorithms for Error Detection in RNS
Suppose a number X = (x1, x2, . . . , xn) has undergone a distortion and instead of a number
X we have X̃ = (x̃1, x̃2, . . . , x̃n), such that x̃ ∈ | · |+Pn

. Let us compute the difference e

beetwin X̃ and X , which will determine the magnitude of the error

e = |x̃− x|+Pn

Since errors in distinct digits are mutually exclusive, it becomes viable to illustrate e in a
manner akin to representing a number X , i.e., by residues e = (e1, e2, . . . , en) which will be
defined ei = |x̃i − xi|+Pn

.
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From the accepted residuals x̃1, x̃2, . . . , x̃n we calculate the number X̃ by solving systems
of comparisons

X̃i ≡ x̃i(modpi), (i = 1, 2, . . . , k)

To address this system of comparisons, we will employ the technique of orthogonalized
vectors in the following format

Bi = (0, 0, . . . , 1, . . . , 0) =
miPk

pi

where mi ∈ | · |+pi such that Bi ≡ 1(modpi).
By utilizing orthogonalized vectors, the number X can be expressed in the configuration

X =
k∑

i=1

xiBi − rPk
x(|X|+Pk

)Pk

where rPk
(|X|+Pk

) – core function [11–13], such that if the argument |X|+Pk
takes such a value

that X is computed using orthonormalized vectors X ∈ | · |+Pk
.

After computing the value of X̃ determine the values of the residues X̃ = (x̃1, x̃2, . . . , x̃n)
of this number by the pk+1, . . . , pn.

Syndrome components are defined as

Cj = |xk+j − x̃k+j|+pk+j
, j = 1, 2, . . . , n− k

We will show that it is possible to determine the fact of error occurrence from syndrome
components. Let us represent the number X as

X̃ = |X + e|+Pk

Suppose that only residuals on bases p1, p2, . . . , pk, which we consider informational, are
affected by errors. With this in mind.

Cj =

∣∣∣∣∣∣
∣∣∣∣∣∑
ϕ∈Jk

eϕBϕ

∣∣∣∣∣
+

pk

∣∣∣∣∣∣
+

pk+j

where eϕ – error value in ϕ-digit, Jk – set formed from the numbers of information bases, the
residuals of which are distorted.

Given that the value of ek is non-zero and the supplementary bases adhere to the criterion
of mutual coprimality, any instance of at least one syndrome component being non-zero
signifies the existence of an error. Similarly, it can be demonstrated that error management is
attainable when errors arise within the control bases, either individually or collectively.

3.4. Error Detection Algorithm Using Positional Features
Error control for any code is reduced to finding out whether the message belongs to the set of
numbers that make up the zero space of the code. When performing an error finding operation
for a number X , it is desirable that this range be close to the range P . The error detection
process in RNS is reduced to comparing the number X̃ with the value of the range Pk [13].
The computed positional characteristic ΠPn(|X|+Pk

) determines the position of X̃ inside the
range | · |+Pk

.

ΠPn(|X|+Pk
) =

{
0, if X < Pk

1, if X ≥ Pk

Copyright © 2024 ASSA. Adv Syst Sci Appl (2024)



174 N. KUCHEROV, M. BABENKO, E. SHIRIAEV, N.V. HUNG

By the character of change, positional characteristics are divided into linear (monotonic)
and nonlinear ones. An instance of a non-linear positional attribute is represented by the
number rank function rPn(|X|+Pk

). The function rPn(|X|+Pk
) is periodic with period equal to

Pk.

rPn(|X|+Pk
) =

∣∣∣∣∣
k+1∑
i=1

xiβi

∣∣∣∣∣
+

pk+1

, βi =

∣∣∣∣Bi

pk

∣∣∣∣+
pk+1

The function rPn(|X|+Pk
) depends on k + 1 variables, and the possible domain of definition

of the argument X is in the range | · |+Pn
, Pn = pk+1Pk.

4. STRUCTURAL REDUNDANCY IN CLOUD STORAGE SYSTEMS

Structural redundancy in cloud storage systems is one method of ensuring the reliability
and availability of data in the cloud. Structural redundancy involves using multiple physical
devices to store data and replicating data on these devices.

Cloud storage systems typically utilize distributed storage, which is a collection of
physical storage devices working together. These devices can be located in different locations
and have different characteristics such as capacity, speed, reliability and bandwidth [14].

To ensure the reliability and availability of data in cloud systems, various backup
technologies such as replication, sharding, etc. are used. Structural redundancy involves
creating multiple copies of data on different physical devices using special algorithms and
protocols that ensure data consistency and integrity.

If one of the devices fails, data can be restored from backups stored on other devices. At
the same time, the cloud continues to function and provide access to data without downtime
or data loss.

The basic idea behind structural redundancy in cloud storage systems is to create a
distributed network of servers that work together to ensure data availability and reliability.
Each server in such a network can store only part of the data, which reduces the load on a
single server and increases the speed of data access.

Classification of various methods of structural redundancy is performed according to the
following features:

• According to the redundant element inclusion scheme;
• By homogeneity of redundancy;
• By method of reserve activation;
• On functional recovery of failed elements;
• By reserve loading.

The fundamental attribute of structural redundancy is its multiplicity, which signifies
the proportion of redundant elements to the total number of elements (both redundant and
primary). This proportion is expressed as a non-simplified fraction.

The redundancy multiple m is determined by the ratio:

m =
p

o

where p – number of reserve elements; o – number of main elements.
If m = 1, redundancy is executed with integral multiplicity. In practical terms, this

signifies the presence of a single primary element and a corresponding redundant element,
resulting in a total count of two elements for the object.

When m = 3, redundancy is employed with integral multiplicity. This indicates the
existence of one primary element along with three supplementary elements, resulting in a
total of four elements.
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When m = 4
2
, it signifies a fractional multiplicity redundancy scenario, wherein there are

4 reserve elements, 2 primary elements, and a total of 6 elements. It’s not feasible to simplify
the fraction, as reducing m = 4

2
to m = 2 would lead to redundancy with integral multiplicity,

entailing 2 reserve elements and a total of 3 elements.
As already mentioned, structural redundancy in cloud storage systems involves the use

of distributed systems in which data is stored on multiple devices (servers) in different
geographical areas. Each server has its own copy of the data, and if one of the servers fails,
the data can be restored from another server.

An important aspect of structural redundancy is the organization of the network
infrastructure that provides connectivity between servers and allows data to be transferred
between them. Typically, high-speed links such as optical networks are used as network
connections to reduce latency and increase data transfer speeds.

In addition, an important aspect of structural redundancy is the organization of data
integrity control system, which allows detecting and correcting data errors. Various methods
can be used for this purpose, such as checksums, Hamming codes and others.

An illustration of structural redundancy within cloud storage is the Redundant Array
of Independent Disks (RAID), which amalgamates numerous physical disks into a unified
logical storage unit to ensure elevated data reliability and accessibility. Various RAID levels
offer distinct degrees of data safeguarding and recuperation should disk failure or other
system anomalies arise.

5. RELIABILITY OF NON-RECOVERABLE REDUNDANT FACILITIES

Reliability quantification of redundant facilities is determined by the type of redundancy.

5.1. Total Hot Spare Capacity with Integer Multiplicity
In general, hot spare capacity, the main and each redundant object have the same number of
elements connected in series in the reliability structural diagram. The redundant objects are
included in parallel with the main object and themselves [15].

In each object with series connection of elements the probability of uptime operation is
determined on the basis of expressions:

P0(t) =
n∏

i=1

P0i(t), P1(t) =
n∏

i=1

P1i(t), . . . , Pm(t) =
n∏

i=1

Pmi(t)

The main and redundant facilities, consisting of elements connected in series, constitute
the structural reliability scheme of the facility with parallel connection.

Then the probability of uptime operation PC(t) of the object:

PC(t) = 1−

[
1−

n∏
i=1

Pi(t)

]m+1

where Pi(t) – probability of uptime operation of i-th element.
If the failure rate of an element is known and it is a constant value, then:

PC(t) = 1− (1− e−λ0t)m+1

where λ0 =
∑n

i=1 λi – failure rate of the main facility or any of the backup facilities.
Mean time between failures (MTBF) of the redundant object:

T =
1

λ0

m∑
j=0

1

j + 1
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Failure intensity of the redundant object:

λC =
(m+ 1)λ0P0(t)Q

m
0 (t)

1−Qm+1
0 (t)

General hot standby for non-recoverable objects gives a good effect at small values of
the product λ0t. This type of redundancy is most appropriate for redundancy of sufficiently
reliable single-use facilities with short continuous operation time.

The redundancy multiplicity m required to achieve a given reliability of the redundant
object at a certain point in time at a given reliability of the main object can be found from the
expression:

m =
ln[1− P3(t)]

ln[1− P0(t)]
− 1 =

lnQ3(t)

lnQ0(t)
− 1

where P3(t) – specified reliability of the redundant object at a certain point in time; P0(t) –
reliability of the main facility without redundancy.

5.2. Separate Hot Spare Capacity with Integer Multiplicity
In case of separate hot standby, the main and each redundant object can have the same or
different number of elements. The redundant objects are switched on in parallel to themselves
and in parallel to the elements of the main object.

Each i-th element of the main object is redundant by a redundant element. In case of
separate redundancy, the object consists of n elements connected in series, each of which has
m elements connected in parallel, in the sense of reliability.

The probability of uptime of the object PC(t) under separate hot standby is equal to:

PC(t) =
n∏

i=1

{1− [1− Pi(t)]
mi+1} =

n∏
i=1

[1−Qmi+1
i (t)]

where mi is the redundancy multiplicity of each i-th element of the main object.
If the elements have the same reliability and the same redundancy multiplicity, the

probability of uptime operation of the object:

PC(t) =
[
1− (1− e−λt)m+1

]n
= [1−Qm+1

i (t)]n

MTBF of the redundant object:

T =
(n− 1)!

λ(m+ 1)

m∑
j=0

1
j+1
m+1

(
j+1
m+1

+ 1
)
· · ·
(

j+1
m+1

+ n− 1
)

Failure intensity of the redundant object

λC =
n · (m+ 1) · λ · e−λt · (1− e−λt)m

1− (1− e−λt)m+1
=

n(m+ 1) · λ · P (t)Qm(t)

1−Qm+1(t)

where λ is the failure rate of one element.
Other things being equal, separate redundancy gives a significant reliability improvement

compared to general redundancy. Separate redundancy is used to increase the reliability of
facilities with a large number of elements and longtime of use.
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5.3. Hot Spare Capacity with Fractional Multiplicity
A majoritarian object can be considered as a variant of an object with parallel connection of
elements, the failure of which will occur if k elements out of n elements connected in parallel
are operable.

The presented scheme is operable when any two, three, four or all five of its five elements
are operable. The combinatorial method can be used to calculate the reliability of majoritarian
objects. Then the probability of uptime of the object:

Pk = Ck
np

k(1− p)n−k

where Ck
n = n!

k!(n−k)!

MTBF of the redundant object with equal reliability elements is equal:

TC =
1

λ

k∑
j=0

1

n+ j

The analysis of the last expression allows us to conclude that the average uptime of
a redundant object is less than that of an unreserved object. Therefore, redundancy with
fractional multiplicity is inexpedient to use for objects with long continuous operation time.

5.4. Cold Backup with Integer Multiplicity
In the case of general cold backup, the main facility operates, the backup facilities are
disconnected by means of special switching devices. If the main object fails, it is disconnected
and one of the redundant objects is connected instead. Thus, the redundant object will fail
when the main and all reserve objects fail. It is assumed that the switching devices are
absolutely reliable. Then the probability of uptime is equal to the probability of failure.

PC(t) =
m∑
j=0

P (Aj) = e−λ0t

m∑
j=0

(λ0t)
j

j!

where λ0 =
∑n

i=1 λi.
Failure rate:

λC(t) =
λ0(λ0t)

m

m!
∑m

j
(λ0t)j

j!

MTBF:
TC =

m+ 1

λ0

= (m+ 1)T0

5.5. Separate Cold Backup with Integer Multiplicity
Probability of uptime of the main object when the elements are connected in series

P0(t) =
n∏

i=0

Pi(t)

where Pi(t) – probability of uptime of the object elements redundant by the method of
replacement.

The probability of uptime of an object if all elements are equally reliable:

PC(t) = eλ0t

[
m∑
j=0

(λt)j

j!

]n
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Failure rate:

λC(t) =
λ0(λt)

m

m!
∑m

j=0
(λt)m′

j!

where λ – failure rate of one element, λ0 = nλ.
MTBF:

TC =
m+ 1

λ0

= (m+ 1)T0

Separate redundancy by replacement, all other things being equal, gives the greatest
reliability gain compared to other types of redundancy. And this gain is greater the more
elements the redundant system has.

5.6. Sliding Reservation
Sliding redundancy is used to increase the reliability of several identical (or interchangeable)
elements of the facility by one or more reserve elements. In this case, the failure of the object
will occur if the number of failed main elements exceeds the number of redundant elements.

This type of redundancy is used if all elements of the object perform the same functions.
The main object has n elements, and m elements are in cold standby. In this case m < n. If
any main element fails, any of the reserve elements is connected instead of it. In this case, the
redundancy multiplicity is m/n.

The probability of uptime of such an object is equal to:

PC(t) =
m∑
j=0

P (Aj) = e−λ0t

m∑
j=0

(λ0t)
j

j!

where λ0 =
∑n

i=1 λi.
Failure rate:

λC(t) =
λ0(λ0t)

m

m!
∑m

j=0
(λ0t)j

j!

MTBF:
TC =

m+ 1

λ0

= (m+ 1)T0

This means that the reliability of the facility is equal to that of a facility with total
redundancy with replacement, but, at the same time, it has n times fewer redundant elements.

6. PRINCIPLES OF BUILDING A FAULT TOLERANT CLOUD SYSTEM

When building cloud-based high-reliability systems, there are two approaches to improve
reliability: preventing failure and creating fault-tolerant and survivable systems [16].

In the first approach, one tries to eliminate all possible sources of failure by constructing
a system from highly reliable elements. However, in this case, as the intensity of element
failures approaches threshold values due to physical parameters or technologies, the cost of
the system increases dramatically.

In the second approach, the probability of failure of cloud system components is not
reduced, but the system is subjected to additional requirements: it must be error free when
individual parts or storages fail. These additional requirements and hence fault tolerant
operation of the system is ensured by applying different approaches:

• Distributing load and data across multiple nodes so that if one node fails, the others can
continue to operate without downtime;
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• Backup data and distribute it across multiple nodes so that if one node fails, the data can
be quickly restored to other nodes;

• Use of geographically distributed data centers, to reduce the risks associated with natural
or man-made disasters in one region;

• Use of modern virtualization and containerization technologies, which allow to increase
flexibility and scalability of the system, as well as to quickly transfer work from one
node to another;

• Ensuring the security of stored or processed data and the system as a whole by means
of multi-level protection, encryption, authentication and user authorization;

• Continuous testing and analysis of system operation to identify bottlenecks, optimize
performance and improve reliability;

• Fault tolerance systems can be categorized into four types;
• Systems with multiple redundancy, having N identical modules and determining the

solution result on the basis of majorization;
• Systems with structural redundancy, in which part of the modules are used for the

solution, the remaining modules are in reserve and are activated as active modules fail;
• Hybrid redundant systems consisting of multiple redundant modules for failure

replacement;
• Systems with gradual degradation (survivable), in which all serviceable modules are

used to perform the assigned task, i.e., all modules are active and in case of failure the
system is reconfigured and the task is continued

. The performance of the first three types of systems does not change as individual modules
fail. In the fourth type of system the performance decreases as degradation (failure of
modules) occurs [17, 18].

The generalized algorithm of functioning of any fault-tolerant system is reduced to
the following standard procedures: detecting a failure in the system, diagnosing the failed
module, eliminating the influence of the failed device, reconfiguring the system.

Systems with constant performance are described by the following characteristics: time to
system failure tc, system reliability R(t) = Pc[tc ≥ t] and MTBF defined as the mathematical
expectation of tc.

In degraded systems, performance degrades over time, so characteristics linking
performance to reliability characteristics are introduced.

• Reliability of operation [R∗(t, T )] – the probability that the system will correctly
perform the assigned task in time T ;

• Average number of calculations between failures Nav;
• tτ , i.e., the duration of the interval at which the reliability of operation for a task with

operation time T reaches a given value;
• Computation availability factor [dc(t)] i.e., the average value of system performance at

time t;
• Performance threshold (tc), i.e., the time interval at which the value dc(t) reaches a

given value.

7. STRUCTURE OF FAULT TOLERANT DATA STORAGE AND PROCESSING
SYSTEM IN CLOUD FOG ENVIRONMENT

Typically, a fault-tolerant storage system in a cloud environment is constructed with multiple
tiers, each assigned distinct functions aimed at ensuring data reliability and accessibility
[18–20].

The physical infrastructure layer is the first layer in the structure of a resilient cloud
storage system. It includes physical servers, storage, networking equipment, and other
components that provide data storage and availability.
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To provide fault tolerance at this level, various technologies such as server clustering, data
replication, load balancing mechanisms, etc. are used. For example, server clustering allows
you to combine several physical servers into one cluster, which increases system availability
and performance, and data replication allows you to create copies of data on several servers,
which allows you to ensure data availability in case of failure of one server.

At the physical infrastructure level, virtualization technologies can also be used to make
more efficient use of server resources and provide greater resiliency, for example, by enabling
applications and data to be quickly migrated between physical servers in the event of a
hardware failure.

The virtualization layer in a cloud environment is responsible for managing and
virtualizing the physical infrastructure. This layer abstracts away physical servers and data
storage, allowing for more flexible resource management and efficiency.

Virtualization provides the ability to create virtual machines and containers that can run
on a single physical server using the resources of that server. Virtual machines can be quickly
moved between servers in the event of a hardware failure or for load balancing.

Virtualization also enables you to create snapshots of virtual machines and datastores,
making it easier to back up data and restore it in the event of failures. In addition,
virtualization provides the ability to create virtual networks and network devices, allowing
you to manage your network infrastructure more flexibly.

Thus, the virtualization layer in a cloud environment plays an important role in providing
system resiliency by enabling rapid migration of applications and data between physical
servers, data backup, and resource access control.

The application layer is the layer in the cloud infrastructure that hosts the applications that
utilize the data stored in the cloud. This layer includes software that is used to process, store,
and transfer data, including databases, data processing applications, and web services.

At the application layer, cloud infrastructure utilizes data backup mechanisms, monitoring
and management mechanisms, and automatic disaster recovery mechanisms. In addition, the
application layer typically utilizes mechanisms that provide scalability to support the growing
number of users and data being processed.

The data access layer is an abstraction layer that provides access to data from applications
that utilize the cloud environment. This layer typically implements a mechanism to access
data through APIs or protocols such as HTTP or HTTPS.

To provide security and fault tolerance at this layer, data encryption, access control, and
user authentication mechanisms are used. For example, authorization mechanisms such as
OAuth or OpenID Connect can be used for access control, and encryption protocols such as
SSL or TLS can be used for data encryption.

In addition, at the data access layer, a data caching mechanism can be used to increase the
speed of data access. Data caching allows a copy of the data to be stored in server memory
or on other devices, which speeds up data access and reduces the load on the data warehouse.
However, when using data caching, it is necessary to ensure that the cache is consistent with
the data store to avoid possible data integrity issues.

The RNS allows to significantly improve the parameters of cloud storage compared to the
storage based on traditional arithmetic, as well as to obtain new, more progressive design and
structural solutions. Application of the RNS provides independent and parallel processing of
each part of data, which determines the specifics of cloud storage organization. Redundant
coding in RNS provides survivability of the system even in catastrophic situations, when the
flow of faults and failures is very large, then the system will produce functioning.

The main feature of RNS based cloud structure is the potential ability to function in case
of failures, losses, inaccessibility of data parts. This allows to preserve the operability at the
expense of performance and performance degradation. The specified property provides high
survivability of the system and is one of the main factors on which the development of ways
to build fault-tolerant data storage systems that can degrade gradually is one of the main ways
to build complexes with high viability, fault tolerance and reliability is based.
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Let us consider issues related to fault tolerance of cloud storage system based on one of
the most important properties of a residual class system, namely, the possibility of exchange
operations between accuracy, speed and reliability.

The cloud storage structure shown in Fig. 7.1 consists of independent channels and cloud
storage. In order to realize the adaptation methods, it is necessary to strive for the ultimate
homogeneity and independence of all equipment.

Fig. 7.1. Structure of the cloud fog system.

8. STRUCTURE OF A FAULT TOLERANT DATA PROCESSING SYSTEM
IN A FOG ENVIRONMENT

Fog computing is an architectural concept that extends cloud computing capabilities by
moving computing resources closer to the edge of the network, to Internet of Things (IoT)
devices and other end-user devices.

The basic idea of fog computing is to process data and perform computations at a closer
distance to the data source. This reduces latency, improves responsiveness, and enables more
efficient utilization of network resources.

There are certain reliability issues of data processing on fog nodes. Here are some of
them:

Lack of network connectivity: Fog nodes may be connected to a network with limited
bandwidth or may temporarily lose connectivity with cloud servers. This may lead to
problems with data transfer or synchronization with cloud services.

Vulnerability to Failure: Fog nodes may be prone to failures or malfunctions due to
hardware issues, software bugs, or external influences. This may result in data loss or
temporary unavailability for data processing.

Data Security: Data processing on fog nodes may pose data security risks. Such nodes
may be more vulnerable to cyberattacks and may not have the same levels of protection
as centralized cloud servers. Appropriate security measures are required to protect data
transmitted and processed on fog nodes.
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Scaling: Managing and scaling a large number of fog nodes in a distributed environment
can be challenging. As a fog computing system grows and new nodes are added, efficient
management mechanisms are needed to ensure reliability and consistency across the entire
system.

Resource Optimization: Allocating and optimizing computational resources on fog nodes
can be a complex task. Application requirements, node load, and available resources must be
considered to achieve optimal reliability and performance.

Data synchronization: In a fog computing environment, there may be problems with
data synchronization between different nodes. While transferring data between nodes and
synchronizing computation, it is necessary to ensure data consistency and avoid possible
conflicts.

Limited resources: Fog nodes may have limited computing resources, memory, power
consumption and network bandwidth. This can impact system reliability and performance,
especially when processing large amounts of data or performing complex computations.

Change Management: In a fog computing environment, changes to the network
infrastructure, node configuration, or available resources may occur. Change and update
management can be complex and require effective mechanisms to minimize potential system
disruption and ensure reliability.

Fig. 8.2. Data storage and processing system in a fog environment.

However, modern technologies and development techniques can cope with these
challenges. For example, resource reservation, disaster recovery mechanisms, data
replication, and cryptographic techniques can improve the reliability of data processing on
fog nodes.

9. MODELING OF THE PROPOSED SYSTEM FOR RELIABLE DATA STORAGE
AND PROCESSING IN FOG ENVIRONMENT

To validate our theoretical conclusions about the reliability of the proposed system, we have
performed Monte Carlo simulation of the developed system. In a foggy system, any large
number of devices can be disconnected from the access point because it has physically
moved and no signal reaches it. Also, it may become inaccessible due to battery drain and
device disconnection. The proposed system allows to build a system with a small redundancy,
designed for unforeseen failures. For this purpose, let’s build a mathematical model.

The developed model of data storage and processing in a fog environment consists of
k working devices and r control devices, to increase reliability with a slight increase in
redundancy. In case of failure or unavailability of working devices, they can be replaced by
control devices and vice versa. The requirement for the computational scheme to provide
guaranteed protection against the issuance of unreliable results determines the need to
maintain in an operable state kmin working and at least one control device. Thus, the
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reliable structure of the computational model will correspond to the known method of sliding
redundancy with the loaded state of redundant elements.

When carrying out calculations on fog devices each of the above-mentioned possible
system failures can occur both separately and jointly.

We have introduced a single-tier architecture for data processing and storage on fog
devices, offering simplified frameworks for crafting data processing strategies. The assembly
of data storage and processing systems can be accomplished through a range of module
counts. In this system, there are k operational bases and r control bases, summing up to n =
k + r. Establishing the data processing system is achievable through complete replication
of the operational range (k = r) or through partial replication (k > r). We will determine
the overall reliability of the information processing and storage design by employing RNS
for distributed data storage and processing. Additionally, we will assess the available space
across diverse system configurations.

We will calculate the reliability of the system by the following construction parameters:

1. The system parameters were randomly selected as follows: k = 3 . . . 26, where r varies
from 1 to 19.

2. The probability of complete failure of the data processing and storage system was
calculated by the formula

P0 =
n∑

i=n−k+1

Ci
nP

i
dq

n−1

where q = 1− Pd, Pd – a device of size 3015 was randomly selected from the set of
failures.

The Monte Carlo method was used to calculate for 10,000 repetitions for each of the
random failures from the set. The simulation results are shown in Fig. 9.3, 9.4, 9.5.

Fig. 9.3. Failure distribution of the system under parameters r = 3, k = 3

The failure probability distribution was then plotted and compared with the Gamma
probability distribution, and the results are shown in figure 4.

10. CONCLUSION

The principles of building reliable data storage and processing systems in cloud-fog
environment were considered in the article. The factors affecting the reliability and
survivability of systems have been analyzed and the main types of failures have been
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Fig. 9.4. Failure distribution of the system under parameters r = 5 . . . 7, k = 1 . . . 5

Fig. 9.5. Failure distribution of the system under parametersr = 19 . . . 26, k = 15 . . . 19

Fig. 9.6. Probability distribution, for system configurations r = 3, k = 3

given: sudden, gradual, operational. The principles of introducing information redundancy
to increase reliability are considered, as well as the corrective abilities and error detection
algorithms of RNS codes were considered. The scheme of data processing and storage in fog
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Fig. 9.7. Failure distribution of the system under parametersr = 5 . . . 7, k = 1 . . . 5

with increased reliability is proposed. Monte Carlo modeling was carried out, which showed
that the proposed system allows you to process and store data in a foggy environment at
a high level of reliability. A probability distribution of failure occurrence was constructed,
which showed that failure probabilities obey the gamma probability distribution.

Funding: The research was supported by the Russian Science Foundation Grant No. 22-
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