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Abstract: This paper investigates balancing accuracy, fairness and privacy in machine learning 
through adversarial learning. Differential privacy (DP) provides strong guarantees for protecting 
individual privacy in datasets. However, DP can impact model accuracy and fairness of decisions. 
This paper explores the effect of integrating DP into the adversarial learning framework called 
LAFTR (Learning Adversarially Fair and Transferable Representations) on fairness and accuracy 
metrics. Experiments were conducted using the Adult income dataset to classify individuals into 
high vs low income groups based on features like age, education etc. Gender was considered a 
sensitive attribute. Models were trained with different levels of DP noise (controlled by the 
epsilon hyperparameter) added to different modules like the encoder, classifier and adversary. 
Results show that adding DP consistently improves fairness metrics like demographic parity and 
equalized odds by 3-5% compared to an unfair classifier, albeit at a cost of 1-3% reduction in 
accuracy. Stronger adversary models further improve fairness but require careful tuning to avoid 
instability during training. Overall, with proper configuration, DP models can achieve high 
fairness with minimal sacrifice of accuracy compared to an unfair classifier. The study provides 
insights into balancing competing objectives of privacy, fairness and accuracy in machine 
learning models. 
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1. INTRODUCTION 

In the modern world, a huge number of different industries use machine learning to automate 
processes such as credit ratings, spam filtering. Machine learning plays an important role in 
preventing financial losses in the banking industry. Perhaps the most urgent task of 
forecasting is the assessment of credit risk (the risk of default on debt). Such risks can lead to 
losses of billions of dollars annually. A good result of machine learning mainly depends on 
the huge amount of data in which biases can be found in favor of certain attributes that are 
not fair in reality [8]. For example, by learning from unfair data, a classification model of an 
automated recruitment system is more likely to hire candidates from certain racial or gender 
groups or to favor candidates of a certain age.  

Algorithmic bias is a growing subject of much discussion and debate in the use of AI. 
This is a complex topic due to the potential complexity of the mathematical definition of 
what it means to be “fair” in decision making. Fairness depends on the situation and is not 
only a reflection of values, ethics and legal norms. However, there are clear ways to 
approach AI fairness issues.  

Quite often, individual and sensitive data (for example, financial transactions or tax 
payments) are taken to solve machine learning problems. Because of this, algorithms must 
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guarantee privacy. One of the methods is differential privacy. Differential privacy (DP) is a 
mathematical definition of the loss of confidential data of individuals when their personal 
information is used to create a product. Differential privacy allows to find a balance between 
privacy and accuracy using a positive value . If  is small, then we keep more privacy, but 
we degrade accuracy. If  is big, then privacy suffers for the sake of accuracy. Meaning of  
varies from 0 to infinity. To train models with DP, use DP-SGD. The core idea is that 
training a model can be done through access to its parameter gradients, i.e., the gradients of 
the loss with respect to each parameter of your model. If this access preserves differential 
privacy of the training data, so does the resulting model, per the post-processing property of 
differential privacy.  

Summarizing all of the above, machine learning models must guarantee data privacy 
while avoiding discrimination and ensuring fair decision-making. However, the use of these 
methods may have an impact on the accuracy of the model. The research questions below in 
this work aim to examine the impact of privacy on fairness and accuracy, as well as to 
compare fair metrics and accuracy in different approaches of privacy protection in different 
machine learning models. 

 What is the effect of privacy during encoding process on fairness in machine learning 
models? 

 How does privacy during encoding process impact the accuracy of machine learning 
models? 

 How do different privacy strategies impact fairness metrics in machine learning 
models? 

 How do the different privacy strategies impact on accuracy in machine learning 
models? 

 How do the different approaches in models impact on ability to balance fairness and 
accuracy while privacy in machine learning models? 

 How do different datasets configurations impact on fairness and accuracy results? 

2. BACKGROUND 

In this section, we discuss the fundamental privacy and fairness concepts used throughout the 
work. 

2.1. Differential privacy 

Differential privacy is a set of methods that provide the most accurate queries to a statistical 
database while minimizing the possibility of identifying individual records in it. Let  be a 
positive real number and  be a probabilistic algorithm that takes a set of data as input 
(represents the actions of a trusted party that has the data). Algorithm  is  - differentially 
private if for all datasets  and  the following expression is executed [11]. 

 
where  and  are differing datasets by at most one element, and  denotes 

the probability that  is the output of .  
According to this definition, differential privacy is a condition of the data publishing 

mechanism (that is, determined by the trusted party that releases information about the data 
set), not the data set itself. Intuitively, this means that for any two similar datasets, the 
differential private algorithm will behave approximately the same on both datasets. 

2.2. Privacy preservation (DP-SGD) 

Stochastic Gradient Descent (SGD) is an iterative method for optimizing differentiable 
objective functions. It updates the weights and biases by calculating the gradient of the loss 
function for small data packets [3]. DP-SGD [26] is a modification of the stochastic gradient 
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descent algorithm that provides provable privacy guarantees. It differs from SGD in that it 
limits the sensitivity of each gradient and works in tandem with the moments accountant 
algorithm to amplify and track the loss of privacy when the weight is updated. The moments 
accountant accumulates and tracks privacy spending while training deep neural networks. 
Moments accountant greatly improves on earlier SGD privacy analysis and provides 
meaningful privacy guarantees for deep learning trained on real-size datasets.  

To ensure that the SGD is differentially private (i.e. DP-SGD), two modifications must be 
made to the original SGD algorithm. First, the sensitivity of each gradient must be limited. 
This is done by trimming the gradient in normal . Second, random noise is applied to the 
previously clipped gradient by multiplying its sum by the learning rate and then using it to 
update the model parameters. 

2.3. Fairness 

Fair modeling is an area of artificial intelligence that ensures that machine simulation results 
are not affected by protected attributes such as gender, race, religion, sexual orientation, etc.  
In this work we will use specific metrics that can be used to evaluate the fairness of a model. 
The most commonly used measures of fairness are statistical (demographic) parity and 
equalized odds [19, 27]. The definition of these metrics is given below. 

Given a dataset  , where  is the feature vector, 
 the label, and  the binary protected attribute (e.g. gender, race, etc.). 

The goal is to learn a new representation , such that  will satisfy a certain fairness 
criteria such as: 

 Statistical parity: A predictor  trained on  must satisfy:  

 Equalized odds: A predictor  trained on  must satisfy: 
 

3. RELATED WORK 

The growing field of algorithmic fairness and differential privacy has led to the development 
of numerous methods for mitigating bias and ensuring data privacy. In recent research, the 
authors in [21] introduce a framework for evaluating and analyzing bias mitigation 
techniques by using a synthetic dataset and controlling different components of the data 
generation process. The study also analyzes the performance of several model architectures 
(such as MLP [22], CNN [13], LAFTR [17, 9], CFAIR [6], FFVAE [15]) on the Adult, CI-
MNIST datasets, to understand the sources and levels of bias. As an extension to this article, 
this work is focused on combining the principles of algorithmic fairness and differential 
privacy in the training of models under adversary. In particular, this article considers the 
LAFTR model, which aims to provide a fair data while maintaining good predictive accuracy. 
The methodology is based on the introduction of differential privacy to model training. 
Furthermore, the examination of combining algorithmic fairness and differential privacy in 
training models in the presence of an adversary is extended in other studies.  

In [18] authors aim to show that it is possible to maintain good predictive accuracy while 
still providing a strong guarantee for the privacy of individuals' data. Their paper is 
structured around the concept of differential privacy, which is a mathematical framework for 
protecting the privacy of individuals' data by adding noise to the data. In [16] authors 
introduce a differentially private (DP) neural representation framework that safeguards user 
privacy during network computations, using a DP noise layer and robust training algorithm 
while maintaining performance. The framework offers formal privacy guarantees through 
sensitivity-based noise injection. Some other papers [28, 26, 2, 1] also learn how privacy 
affects accuracy in different models. The paper [28] proposes a new type of Generative 
Adversarial Network (GAN) called Differentially Private Generative Adversarial Network 
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(DPGAN) that addresses the issue of privacy protection in training data. The DPGAN adds 
carefully designed noise to gradients during the learning process to provide differential 
privacy, with a proof of privacy guarantee and empirical evidence to support its analysis. 
Another paper [26] compares the fairness implications of two differentially private deep 
learning algorithms, DP-SGD and PATE, and finds that PATE has higher utility on under-
represented groups in imbalanced datasets. The impact of differential privacy on the 
accuracy of machine learning models is also examined [2], and it is found that the reduction 
in accuracy brought about by DP disproportionately affects underrepresented subgroups and 
subgroups with more complex data. The authors of next paper [1] present new algorithmic 
techniques and a refined analysis of privacy costs to train deep neural networks while 
ensuring privacy. The solution is evaluated on standard image classification tasks (MNIST 
and CIFAR-10) and demonstrates the feasibility of the approach against a strong adversary 
who has full knowledge of the training mechanism and access to the model's parameters.   

There are some papers, which explore the effect of privacy introduction on fairness. The 
first paper [24] explores the impact of differential privacy algorithms on the fairness of 
machine learning systems. It focuses on two specific differential privacy methods and 
analyses the reasons for the disparities that arise among different groups of individuals in 
these methods. The paper proposes guidelines to mitigate the unfair impacts and contributes 
to the growing research at the interface between differential privacy and fairness. The second 
paper [25] considers importance of ensuring fairness in machine learning systems, 
specifically in the context of decisions that affect individuals, such as criminal assessment 
and hiring. The text highlights the trade-off between model accuracy and fairness and the 
importance of considering sensitive attributes in learning tasks to ensure non-discrimination. 
In this paper, the focus is on the integration of algorithmic fairness and differential privacy in 
the training process of machine learning models. Differential privacy, which is a 
mathematical framework for the protection of the privacy of individuals' data by the addition 
of noise to the data, is utilized as the main method for privacy preservation. The LAFTR 
model, designed to provide a fair data representation while maintaining good predictive 
accuracy, is evaluated. The performance of the LAFTR model is assessed and the fairness 
and accuracy indicators are evaluated in a classification problem, which is a common 
application in machine learning. Machine learning bias refers to a systematic error that 
occurs in the results due to incorrect assumptions. The objective of algorithmic fairness is to 
reduce this bias. This is achieved through three main categories of algorithms: pre-processing, 
in-processing, and post-processing. Pre-processing techniques aim to reweight training 
samples [15], edit features and labels [4], and resample datasets [5]. In contrast, post-
processing methods aim to calibrate predictions [12, 7] by adjusting the learned predictor to 
remove discrimination based on the joint statistics of the predictor, target, and protected 
attribute. In-processing techniques [14, 18, 11, 29, 17, 6, 30] focus on removing sensitive 
information, such as racial or gender group, age, financial transactions or tax payments that 
may lead to discrimination or bias in decision making, from the data. There are various 
architectures of models for realizing fair representation in-processing, such as CFAIR [29], 
LAFTR [17], FFVAE [6], among others. One of the architectures of the adversarial bias-
mitigation model consists of an encoder, adversary module, and classifier. The encoder takes 
in the data and considers the sensitive attribute while encoding the data into the latent space. 
The adversarial training setup, using a gradient-reversal layer and an attacker network, to 
train a classifier that accurately predicts main task labels while being oblivious to protected 
attributes [10]. Finally, the data from the preserved latent space is passed on to the classifier, 
which has an integrated architecture. This architecture is further described in [17].   

In this work, the focus is on using the LAFTR model to generate data for a third-party 
classifier that is both fair and private. The LAFTR model is designed to provide a fair 
representation. Differential privacy, which adds noise to the data to protect individuals' 
privacy, is utilized as the main method for privacy preservation. The integration of 
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algorithmic fairness and differential privacy is a central focus in the training process of the 
LAFTR model, ensuring that the data generated is suitable for use by a third-party classifier. 
The paper suggests using a third-party classifier, such as logistic regression, to evaluate the 
fairness of the data generated by the LAFTR model. The logistic regression model will be 
trained on the data from the latent space, which has undergone in-processing methods, 
allowing us to compare the performance of models trained on both raw data and processed 
data. Mathematical definition of the fairness variate depends on tasks. In this paper we will 
use two popular metrics: Statistical (Demographic) parity and Equalized odds [20]. 

4. METHODOLOGY 

In this article, we investigate the dependencies of the impact of privacy injection on accuracy 
and fairness. The LAFTR-DP and LAFTR-EOD [17] models with different privacy values  
in different modules of the model will be compared. In differential privacy  represents the 
privacy budget that determines the amount of noise added to the gradients during training, 
where a smaller  corresponds to stronger privacy guarantees but potentially higher noise 
levels, impacting the trade-off between privacy and utility in the learning process. These 
networks apply adversary training and optimization using DP-SGD to achieve fairness and 
guarantees of data confidentiality. 

4.1. Dataset 

Adult dataset: The Adult dataset is a widely used standard machine learning dataset for 
studying and demonstrating many common or specially designed machine learning 
algorithms for unbalanced classification. In total, the data set (train and test) contains 48842 
samples. The dataset contains 16 columns, including a target field “Income” and 14 attributes 
that describe a person's demographics and other features. The income is divided into two 
classes: <=50K and >50K, which serves as the target variable for the classification task. 

The dataset includes various personal information about individuals, such as their age, 
education level, gender, occupation, and so on.  Given the characteristics of adult recruitment, 
the classification task is to determine whether a person earns more than 50K or less than 50K. 
Gender was selected as a protected attribute. The size of the test data was chosen to be equal 
to 30% of all data. 

4.2. Model 

The idea is to study a representation that satisfies a certain property of fairness while 
remaining differentially private. Fig. 1 shows a network architecture that seeks to study a 
representation of data  capable of reconstructing input data , classifying target labels , 
and protecting a sensitive attribute  (Fig. 1). The loss function of the network is defined as a 
linear combination of three loss terms, the reconstruction loss  , the adversary loss 

 , and prediction loss [9]: 

 

where ,  and  are hyperparameters controlling the weighting of the competing objectives. 
The decoder reconstructs input data  from the latent space. The classifier predicts the class 
label from latent space . The adversarial loss is to enforce the representation (latent space) 
to satisfy a certain fairness notion. Any of the first two requirements can be omitted by 
setting the hyperparameters to zero. To improve fair metrics, which defined in background 
section, loss functions can be defined as [9]: 

, 

, 
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, where  - adversary,  - classifier,  - encoder,  - decoder. 
Also, the objective of the network is not only to make the representation  fair, but also 

to be privacy preserving. In this regard, we propose to train the network with privacy 
preserving techniques such as DP-SGD.  

 

Fig. 1. LAFTR model with DP-SGD in (a) encoder/ classifier, (b) encoder/classifier/adversary 

To make latent space confidential we need to introduce DP-SGD method in encoder. 
Also, in this work we will inject privacy in classifier and adversary modules (Fig. 1). 

In addition, in this work, two types of LAFTR models (LAFTR-DP and LAFTR-EOD) 
are considered. The only difference between LAFTR-DP and LAFTR-EOD models is that in 
LAFTR-EOD approach we pass to adversary not only , but we pass class label  in 
addition. 

4.3. Training 

LAFTR seeks to study the encoder that gives reliable representations, i.e. the output of the 
encoder can be used by third parties with confidence that their naively trained classifiers be 
fairly fair, private and accurate. Algorithm below describes the training process of LAFTR 
with privacy preservation. The detailed pseudocode is described in Algorithm 1.  

Algorithm 1: Differentially private SGD on learning under adversary 
Input: Dataset ; batch size ; learning rate ;  iterations; noise ; 

clipping bound ; hyperparameters controlling the weighting ( ,  and ); component for 
privacy preservation (  (for  and ) or  (for ) or  (for )) as ; loss function 

 

 initialize network parameters (encoder, classifier, adversary respectively) 
True (Boolean indicating whether to update parameters ) 

for k  do 
 if  then 
 Select next batch; 
 foreach  in batch do  
  Compute gradients for each module: 
    

    

  Clip gradients: 
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 end 
 Add noise to selected component: 
   

 Sum other gradients: 
   

 Descent: 
 if  then 
    
    

 else 
    

 end 
   
end 
In short, it is a combination of adversarial learned fair representations [9] and DP-SGD 

[1]. We learn encoder and classifier with gradient clipping and adding noise if necessary. 
Then we freeze the learned encoder and classifier and learn the adversary part with gradient 
clipping and adding noise if necessary. 

The overall loss function is a combination of these loss functions with hyperparameters 
controlling the weighting. The training process consists of iterating over a number of epochs, 
each time selecting a random batch of data from the training set. The gradients for each 
component are computed and clipped to ensure that they do not exceed a certain bound. Then, 
a noise is added to one of the components to achieve differential privacy. Finally, the 
parameters of the corresponding component are updated by performing stochastic gradient 
descent with the computed gradients. This process is repeated until the desired number of 
epochs is reached. The training algorithm of LAFTR with privacy preservation is a crucial 
component of this approach, allowing for the training of complex models that can achieve 
both fairness and privacy. 

4.4. Evaluation metrics 

As we said in Section 4.3, we try to train encoder which will give reliable representation. 
Training encoder several times and taking the outputs from the encoder, we will pass it into a 
simple binary classifier (logistic regression), average them and calculate standard deviation. 
After that we will use fairness metrics which was mentioned in Section 0 to evaluate these 
bias-mitigation strategies. Also, we will measure accuracy of all models for comparison with 
bias-mitigation strategies and unfair strategies. 

To evaluate accuracy and fair metrics we will use logistic regression. Logistic regression 
will learn on generated by encoder new data several times and return mean and standard 
deviation of accuracy, difference of demographic parity -  and 
difference of equalized odds - . 
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During the training of different model configurations, the fair metrics and accuracy will 
change. To understand advantages of provided models we need to compare accuracy-fairness 
trade-off. For evaluation trade-off we will use next function: 

 where  - accuracy,  - fair metric. Next we will call Acc/Fair. 

4.5. Model and hyperparameters 

At the outset of the experiment, the initial step was to define a set of hyperparameters that 
remained constant throughout all subsequent experiments. Hyperparameters are parameters 
that cannot be learned directly from the training data and need to be set manually before the 
training process commences. 

Table 1. Model fixed hyperparameters 
Model hyperparameters Values 

Encoder MLP depth as in depth*[width] 2 layers 
Classifier MLP depth as in depth*[width] 2 layers 

Encoder MLP width 32 neurons 
Classifier MLP width 32 neurons 

Latent (Z) space dimension 8 neurons 

– reconstruction loss weight 0 

– prediction loss weight 1 

– adversary loss weight 1 

Activation function in hidden layers in autoencoder LeakyReLU 
Activation function in hidden layers in classifier LeakyReLU 
Activation function in hidden layers in adversary LeakyReLU 

Activation function after last hidden layer of encoder LeakyReLU 
Activation function after last hidden layer of classifier Sigmoid 
Activation function after last hidden layer of adversary Sigmoid 

In Table 1, we can observe the various model hyperparameters and their corresponding 
values that were used in our experiments. We trained our model without taking into account 
the reconstruction loss, as our primary goal was to obtain a good representation in the latent 
space. Therefore, we did not require a good reconstruction of input data. Additionally, we 
used the same architecture for all modules of the network, except for the activation function 
after the last hidden layer of the encoder. This difference in the activation function was 
necessary since the encoder generates a new representation of input data 

 whereas the classifier and adversary try to predict label  or attribute , 
which have binary nature. 

The choice of parameters in the model was based on the findings from prior research, 
particularly [21]. The model architecture was configured to have a two-layer Multi-Layer 
Perceptron (MLP [22]) for both the encoder and classifier, with a width of 32 neurons in 
each layer, following the recommendation from [21]. The adversary module was set up in 
two different configurations. The latent space dimension was set to 8 neurons. 

Having completed the previous step, the subsequent action is to establish the values of 
the training parameters. These parameters are essential in controlling the learning process 
and determining the behavior of the model during the training phase. The selection of 
suitable values for these parameters is a crucial process as it can significantly influence the 
performance of the model. 

After determining the appropriate values for the training parameters, they were fixed and 
used throughout the training process to optimize the model's performance on the given task. 
Notably, these parameters were carefully chosen to produce results that could be compared 
to those reported in a previous study [17]. 

The process of defining these constant training parameters is complex, and various 
factors must be considered. The size of the dataset, the complexity of the model, and the 
available computational resources – factors which were taking into account during empirical 
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choosing hyperparameters. The most important hyperparameters which affect to results - 
learning rate, and number of epochs, optimizer. Finding the best combination of these 
parameters helps achieve optimal results. 

Once the appropriate values for the training parameters have been determined, they are 
fixed and used throughout the training process to optimize the model's performance on the 
given task. Regular monitoring and tuning of these parameters may also be required during 
the training process to ensure that the model continues to improve its performance. In some 
cases generally founded hyperparameters cannot provide satisfiable results. This iterative 
process involves observing the model's performance during training, making adjustments to 
the parameters, and retraining the model to ensure that it is optimized for the task at hand. 

Table 2 Training fixed parameters 
Training parameters Values 

Max gradient norm in encoder 10 
Max gradient norm in classifier 10 
Max gradient norm in adversary 10 

Encoder/classifier optimizer NAdam 
Adversary optimizer NAdam 

Encoder/classifier learning rate scheduler PolynomialLR(2) 
Adversary learning rate scheduler PolynomialLR(2) 

The Table 2 provided outlines the specific training parameters and their corresponding 
values that were used during the training process. The values were carefully selected based 
on various factors, such as the size of the dataset and the complexity of the model. 

The maximum gradient norm in the encoder, classifier, and adversary was set to a value 
of 10. This parameter controls the maximum magnitude of the gradients during the training 
process, preventing the model from diverging or becoming unstable. 

The optimization algorithm used for both the encoder and classifier was NAdam, while 
the adversary used the same algorithm with modifications to ensure differential privacy. 
NAdam was selected over other popular optimization algorithms due to its superior 
performance in handling noisy or sparse gradients. NAdam is a variant of the Adam 
optimization algorithm that combines the benefits of adaptive learning rates and momentum-
based optimization techniques [23]. It has been shown to outperform other popular 
optimization algorithms such as Adagrad, RMSprop, and Adam. In detail, DP-NAdam works 
similarly to DP-SGD, with some modifications that introduce the NAdam algorithm itself. 
These modifications include the calculation of the adaptive learning rates and momentum 
parameters, which are adjusted based on the first and second moments of the gradient, as 
well as the inclusion of noise to ensure differential privacy. The choice of NAdam over SGD 
was made based on its superior performance on the given task, as well as its ability to handle 
noisy or sparse gradients that are common in differential privacy settings. Furthermore, the 
use of DP-NAdam provides additional benefits such as faster convergence rates. 

The learning rate scheduler used for both the encoder and classifier was PolynomialLR(2), 
which gradually reduces the learning rate quadratically over the course of the training 
process to prevent the model from overfitting to the training data. Similarly, the adversary 
also used the same scheduler. 

It is worth noting that the choice of parameters was not solely based on the findings from 
[21], as modifications were made to ensure the model could achieve similar results as 
reported in both [21] and [17]. While [21] provided valuable insights into the choice of 
architecture, latent space dimension, and the adversary module configurations, [17] provided 
guidance on the selection of the optimization algorithm and its modifications to ensure 
differential privacy. The modifications made to the optimization algorithm were necessary to 
achieve differential privacy while maintaining the model's performance. It should be noted 
that even with the use of DP-NAdam, the learning rate still had to be increased dramatically 
(~0.1-0.15) to achieve the desired level of performance. Despite the need to increase the 
learning rate dramatically, the model was able to achieve the desired level of performance 
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without sacrificing its stability or accuracy. Overall, the parameters were carefully selected 
based on a mixture of insights from both [21] and [17], with modifications to ensure that the 
model could achieve the desired level of performance while maintaining differential privacy. 

Additionally, based on a large number of parameter tuning attempts, it was discovered 
that using a larger batch size improves model stability. Therefore, the maximum feasible 
batch size was used for training, which could fit in VRAM. For the Adult dataset, the entire 
dataset was used, for the German dataset, the entire dataset was used, and for CelebA, 20,000 
samples were used. 

Empirically, it has been observed that the model may cease to be adequate under certain 
conditions. Therefore, after training the model, a validation of its adequacy was conducted. 
The classifier within the neural model should yield accuracy values above 50%, while fair 
metrics should not exceed 2%. In the event that any of these requirements were not met, the 
model was retrained with different initial weights. 

5. EXPERIMENTS 

In this section we will compare different approaches of privacy preservation and/or bias-
mitigation strategies. All models with privacy preservation and/or bias-mitigation was 
trained several times to calculate mean and standard deviation of accuracy and fair metrics.  
This work considers models with various configurations as described in Table 3. Since each 
configuration was trained multiple times, in addition to the histogram, a t-test table with a p-
value of 5 was used for comparison. 

Table 3 Changing parameters 
Parameter Values 

Dataset Adult 
Model architecture LAFTR-DP, LAFTR-EOD 
Adversary module 2 layers * 32 neurons; 4 layers * 64 neurons 

Privacy in No privacy; Encoder/Classifier; Encoder/Classifier/Adversary 

 1, 3, 10, 30 

To ensure that the results were robust a diverse set of 37 models were trained for each 
dataset. These models varied in terms of their architecture, hyperparameters, and level of 
privacy. This approach allowed for a comprehensive evaluation of the performance of the 
models under different configurations and helped to identify the most effective 
configurations for each dataset. 

A t-test will be utilized to compare the performance of models. T-test a statistical 
hypothesis test that is used to determine if there is a significant difference between the means 
of two groups. In the context of metrics, t-tests can be used to determine if there is a 
statistically significant difference in the performance of two models, or if a certain 
modification or intervention has had a significant effect on the performance of a model. By 
using t-tests, we can make informed decisions about the effectiveness of different strategies 
for improving the performance or fairness of machine learning models. 

There are several conventions in the model names. “Unfair|No privacy” - logistic 
regression learned on raw data without any modifications. “Adversary = Classifier” means 
that modules of LAFTR have the same structure, “Adversary > Classifier” means that 
adversary part stronger (2 times more layers and 2 times more neurons in each layer). 

5.1. Adult dataset 

The Adult dataset is a well-known benchmark dataset in machine learning that contains 
demographic and employment-related information of individuals to predict whether their 
income is above or below a certain threshold. In this case each configuration of models was 
trained 10 times. Number of epochs for each training was set to 250. In all next datasets, 
based on t-test, protected models demonstrated similar performance across different levels of 
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privacy, regardless of the level of noise in the gradients during training and the neural 
network modules in which this noise was injected. Therefore, we will consolidate the results 
with different epsilon values and different privacy injection configurations. Next, tables will 
be presented for each metric, comparing the minimum, maximum, and average values among 
all implementations. The results will be grouped by model type and adversary strength, 
taking into account the conditions described above. 

5.2. Difference of demographic parity 

There are results of measuring first fair metric - difference of demographic parity – . 
Based on the Fig. 2, the comparison models with different privacy levels, epsilon values, 

and adversary-classifier strengths we can say for sure that the "Unfair|No privacy" model is 
the most unfair.  

 

 

Fig. 2. Dependence of  on  for Adult dataset 

As observed in Table 4, for LAFTR-DP, both the minimum and average values of  
are very low, regardless of the strength of the adversary. However, for the private models, 
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the minimum values are nearly zero, while for the unprotected models, they range from 6% 
to 9%. Additionally, in the case of protected models, the average value is independent of the 
adversary's strength, with a difference of only 3%. The maximum value does not exceed that 
of the unfair approach in any case, but the difference ranges from 0.6% to 7%. 

Regarding LAFTR-EOD, the behavior of the results is comparable to LAFTR-DP, but 
with slight variations and more stability in the values. The maximum difference between 
LAFTR-EOD and the unfair model ranges from 3.5% to 2.5%. On average, the minimum 
values are slightly lower for this architecture. In the absence of protection, the difference can 
reach up to 5% in the case of a weak adversary. Additionally, the strength of the adversary 
has a stronger impact on the average value for the protected models compared to the 
unprotected ones. 

Table 4  comparison. Adult dataset. 
ΔDP 

Model Privacy Adversary min max mean 

LAFTR-DP 
No privacy 

Adversary = Classifier 0.064 0.136 0.097 
Adversary > Classifier 0.020 0.097 0.060 

Privacy in.. 
Adversary = Classifier 0.000 0.163 0.059 
Adversary > Classifier 0.001 0.140 0.057 

LAFTR-EOD 
No privacy 

Adversary = Classifier 0.017 0.133 0.080 
Adversary > Classifier 0.046 0.143 0.081 

Privacy in.. 
Adversary = Classifier 0.005 0.145 0.061 
Adversary > Classifier 0.000 0.152 0.057 

Unfair No privacy - 0.169 0.169 0.169 

5.3. Difference of equalized odds 

Next step – results of measuring second fair metric - difference of equalized odds - . 
It is very difficult to draw any conclusions based on the  
Fig. 3.  
Based on Table 5, in the case of , the situation is slightly different in comparisaon 

with . The strengthening of the adversary continues to have a positive impact on fairness 
and often allows for an additional 1-2% improvement on average. Furthermore, all protected 
models can achieve better results than their unprotected counterparts. However, in the case of 

, techniques such as adversary strengthening or privacy injection can significantly 
deteriorate the outcomes. For instance, in the LAFTR-DP model, the addition of a strong 
adversary can lead to results that are 5% worse than the unfair model, and introducing noise 
can increase the difference up to 22% in the worst case. Nevertheless, the average values are 
still lower than those of the unfair approach, but the introduction of noise brings the average 
values closer to those of the unfair solution, with a difference of 1-2%. In contrast, for non-
private models, the difference ranges from 3.6% to 2.6%. 

The behavior of the results in LAFTR-EOD models is similar to LAFTR-DP, but they 
exhibit less stability. The minimum values are lower in almost all cases, while the maximum 
values are consistently high, even in the case of a weak adversary without protection (unfair 
approach performs better by 7%). In other cases, the difference can reach up to 19%. Due to 
the higher instability and a larger number of unfair results, the fairness metric's average value 
for LAFTR-EOD is approximately 2.5% worse than that of LAFTR-DP. 
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Fig. 3. Dependence of  on  for Adult dataset 

Table 5  comparison. Adult dataset. 
ΔEOD 

Model Privacy Adversary min max mean 

LAFTR-DP 
No privacy 

Adversary = Classifier 0.055 0.107 0.084 
Adversary > Classifier 0.015 0.165 0.076 

Privacy in.. 
Adversary = Classifier 0.008 0.335 0.103 
Adversary > Classifier 0.010 0.317 0.092 

LAFTR-EOD 
No privacy 

Adversary = Classifier 0.027 0.183 0.114 
Adversary > Classifier 0.042 0.205 0.107 

Privacy in.. 
Adversary = Classifier 0.006 0.309 0.113 
Adversary > Classifier 0.007 0.276 0.090 

Unfair No privacy - 0.117 0.117 0.117 

 

5.4. Accuracy 

To fully understand the behavior of the model, it is necessary to investigate patterns of 
accuracy. 
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As in demographical parity metric Fig. 4 demonstrates that the "Unfair" model, which 
has no privacy protection and an unfair adversary much better predict labels and consistently 
outperformed by all other models in terms of accuracy. 

 

 
Fig. 4. Dependence of accuracy on  for Adult dataset 

As shown in Table 6, the average accuracy values are independent of the adversary's 
strength and the model type. The only factor that leads to a decrease in accuracy of around 2-
3% is the introduction of privacy. The difference between the minimum and maximum 
accuracy values varies between 4% and 7%, and these values do not exhibit any clear 
correlation. In general, non-private models demonstrate a 5% deviation from the unfair 
solution, likely due to the reduced dimensionality of the latent z-space and the potential loss 
of information during data encoding. Protected models show an 8% deviation, which can be 
attributed to the addition of noise in the training process, affecting the latent z-vector. 

To assess the trade-off between accuracy and fairness and understand the benefits of 
prioritizing fairness over accuracy, it is crucial to examine the compromise between these 
two metrics. By analyzing the relationship between accuracy and fairness measures, we can 
determine the extent to which sacrificing accuracy has resulted in improved fairness 
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outcomes. This analysis allows us to evaluate the value of prioritizing fairness and make 
informed decisions regarding the trade-off between these two important considerations. 

Table 6 General accuracy comparison. Adult dataset. 
Accuracy 

Model Privacy Adversary min max mean 

LAFTR-DP 
No privacy 

Adversary = Classifier 0.785 0.829 0.810 
Adversary > Classifier 0.767 0.810 0.792 

Privacy in.. 
Adversary = Classifier 0.749 0.803 0.777 
Adversary > Classifier 0.749 0.805 0.777 

LAFTR-EOD 
No privacy 

Adversary = Classifier 0.758 0.830 0.803 
Adversary > Classifier 0.784 0.823 0.804 

Privacy in.. 
Adversary = Classifier 0.756 0.808 0.779 
Adversary > Classifier 0.754 0.822 0.778 

Unfair No privacy - 0.853 0.853 0.853 

5.5. Accuracy/Fairness trade-off 

We compared fairness and accuracy of different approaches and explored that the bigger 
fairness the lower accuracy and vice versa. To understand advantages of provided models we 
need to compare accuracy-fairness trade-off using custom metric which was provided in 
Section 4.4. 

The information presented in  
Fig. 5 shows that “No privacy” approaches slightly better than “Unfair” and protected 

approaches. 
But for a complete picture of understanding the compromise, it is also necessary to 

compare the accuracy-difference of equalized odds trade-off. 
It is evident from Fig. 6 that “Unfair” approach has better trade-off across all other 

models. 
As evident from Table 7, in all cases of trade-offs between , the average values are 

better than those of the unfair solution (with a difference of 0.4% to 1.7%), indicating 
consistent improvements in terms of this metric. It is important to note that the introduction 
of noise increases the variability between the minimum and maximum values (from 
approximately 3% for non-private models to around 10% for private models), but it also 
leads to an increase of approximately 2-3% in the maximum value. There are no differences 
observed between architectures, but strengthening the adversary may yield improvements of 
1-2% in some cases. 

When considering , the average values generally fall behind the unfair solution by 
2-6%. However, in the maximum column, all values are equal to or greater than the unfair 
solution, indicating the need for more nuanced adjustments. On average, LAFTR-DP 
demonstrates values superior to LAFTR-EOD by 1%. It is worth noting the high stability of 
LAFTR-DP without privacy, with a variability of 4% and 7% between the minimum and 
maximum values for different adversaries, while the others range from 12% to 18%. 

In general, for this dataset, it can be stated that with proper configuration, outstanding 
fairness results can be achieved while sacrificing less in terms of accuracy compared to gains 
in any fairness metric. Furthermore, based on all the results, it becomes evident that 
strengthening the adversary has a positive impact on the trade-off, but only when carefully 
fine-tuned; otherwise, it may lead to poor outcomes. Additionally, it is not possible to 
confidently assert that LAFTR-DP outperforms LAFTR-EOD, as it depends on the specific 
task, where LAFTR-EOD may perform better in certain cases. Finally, it can be concluded 
that by incorporating privacy at various levels, it is feasible to attain either a highly fair 
model or avoid significant accuracy losses while improving fairness. 
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Fig. 5 Dependence of Acc/Fair  on  for Adult dataset 
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Fig. 6 Dependence of Acc/Fair  on  for Adult dataset 

Table 7 General accuracy-fairness trade-off comparison. Adult dataset. 
Acc/Fair ΔDP 

Model Privacy Adversary min max mean 

LAFTR-DP 
No privacy 

Adversary = Classifier 0.716 0.755 0.739 
Adversary > Classifier 0.723 0.761 0.747 

Privacy in.. 
Adversary = Classifier 0.683 0.789 0.734 
Adversary > Classifier 0.694 0.783 0.735 

LAFTR-EOD 
No privacy 

Adversary = Classifier 0.716 0.766 0.744 
Adversary > Classifier 0.720 0.766 0.744 

Privacy in.. 
Adversary = Classifier 0.678 0.779 0.734 
Adversary > Classifier 0.698 0.777 0.737 

Unfair No privacy - 0.730 0.730 0.730 
Acc/Fair ΔEOD 

Model Privacy Adversary min max mean 

LAFTR-DP 
No privacy 

Adversary = Classifier 0.723 0.764 0.747 
Adversary > Classifier 0.694 0.776 0.737 

Privacy in.. 
Adversary = Classifier 0.595 0.773 0.707 
Adversary > Classifier 0.604 0.763 0.714 

LAFTR-EOD No privacy Adversary = Classifier 0.687 0.769 0.722 
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Adversary > Classifier 0.668 0.785 0.728 

Privacy in.. 
Adversary = Classifier 0.594 0.776 0.702 
Adversary > Classifier 0.624 0.774 0.716 

Unfair No privacy - 0.764 0.764 0.764 

6. CONCLUSION 

This research study aimed to develop a benchmark to evaluate differentially private fair 
representations across various model configurations and datasets and research results. The 
following key findings were obtained during the study: 

 Firstly, the impact of privacy integration on fairness in the encoding process was 
examined. It was demonstrated that with successful weight initialization, any model could 
generate nearly fair representations. Additionally, statistical tests confirmed the equality of 
privacy-enabled models in all cases. The level of noise, as well as the number of parts it is 
injected into, did not affect the fairness outcome. The introduction of privacy improved 
fairness by up to 5%. 

 Secondly, it was observed that privacy integration had a negative impact on model 
accuracy, with a typical decline of 1-3% compared to unprotected counterparts. 

 Furthermore, the analysis of results revealed a pattern where strengthening the 
adversary could have a positive effect on the outcomes. However, careful fine-tuning and 
monitoring of the training process were necessary due to increased instability. 

 Moreover, it was shown that any private fair models could achieve up to 5% 
advantage in the compromise between accuracy and fairness compared to the "unfair" model.  

Based on the study's findings, it can be concluded that it is possible to train a fair and 
private model with acceptable accuracy and a high level of protection. However, achieving 
such results requires fine-tuning or fortunate circumstances, as privacy integration reduces 
stability in an already unstable model. Increasing fairness may require strengthening the 
adversary, which further adds to the instability. 
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