
Adv Syst Sci Appl 2024; 02:192–202
Published online at https://ijassa.ipu.ru.

A Generalized Bi-Objective Scheduling Algorithm for
Batch-of-Tasks on Heterogeneous Computing Systems

Mohammad Qasim1, Mohammad Sajid1, Maria Lapina2, Mikhail Babenko2*

1Aligarh Muslim University, Aligarh, India
2North-Caucasus Federal University, Stavropol, Russia

Abstract: The high energy consumption of data centers and its contribution towards greenhouse
gases demand energy-efficient management of resources. Energy consumption of computing
resources encourages the development of bi-objective scheduling algorithms optimizing the
makespan of jobs and energy consumption of computing resources. In general, the problem
of job scheduling and bi-objective optimization falls in the NP-complete combinatorial
optimization problem category. To address the bi-objective scheduling problem, a generalized bi-
objective scheduling algorithm (Z*) for Batch-of-Tasks (BoT) applications on the Heterogeneous
Computing System (HCS) has been proposed. The BoT represents the set of independent tasks
from multiple applications, and the HCS represents the computational environment consisting
of processors with different frequencies. To schedule tasks, the Z* algorithm takes decisions
using the optimization function of energy consumption and completion time of tasks based on
the given weights. The weight could be fractional or integer, so the Z* algorithm represents a
set of different algorithms. The proposed algorithm is beneficial for cloud data centers/service-
oriented computing to execute customer jobs based on the demand, whether the customer needs
high throughput or low cost of execution.

Keywords: Batch-of-Tasks, Heterogeneous Computing System, Scheduling, Makespan,
Energy

1. INTRODUCTION

On one side, the performance of data centers has been improved by increasing the parallel
servers, but on the other side, the overall energy consumption of data centers housing
thousands of servers needs to be minimized due to negative environmental effects [1, 2]. For
example, a data center houses the ten fastest systems (Tianhe-2) to provide services to users.
Since a Tianhe-2 server requires 17.808 MW of power, making a single hour’s execution
on Tianhe-2 cost roughly $1780.80 on the assumption that the average price of electricity
is $100/MW-Hour. If the cloud data service is available for 8 hours per day, 20 days per
month, the cost of operating a cloud data center apart from the cooling cost will be $34
million per year. To provide power to the data center, the powerhouse needs to consume
71230 kg coal and 712320L water while producing 177545.8 kg CO2 and 5342.4 kg SO2
[1–5]. Furthermore, high energy use raises temperature since each electronic component’s
temperature has a direct inverse relationship with its energy use, which lowers system
reliability. According to NRDC [2], In 2013, it was predicted that 12 million computing
servers across 3 million data centers in the US used 91 billion kilowatt-hours of electricity.
By 2020, this energy usage is projected to increase by a direct 53%, reaching 140 billion

∗Corresponding author: mgbabenko@ncfu.ru

A GENERALIZED BI-OBJECTIVE SCHEDULING ALGORITHM... 193

kilowatt-hours. Due to the high financial costs, decreased reliability of computer systems, and
adverse impacts on the environment, the excessive energy usage of data centers has become
a concern, which encourages the development of energy-efficient hardware and software
management [6].

Heterogeneous Computing Systems (HCSs) are the base of data centers due to the
replacement and up-gradation of computing nodes. Compared to homogeneous computing,
HCS can be thought of as the coordinated employment of a variety of processing units
with varying capabilities to give higher performance, better energy efficiency, and more
cost-effectiveness [7]. To deploy energy efficiency, energy-aware scheduling models are
required to develop that execute jobs with minimum possible energy consumption as well
as makespan. Scheduling generally involves distributing tasks among processors with the
purpose of optimizing one or more quality of service criteria. To find the task-to-processor
mapping that minimizes both makepan and energy usage, scheduling methods are necessary.
Since data centers execute jobs in three categories, i.e., lower cost of execution with no
constraints on time, lower execution time with no constraint on cost and the combination of
both. The cost of execution is measured in terms of direct energy consumption and the time
span holding the resources of data centers. Therefore, the data centers require a bi-objective
scheduling algorithm that has the capability to offer different weights to both execution time
and energy consumption/cost. In this work, a generalized bi-objective scheduling algorithm
(Z*) for Batch-of-Tasks (BoT) on a HCS has been proposed. The BoT is a very common job
representing the set of independent tasks from multiple applications, and HCS represents
the computational environment consisting of processors with different fixed frequencies.
The proposed Z* algorithm schedules tasks based on a weighted aggregation of energy
consumption and completion time of tasks.

The remainder of the paper is organized as follows. The next section explains the related
scheduling algorithm that schedules BoT on HCS. The design principles, which include the
BoT model, the HCS model, and the energy consumption model, are presented in Section 3.
The proposed generalized Z* algorithm and its optimization function are described in Section
4. Section 5 shows that Z* is the same as some of the existing algorithms, and the simulation
results present the behavior for different cases. The paper ends in Section 6 with concluding
remarks and possible future directions.

2. RELATED WORK

The standard methods for reducing the makespan of BoT are MaxMin [10, 11], MinMin
[10, 11], MaxMin+ [12], MinMin+ [12], duplication algorithms [14], analytical models [15]
and dependent task algorithms [15]. The Expected Time to Compute (ETC) simulation model
provides a standard by which to compare the performance of these algorithms on a distributed
computing platform. Several of the algorithms are described in the following list.

The MaxMin algorithm operates in two stages as well. In the first stage, it determines the
shortest time to complete each unscheduled task, considering all processors. In the second
stage, the task that will take the longest to finish overall is selected and assigned to the
appropriate processor. This process is repeated until all tasks have been scheduled, at which
point the newly scheduled item is removed from the list of unscheduled tasks [10, 11].

The MinMin algorithm comprises two stages. It determines the minimal completion time
for every unscheduled task in the first Stage while considering all processors. The job that
takes the shortest time to complete overall is selected and allocated to the suitable processor
in the second stage. Once a task has been scheduled, it is deleted from the list of unscheduled
tasks, and the process is then repeated until every item has been scheduled [10, 11].

Another form of a MinMin algorithm is known as MinMin+ with less time complexity.
Instead of being task-oriented like in the MinMin, and MinMin+ algorithm operates from a
processor-oriented perspective. After initialization, the MinMin+ algorithm determines the
completion times of each task with regard to each processor. After that, algorithm runs in

Copyright © 2024 ASSA. Adv Syst Sci Appl (2024)

194 M. QASIM, M. SAJID, M. LAPINA, M. BABENKO

two phases. The algorithm initially identifies the task that will take each processor the fewest
amount of time to complete. The task that will take the least amount of time to complete
will be scheduled and taken out of the set. Since the current task’s scheduling decision
only influences the single processor’s readiness time, this approach only calculates the time
requirements of all unscheduled tasks with regard to the same single processor. This avoids
calculating the completion times of tasks with respect to all other processors. The two-stage
process continues until all tasks have been scheduled [12].

There have been proposed a plethora of bi-objective algorithms with the aim of optimizing
energy consumption as well as makespan. Some of the algorithms that are energy-aware
are Global Scheduling with Shared Slack Reclamation (GSSR) [17], Fixed-order list
scheduling with Shared Slack Reclamation (FLSSR) [17], Shortest Task First for Computer
with Minimum Energy (STF-CME) algorithm [18], Longest Task First for Computer with
Minimum Energy (LTF-CME) algorithm [18], MaxMax min [19], MinMean min [19],
MINMin [20], MINSuff [20], MinMIN-MinMin [20], kPB-Sufferage [20], G2 [21], ESTS
algorithm [22], Min-Energy algorithm and ESHEFT algorithm [24].

To minimize energy consumption while meeting deadlines for all the tasks, Zhang et al.
presented several energy-efficient algorithms, such as the Shortest Task First for Computer
with Minimum Energy (STF-CME) algorithm and the Longest Task First for Computer with
Minimum Energy (LTF-CME) algorithm. The initial stage of each algorithm schedules tasks
to the machine, and the final stage establishes the ideal or nearly ideal speeds for each task.
According to simulation research, hybrid algorithms outperform and provide the optimum
job schedules for both discrete and continuous-speed computers [18].

For independent tasks, Diaz et al. suggested three low-cost energy-aware algorithms:
MaxMax min, MinMax min and MinMean min. The two phases of the low-cost heuristic’s
operation. The method gives each task a priority in the first phase, sorts the tasks into
decreasing priority order, and then uses the ordered task’s list to choose the best processor.
In the next phase, calculate the Scoring Function (SF) for the chosen task relative to each
processor and scheduling the work for the processor with the lowest SF value. Up till all the
tasks are scheduled, the process is repeated [19].

Twenty bi-objective energy-conscious scheduling methods were proposed and assessed by
Nesmachnow et al. [20] utilizing the algorithms MaxMin, MinMin, Suffrage, and k-Percent
Best (kPB). Based on a heterogeneous multi-core environment, the proposed algorithms are
assessed—MINMin functions in two stages. In the first stage, it chooses task and processor
combinations that, when all processors are considered, have the shortest completion times for
each unscheduled task. The work is allocated to the relevant processor in the second stage
using pair from the stage 1 pairs that minimize energy consumption. The most recent task
scheduled is then removed from the list of unscheduled tasks; this process is repeated for
each task that is still on the list until all tasks have been scheduled [20].

Sajid et al. propose two bi-objective energy-aware scheduling algorithms using the
weighted aggregation method to schedule BoT applications on heterogeneous processors with
the objective of optimizing makespan and energy consumption. The proposed algorithms
employ processor-oriented to schedule the tasks and hence, offer lower time complexity
in comparison to MinMin, MaxMin, MINSuff and MINMin algorithms [10, 11, 20]. The
effectiveness of the suggested algorithms has been compared with MaxMin, MinMin,
MINMin and MINSuff using the ETC simulation model. The simulation study reveals that the
proposed algorithm (G2) performs better than peer algorithms in terms of flowtime. energy
consumption and makespan [21].

In this work, we propose a generalized algorithm Z* that offers the selection of weights is
flexible to energy consumption and/or completion times. It is a useful algorithm to compare
the different versions of the algorithms.

Copyright © 2024 ASSA. Adv Syst Sci Appl (2024)

A GENERALIZED BI-OBJECTIVE SCHEDULING ALGORITHM... 195

3. THE PROBLEM FORMULATION

In this section, the problem is formulated, including BoT model, a HCS, design principles
and energy consumption [21].

3.1. Batch-of-Tasks and Heterogeneous Computing System
The BoT B consists of N tasks and is represented by B = t1, t2 ti . . . tN . Every task
ti ∈ B is independent and atomic in nature, i.e., the tasks have no precedence constraints
and cannot be partitioned/ distributed/pre-empted during execution. The expected number of
cycles (CY CLEi) required to execute a task ti ∈ B is also given. The BoT applications
have been used by many streams, such as high energy physics, geophysics, molecular
quantum mechanics, weather forecasting, climate, cryptographic analysis, and tomographic
reconstruction. The HCS is explained in the next paragraph and Figure 3.1. shows the
mechanism of HCS in cloud environments.

Fig. 3.1. Heterogeneous Computing in Cloud Environments.

The HCS H represents the execution environment consisting of M heterogeneous
processors and is characterized by H = p1, p2. pj. . . pM . All processors are
heterogeneous, i.e., the frequency fj and voltage vj of the processor pj ∈ H is different
from the processor pk ̸= pj . A high-speed interconnection network connects all processors,
e.g., Myrinet, to execute real-time tasks. The processors are not dynamic voltage-frequency
scaling-enabled, and each processor pj ∈ H runs on fixed voltage (vj) with corresponding
fixed frequency (fj).

3.2. Design Principles
The scheduler maintains information about a scheduler node, which assigns the BoT B of N
independent tasks to the HCS H of M heterogeneous processors and manages the batch of
independent jobs on a periodic basis. In the sequence of their execution, all tasks assigned to
such a processor pj is en-queued in a local queue Qj . We employ the following notations and
design ideas in this work.

ETC [N][M]: The proposed algorithm has been assessed using the simulation model
known as Expected-Time-to-Compute (ETC). The estimated execution time for every task
on each processor [10,11,20] is stored in a matrix called ETC[N][M] that is ordered N-by-M.

Copyright © 2024 ASSA. Adv Syst Sci Appl (2024)

196 M. QASIM, M. SAJID, M. LAPINA, M. BABENKO

It is possible to calculate the task ti expected runtime on the processor pj using frequency fj
as follows:

ETC (i, j) =
CY CLEi

fj
, (3.1)

ALLOC [N][M]: The distribution of N tasks across M processors for execution is
represented by an allocation matrix (ALLOC) of order N by M. Whether or not the task
ti has been assigned to the processor pj determines whether the value of ALLOC (i, j) is
zero or one. The allocation matrix should satisfy the following restrictions after scheduling
N tasks.

M∑
J=1

ALLOC(i, j) = 1 ∀1 ≤ i ≤ N (3.2)

N∑
i=1

ALLOC(i, j) = K, ∀0 ≤ K < N, ∀1 ≤ j ≤ M (3.3)

PRT j: It indicates the amount of time that the processor pj has been ready. The PRT j

for the processor pj is the earliest time processor pj has the ability to finish all of the tasks
that were previously scheduled for completion. If there is no task allocated to the processor
pj , the PRT j = 0.

RT ij: It indicates the task ti ready time on the processor pj . RTij is the processor-ready
time for the processor pj on which task ti is scheduled i.e.

RT ij = PRT j (3.4)

CT ij: It shows when a task ti on the processor pj was completed. It may be expressed
mathematically as the summation ready time of the processor pj and the expected time it will
take to complete the task ti.

CT ij = PRT j + ETC (i, j) (3.5)

After scheduling the task ti on processor pj , the processor ready time is also updated as

PRT j = CT ij (3.6)

Makespan of BoT B: It is referred to as the maximum amount of time that elapsed between
the first scheduled task’s start time and the last scheduled task’s completion time of the batch
of N tasks, and it may be calculated as

MKB,H = max {CTij|ALLOC(i, j) = 1, 1 ≤ i ≤ N, } (3.7)

3.3. Heterogeneous Computing Systems Energy Model
To execute the BoT B on HCS H, the processors consume energy deepening on the schedule
and order of tasks. The CMOS-fabricated processor-based system’s energy comprises
of Static Energy (Estatic) and Dynamic Energy (Edynamic) with the significant energy
consumption factor being Edynamic. For a specific frequency fj and voltage vj , the dynamic
power (Pdynamic) used by a processor pj is given by [24].

PDynamic (pj) = a ∗ Cj ∗ vj2 ∗ fj (3.8)

where the activity factor is represented by the constant α, Cj represented physical
capacitance, processor’s pj clock frequency (speed) denoted by fj and Vj denotes the voltage

Copyright © 2024 ASSA. Adv Syst Sci Appl (2024)

A GENERALIZED BI-OBJECTIVE SCHEDULING ALGORITHM... 197

applied to the processor corresponds to the frequency fj . The physical capacitance (Cj) and
activity factor (α) is determined during the manufacturing and design phases. The supply
voltage Vj and the clock frequency fj are configurable either statically (when compiling) or
dynamically (when running).

Due to the heterogeneity of the processors utilized, the energy consumption of a task ti
is dependent on the frequency of operation, voltage, and the amount of time necessary to
complete the task. Consequently, a task’s ti energy consumption on a processor pj may be
expressed as

ECij = a ∗ Cj ∗ Vj
2 ∗ fj ∗ ETC (i, j) (3.9)

The energy consumed by BoT B on HCS H is given by

EB, H =
N∑
i=1

M∑
j=1

ALLOC (i, j) ∗ ECij (3.10)

4. THE GENERALIZED BI-OBJECTIVE ALGORITHM (Z*)

In this section, the proposed generalized bi-objective algorithm (Z*) is explained. The Z*
algorithm is a static scheduling algorithm to schedule a BoT of N independent tasks on
HCS H of M heterogeneous processors. The objective of the algorithm is to optimize
either makespan or energy or both depending on the weights assigned to objectives. The
Z* algorithm represents the set of 25 algorithms for integer weights and a set of infinite
algorithms based on fraction weights. The algorithms A1 to A25 are given in Table 4.1. The
explanation of the Z* algorithm is given as follows.

4.1. Optimization Function Specification
The BoT B of N independent tasks results in negligible idle slots while scheduling on an HCS
H of M processors [21]. The Optimization Function (OF) employed by the Z* algorithm does
not consider the idle; however, it considers both the energy consumption and completion time
of tasks as follows.

Completion time of task – As defined in equation (3.5).
Energy Consumption of task – As per equation (3.9).
The weighted sum approach, which is commonly used in the literature, has been

applied for the optimization function (OF), combining both objectives into one objective by
multiplication of weights for each objective [8]. The drawback of this optimization technique
is also widely known: only solutions found in the convex region of the Pareto front (a group of
solutions to the problem that are not dominated by any other solutions), and only one solution
from the Pareto front is discovered in each run. However, the solution obtained using the
weighted sum method is always Pareto-optimal if the weights are positive for all objectives.

The definition of the OF based on the normalized values of the goals measured in the same
unit (constant). Then, given task ti on the processor pj , the Normalized Energy (NE(ti, pj))
and the Normalized Completion Time (NC(ti, pj)) can be calculated as

NE (ti, pj) =
EC (i, j)

max(EC (i, k))
∀pk ∈ P (4.11)

NC (ti, pj) =
CT ij

max(CT ik)
∀pk ∈ P (4.12)

It is obvious that 0 < NE(ti, pj) ≤ 1, 0 < NC(ti, pj) ≤ 1. The Optimization Function
(OF (ti, pj)) can then be written using (11) and (12) as

Copyright © 2024 ASSA. Adv Syst Sci Appl (2024)

198 M. QASIM, M. SAJID, M. LAPINA, M. BABENKO

OF (ti, pj) = β1 ∗NC (ti, pj) + β2 ∗NE (ti, pj) (4.13)

The optimization function is computed for the task ti considering all processors followed
by the scheduling decisions. The performance and priority of the Z* algorithm depend on the
constants (β1, β2) of an optimization function that integrates both objectives and based on
the value, attempts to optimize both. Therefore, the values of constants (β1, β2) are critical
and must be chosen based carefully depending on the requirements. The constants beta1 and
beta2 must be between –1 to +1, i.e., β1 ∈ [−1, 1], β2 ∈ [−1, 1] and must fulfil the following
two constraints

|β1|+ |β2| = 1 (4.14)
|β1|+ |β2| ≠ 0 (4.15)

Here, constraint (4.14) states that the weights of the objectives cannot be zero, and the
sum of weights assigned to objectives must be one. For positive values of β1 and β2, the
OF (ti, pj) minimizes the objectives, whereas it maximizes the objectives for negative values
of β1 and β2.

4.2. The Procedure of the Z* Algorithm
Algorithm 1 provides the pseudo code for the Z* algorithm.

Algorithm 1: Pseudo Code of Z*
Input: HCS H of M processors, BoT B of N tasks
Output: Schedule EB,H ,MKB,H , S

1 Generate ETC using equation (3.1)
2 Assign values to β1 and β2 for optimization function
3 while B ̸= ϕ do
4 ST = ϕ // The pair of task and processors that have the lowest cost functions
5 for ∀ti ∈ H do
6 for ∀pi ∈ H do
7 Calculate NE(ti, pj) by using eq (4.11)
8 Calculate NC(ti, pj) by using eq (4.12)
9 Calculate OF (ti, pj) by using eq (4.13) for specidied values of β1 and β2

10 end
11 Find pair (ti, pj) with min value OF (ti, pj)
12 Add pair (ti, pj) to ST i.e. ST = ST ∪ (ti, pj)
13 end
14 Find pair (t′, pk) from ST with min. value of OF (t′, pk)
15 Set value in ALLOC matrix corresponding to (t′, pk)
16 Allocate task t′ on processor pk
17 Eliminate task t′ from B i.e. B = B − t′

18 end
19 Find schedule S using ALLOC matrix
20 Calculate MKB,H using (3.7)
21 Calculate EB,H using (3.10)
22 Return Schedule EB,H ,MKB,H , S

First of all, the Z* algorithm assigns values to their objectives, i.e., β1 and β2 and then
proceed to schedule the tasks using a while loop from steps 3 to 18. The Z* algorithm
computes the optimization function (OF (ti, pj)) for each unscheduled task against all
processors using equation (4.13) and determines the pair (ti, pj) of task ti and processor

Copyright © 2024 ASSA. Adv Syst Sci Appl (2024)

A GENERALIZED BI-OBJECTIVE SCHEDULING ALGORITHM... 199

pj where processor pj offers a minimum value of optimization function. Next, the algorithm
finds the pair (t′, pk) that provides the lowest value for the optimization function (OF (t′, pk)).
The task t′ has now been assigned to pk and it has been withdrawn from BoT B. This process
is then repeated for the remaining tasks until they have all been assigned to a processor.

4.3. Z* for Integer Weights of β1 and β2

For different values of β1 or β2 with the constraints in equations (4.14) and (4.15), Z*
represents a set of 25 algorithms A1 to A25 listed in Table 4.1; some of them are already well-
known and established algorithms, viz. MinMin [10, 11], MaxMin [10, 11], MINMin [20],
MinMIN [20], MINMIN [20] and MaxMIN [20]. Table 4.1 depicts 25 algorithms from A1 to
A25. The A1, A2, A3, A11, A12 and A13 behave similarly to MinMin, MaxMin, MINMin,
MinMIN, MaxMIN and MINMIN, respectively.

Table 4.1. Different forms of Z* algorithm

Sr. No. Phase I Phase II
β1 β2 β1 β2 Algorithm

1 1 0 1 0 A1 or MinMin [10, 11]
2 1 0 -1 0 A2 or MaxMin [10, 11]
3 1 0 0 1 A3 or MINMin [20]
4 1 0 0 -1 A4
5 1 0 (-1, 1) (-1, 1) A5
6 -1 0 1 0 A6
7 -1 0 -1 0 A7
8 -1 0 0 1 A8
9 -1 0 0 -1 A9
10 -1 0 (-1, 1) (-1, 1) A10
11 0 1 1 0 A11 or MinMIN [20]
12 0 1 -1 0 A12 or MaxMIN [20]
13 0 1 0 1 A13 or MINMIN [20]
14 0 1 0 -1 A14
15 0 1 (-1, 1) (-1, 1) A15
16 0 -1 1 0 A16
17 0 -1 -1 0 A17
18 0 -1 0 1 A18
19 0 -1 0 -1 A19
20 0 -1 (-1, 1) (-1, 1) A20
21 (-1, 1) (-1, 1) 1 0 A21
22 (-1, 1) (-1, 1) -1 0 A22
23 (-1, 1) (-1, 1) 0 1 A23
24 (-1, 1) (-1, 1) 0 -1 A24
25 (-1, 1) (-1, 1) (-1, 1) (-1, 1) A25

4.4. Z* for Fractional Weights of β1 and β2

It is very obvious that the weights of β1 and β2 between –1 to +1, there exist infinite weights
for β1 and β2. Therefore, the Z* algorithm represents a set of infinite algorithms for different
fractional weights.

4.5. Z* as MinMin
The proof that Z* behaves like MinMin is given. The proof for MaxMin, MINMin, MinMIN,
MaxMIN and MINMIN are similar. The outcome of the Z* depends on the values of β1 and
β2. For instance, it behaves similarly to the MinMin algorithm (A1) if the values assigned to
β1 and β2 are 1 and 0, respectively, for both phases. Since the Normalized Completion Time
metric (NC(ti, pj)) for task ti on processor pj is the ratio of the completion time of a task ti
on processors pj (CTij)) and a maximum of the completion times of the task ti against each
processor pk (1 ≤ k ≤ M or pk ∈ P). If β1 = 1 and β2 = 0, then the Optimization function

Copyright © 2024 ASSA. Adv Syst Sci Appl (2024)

200 M. QASIM, M. SAJID, M. LAPINA, M. BABENKO

(OF (ti, pj)) in phase I minimizes the makespan of the tasks and generates pair of tasks
and processors (ti, pj) such that pj offers minimum completion time to task ti. It is similar to
phase I of the MinMin algorithm. Again, if β1 = 1 and β2 = 0, then the Optimization function
(OF (ti, pj)) phase II minimizes the makespan of the tasks. Phase II of the Z* algorithm
considers the pairs generated in phase I. It determines the pair of tasks and processors (tk, pl)
such that pl offers minimum completion time to task tk among all the pairs. It is similar to
phase II of the MinMin algorithm.

4.6. Use of Z* in Data Centers
There are many ways to employ the Z* algorithm based on the requirements. The Z*
algorithm can be used to:

1. Minimize only completion time for higher throughput of data centers to generate more
monetary benefits.

2. Minimize only the energy consumption for lower negative environmental effects and
cooling costs.

3. Minimize only completion time for foreground jobs and minimize energy consumption
for background jobs.

4. As a simulation model to compare the performance for different weights.

5. CONCLUSION

The energy consumption of data centers is a considerable issue from an environmental point
of view due to GHG gas emissions and from the service provider’s view due to the extra
burden of cooling costs. Therefore, energy-efficient of resources at data centers is demanding.
In this work, we proposed a generalized energy and makespan algorithm for Batch-of-Task
(BoT) on a Heterogeneous Computing System (HCS) which has the capability to minimize
either the makespan, energy or both. The proposed Z* algorithm schedules tasks based on a
newly defined optimization function, and it represents the set of different algorithms based
on the weights of objective functions. The Z* algorithm can be employed by data centers in
different ways, either for fast execution or low energy consumption, depending on the job
types.

This work can be further extended to a heterogeneous system of DVFS-enabled processors
having different speed and voltage levels. This work can also be realized for a single
dependent job, a batch of dependent jobs, open shop scheduling problems, as well as job
shop scheduling problems. Further, the proposed algorithm Z* can be further extended for
jobs having stochastic execution times.

ACKNOWLEDGEMENTS

This work was supported by the Russian Science Foundation 19-71-10033,
https://rscf.ru/project/19-71-10033/

REFERENCES

1. Meuer, H., Strohmaier, E., Dongarra, J., Simon, H. & Meuer, M. (2023). Top 500
Supercomputers 2014, [Online]. Available: http://www.top500.org/lists/2014/11/.

2. Nartural Resources Defense Council (2023). Scaling Up Energy Efficiency Across
the Data Center Industry: Evaluating Key Drivers and Barrier, Natural Resources
Defense Council 2014, [Online]. Available https://infrastructureusa.org/scaling-up-
energy-efficiency-across-the-data-center-industry/.

Copyright © 2024 ASSA. Adv Syst Sci Appl (2024)

A GENERALIZED BI-OBJECTIVE SCHEDULING ALGORITHM... 201

3. Bilal, K., Malik, S. U. R., Khan, S. U., & Zomaya, A. Y. (2014). Trends and challenges
in cloud datacenters. IEEE cloud computing, 1(1), 10–20.

4. Sajid, M., & Raza, Z. (2013, December). Cloud computing: Issues & challenges. In
International conference on cloud, big data and trust, 20(13), 13–15

5. Zhua, X., He, C., Li, K., & Qin, X. (2012). Adaptive energy-efficient scheduling for real-
time tasks on DVS-enabled heterogeneous clusters. Journal of parallel and distributed
computing, 72(6), 751–763.

6. Venkatachalam, V., & Franz, M. (2005). Power reduction techniques for microprocessor
systems. ACM Computing Surveys (CSUR), 37(3), 195–237.

7. Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P., et. el. (2006).
The landscape of parallel computing research: A view from berkeley. University of
California, Berkeley, 1–54.

8. Coello, C. A. C. (2007). Evolutionary algorithms for solving multi-objective problems.
Springer. com.

9. Leung, J. Y. (Ed.). (2004). Handbook of scheduling: algorithms, models, and
performance analysis. CRC press.

10. Freund, R. F., Gherrity, M., Ambrosius, S., Campbell, M., Halderman, M., et. el. (1998,
March). Scheduling resources in multi-user, heterogeneous, computing environments
with SmartNet. In Proceedings Seventh Heterogeneous Computing Workshop, 184–199.

11. Braun, T. D., Siegel, H. J., Beck, N., Bölöni, L. L., Maheswaran, M., et. el. (2001).
A comparison of eleven static heuristics for mapping a class of independent tasks
onto heterogeneous distributed computing systems. Journal of Parallel and Distributed
computing, 61(6), 810–837.

12. Tabak, E. K., Cambazoglu, B. B., & Aykanat, C. (2013). Improving the performance
of independenttask assignment heuristics minmin, maxmin and sufferage. IEEE
Transactions on Parallel and Distributed Systems, 25(5), 1244–1256.

13. Sajid, M., & Raza, Z. (2016). Turnaround time minimization-based static scheduling
model using task duplication for fine-grained parallel applications onto hybrid cloud
environment. IETE Journal of Research, 62(3), 402–414.

14. Sajid, M., & Raza, Z. (2012, December). Level based task duplication strategy to
minimize the job turnaround time. In 2012 2nd IEEE International Conference on
Parallel, Distributed and Grid Computing, 164–169.

15. Sajid, M., & Raza, Z. (2015). An analytical model for resource Characterization and
parameter Estimation for DAG-based jobs for homogeneous systems. International
Journal of Distributed Systems and Technologies (IJDST), 6(1), 34–52.

16. Shahid, M., Raza, Z., & Sajid, M. (2015). Level based batch scheduling strategy with
idle slot reduction under DAG constraints for computational grid. Journal of Systems
and Software, 108, 110–133.

17. Zhu, D., Melhem, R., & Childers, B. R. (2003). Scheduling with dynamic voltage/speed
adjustment using slack reclamation in multiprocessor real-time systems. IEEE
transactions on parallel and distributed systems, 14(7), 686–700.

18. Zhang, L. M., Li, K., Lo, D. C. T., & Zhang, Y. (2013). Energy-efficient task
scheduling algorithms on heterogeneous computers with continuous and discrete
speeds. Sustainable Computing: Informatics and Systems, 3(2), 109–118.

19. Diaz, C. O., Guzek, M., Pecero, J. E., Danoy, G., Bouvry, P., et. el. (2011, July).
Energy-aware fast scheduling heuristics in heterogeneous computing systems. In 2011
International Conference on High Performance Computing & Simulation, 478–484.

20. Nesmachnow, S., Dorronsoro, B., Pecero, J. E., & Bouvry, P. (2013). Energy-aware
scheduling on multicore heterogeneous grid computing systems. Journal of grid
computing, 11, 653–680.

21. Sajid, M., Raza, Z., & Shahid, M. (2016). Energy-efficient scheduling algorithms for
batch-of-tasks (BoT) applications on heterogeneous computing systems. Concurrency
and Computation: Practice and Experience, 28(9), 2644–2669.

Copyright © 2024 ASSA. Adv Syst Sci Appl (2024)

202 M. QASIM, M. SAJID, M. LAPINA, M. BABENKO

22. Li, K., Tang, X., & Li, K. (2013). Energy-efficient stochastic task scheduling on
heterogeneous computing systems. IEEE Transactions on Parallel and Distributed
Systems, 25(11), 2867–2876.

23. Oxley, M. A., Pasricha, S., Maciejewski, A. A., Siegel, H. J., Apodaca, J., et. el. (2014).
Makespan and energy robust stochastic static resource allocation of a bag-of-tasks to
a heterogeneous computing system. IEEE Transactions on Parallel and Distributed
Systems, 26(10), 2791–2805.

24. Sajid, M., & Raza, Z. (2016). Energy-aware stochastic scheduling model with
precedence constraints on DVFS-enabled processors. Turkish Journal of Electrical
Engineering and Computer Sciences, 24(5), 4117–4128.

Copyright © 2024 ASSA. Adv Syst Sci Appl (2024)

	Introduction
	RELATED WORK
	THE PROBLEM FORMULATION
	Batch-of-Tasks and Heterogeneous Computing System
	Design Principles
	Heterogeneous Computing Systems Energy Model

	THE GENERALIZED BI-OBJECTIVE ALGORITHM (Z*)
	Optimization Function Specification
	The Procedure of the Z* Algorithm
	Z* for Integer Weights of 1 and 2
	Z* for Fractional Weights of 1 and 2
	Z* as MinMin
	Use of Z* in Data Centers

	Conclusion

