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Abstract: We study different methods for estimation the parameters of a mixture of Weibull and
Gompertz distributions as a lifetime model, based on a complete sample. Maximum likelihood
estimation and Bayes estimation under informative and non-informative priors have been obtained
using the symmetric squared error (SE) loss function, the asymmetric Linear exponential
(LINEX) loss function and general entropy (GE) loss function. Also, we discuss two-sample
Bayesian prediction intervals of the proposed model. For the illustration of the developing results,
some computation results for the proposed model is presented.
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1. INTRODUCTION

Mixtures models have received great attention from analysts in the recent years due to their
important role in life testing and reliability. In many applications, mixture models are used
to analyze random duration in possibly heterogeneous populations, statistical analysis and
machine learning such as modeling, classification, and survival analysis. Attention has been
paid by some authors to the finite mixtures to discuss lifetime distributions, [see, Everitt
and Hand (1981),Titterington et al. (1985), Mclachlan and Basford (1988), Lindsay (1995),
Mclachlan and Peel (2000)]. Also, mixture distributions have been considered extensively
by several researchers using both classical and Bayesian techniques, for example, Shawky
and Bakoban (2009), Abu-Zinadah (2010), Erisoglu et al.(2011), Feroze and Aslam (2014),
Daniyal and Rajab (2015), Elshahat and Mahmoud (2016) and Mahmoud et al.(2017). The
Weibull distribution has been widely used in modeling of lifetime event data; this is due to
the variety of shapes of the probability density function (pdf) based on its parameters, Mohie
El-Din et al. (2018) presented a new study on progressive-stress accelerated life testing for
power generalized Weibull distribution under progressive Type-II censoring. The Weibull
distribution has been shown to be useful for lifetime modeling and data analysis in applied
engineering sciences, and also the static stress accelerated life test of the generalized Weibull
distribution has been studied under step-wise type-II [see, Mohie El-Din et al.(2019), Murthy
et al.(2003)]. The Gompertz distribution is used to model human survival and mortality
times and actuarial tables. It has many real-life applications, particularly in medical and
actuarial studies, and for statistical inference of the Gompertz distribution on the basis of
Type- II Hybrid Progressively censored data [see, Mohie El-Din et al. (2017)]. The Gompertz
distribution is also used as a survival model in reliability. It has an increased risk rate for the
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life of the systems. Because of its complex shape, it has not received enough attention in the
past. However, recently, this distribution has received a lot of attention from demographers
and actuaries, and several studies have been presented in this field, including statistical
inference and prediction of the Gompertz distribution based on multiply type- I censored data.
Mohie El-Din and Abu- Moussa,(2018). The characterization for Gompertz distribution based
on general progressively type-II right censored order statistics is done by Mohie El-Din,et
al.(2017). Pollard and Valkovics (1992) were the first to deal with the Gompertz distribution
thoroughly. However, their results are true only in cases where the initial level of mortality is
very close to zero. Willemse and Koppelaar (2000) proposed a new formulation of epistemic
elicitation of Gompertz’s law of mortality.

If X has the same units and the same rates of variation of two distributions, then a random
variable X is said to have a mixture distribution.

Let a random variable X is to have a mixture of two components Weibull and Gompertz
distribution, with the probability density function (pdf) is given by:

f(x) =
2∑

j=1

pjfj(x); ; j = 1, 2, (1.1)

where

f1(x) = α1θx
θ−1e−α1x

θ

, x > 0, α1 > 0, θ > 0,

f2(x) = α2e
x−α2(e

x−1) , x > 0, α2 > 0.

The mixing proportions pj, are such that 0 ≤ pj≤ 1,
2∑

j=1

pj = 1.

The corresponding cumulative distribution function(cdf) and reliability function,
receptively are given by:

F (x) =
2∑

j=1

pjFj(x), j = 1, 2, (1.2)

where F1(x) = 1− e−α1x
θ

, F2(x) = 1− e−α2(e
x−1), and

R(x) =
2∑

j=1

pjRj(x), j = 1, 2, (1.3)

where R1(x) = e−α1x
θ

, R2(x) = e−α2(e
x−1).

The objective of this work is to apply the Bayesian procedure to estimate the parameters
and obtain two sample prediction bounds for future observations from the proposed model,
based on complete sample. The rest of this paper is organized as follows: In Section 2, we
obtain maximum likelihood estimators of the proposed parameters. The Bayesian estimation
is discussed in Section 3. Bayesian prediction presented in Section 4. Simulation study and
real data presented in Section 5 to compare the performance of different estimation methods
of the parameters. Finally, conclusions are presented in Section 6.

2. MAXIMUM LIKELIHOOD ESTIMATION

In this section, we present maximum likelihood estimators (MLEs) for the unknown
parameters α1, α2 and p based on complete sample. Suppose a sample of n units are put
on operation in life testing experiment and that the test is terminated if all n items taken
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from this population have failed. After the n units have failed each item can be attributed to
the appropriate sub-population. Thus if the n units have failed during the interval (0, x(n));
r1 from the first sub-population and r2 from the second sub-population. Let xij denote
the failure of the jth unit that belongs to the ith sub-population and xij ≤ x(n); j =
1, 2, ...., ri; i = 1, 2;n = r1 + r2 , where x(n) denotes the failure time of the nth unit.

For a two-component mixture model, the likelihood function is given by:

L(α1, α2, θ, p |x) = n! [

r1∏
j=1

p1 f 1(x1j)][

r2∏
j=1

p2 f 2(x2j)], (2.4)

where
f1(x1j) = α1θx

θ−1
1j e−α1x

θ
1j , x1j > 0, α1 > 0, θ > 0,

f2(x2j) = α2e
x
2j−α2(e

x2j−1), x2j > 0, α2 > 0,

then,

L(α1, α2, θ, p|x) ∝
r1∏
j=1

p1 α1 θ x
θ−1
1j e−α1x

θ
1j

r2∏
j=2

p2 α2 e
x2j−α2(e

x2j−1). (2.5)

Put p1 = p, p2 = 1− p, and assuming that the parameter θ is known, the likelihood
function (2.5) reduces to

L(α1, α2, p|x, θ) ∝
2∏

i=1

(piαi)
ri e

−α1

r1∑
j=1

x θ
1j

e
−α2

r2∑
j=1

(ex2j−1)

. (2.6)

Thus, the log-likelihood function of parameters α1, α2 and p are given by:

lnL = lnL(p, α1, α2|x) ∝
2∑

i=1

{ri ln pi+ri lnαi} − α1

r1∑
j=1

x θ
1j − α2

r2∑
j=1

(ex2j−1). (2.7)

Taking derivatives with respect to α1, α2 and p in Equation (2.7), and Equating by zero,
the maximum likelihood estimators of the three parameters are obtained as follows

α̂1 =
r1

r1∑
j=1

xθ
ij

, α̂2 =
r2

r2∑
j=1

(ex2j − 1)
, p̂ =

r1
r1 + r2

.

3. BAYESIAN ESTIMATION

In this section, we derive Bayesian estimators of the parameters α1, α2 and p of the
considered model by using various priors based on different symmetric and asymmetric loss
functions.

3.1. Loss function
In decision theory, the loss criterion is specified in order to obtain the best estimator. Three
loss functions are proposed, symmetric squared error loss function (SE) and asymmetric
(LINEX and general entropy) loss functions, as follows:
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• Squared error loss function (ES): A simple, and very common loss function is defined
by

L1(θ̂ , θ) = c (θ̂ − θ)2,

where c is constant which is symmetrical in nature and gives equal weight to overestimation
as well as underestimation.

However, in real applications, estimation of reliability and failure rate functions, an
overestimate is more serious than the underestimate. The use of symmetric loss function
might be inappropriate as has been recognized by Basu and Ebrahimi (1991).

• Linear exponential loss function (LINEX): One of the most commonly used asymmetric
loss functions, introduced by Varian (1975) under the assumption that the minimal loss occurs
at θ̂ = θ, it can be expressed as

L2(θ̂ , θ) ∝ e−q( θ̂ −θ ) − q( θ̂ − θ)− 1, q ̸= 0,

where q determines the shape of the loss function. It is used in both overestimation and
underestimation, if q > 0 means overestimation and if q < 0, means underestimation but in a
situation where q = 0, the LINEX loss function is almost symmetric and approaches squared
error loss function.

Under the above loss function, the Bayes estimator θ̂LINEX of θ can be obtained as

θ̂LINEX = −1

q
ln [E (e−qθ|x)],

provided that the expected value with respect to the posterior function of θ, E(e−qθ|x) exists
and is finite.

• General entropy loss function (GE): Another commonly asymmetric loss function is the
modified LINEX loss function called a general entropy loss function proposed by Calabria
and Pulcini (1996).

L3(θ̂, θ) ∝

(
θ̂

θ

)h

− h ln

(
θ̂

θ

)
− 1, h ̸= 0,

which has a minimum at θ̂ = θ. Also, this loss function used by several authors, in the
original form having the shape parameter h = 1, for h > 0, a positive error has a more effect
than a negative error. In this case, the Bayes estimate of θ is given by:

θ̂GE =
[
E
(
θ−h|x

)]− 1
h ,

provided that the expected value with respect to the posterior function of θ, E
(
θ−h|x

)
exists and is finite.

3.2. The posterior distribution under the informative prior
Assume the prior distribution of the parameters α1, α2 and p are α1 ∼ Γ(a1, b1) , α2 ∼
Γ(a2, b2), and p ∼ β(c, d) for the mixing parameter, pi; i = 1, 2 where p1 = p and p2 =
1− p. Assuming, now, the independence of parameters, the joint distribution prior for α1, α2

and p is:

π(α1, α2 , p)= π1(α1)π2(α2)π3(p), (3.8)
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where

πi(αi) =
baii

Γ(ai)
αai−1
i e−biαi , αi > 0, ai, bi > 0, i = 1, 2,

π3(p) =
Γ(c+ d)

Γ(c)Γ(d)
pc−1(1− p)d−1, 0 < p < 1, c, d > 0.

Then, the joint prior distribution of α1, α2 and p can be written as follows

π (α1, α2 , p) ∝

[
2∏

i=1

α
ai−1

i e−biαi

]
× p c−1 ( 1− p) d−1. (3.9)

It follows from (2.6) and (3.9), that the joint posterior density function of α1, α2 and p is
given by

g (α1, α2, p|x)= k−1
1 pr1+c−1 (1− p)r2+d−1 α

r1+a1−1

1 α
r2+a2−1

2 e−α1ϕ1 e −α2ϕ2 , (3.10)

where, k1 is the normalizing constant given by

k1 = β (r1+c , r2+d)
Γ (r1+a1) Γ (r2+a2)

(ϕ1)
r1+a1 (ϕ2)

r2+a2
,

with ϕ1 = b1+
∑r1

j=1x
θ
1j , and ϕ2 = b2+

∑r2
j=1(e

x2j−1).

3.2.1. Bayes estimator under squared error loss function (SE)

The Bayes estimators of α1, α2 and p based on the squared error loss function are given
by:

α̂1SE
= k−1

1 β(r1+c , r2+d)
Γ(r1+a1+1) Γ (r2+a2)

(ϕ1)
r1+a1+1

(ϕ2)r2+a2
,

α̂2
SE

= k−1
1 β(r1+c , r2+d)

Γ (r1+a1) Γ(r2+a2+1)

(ϕ1)r1+a1(ϕ2)r2+a2+1
,

p̂
SE

= k−1
1 β(r1+c+ 1 , r2+d )

Γ (r1+a1) Γ (r2+a2)

(ϕ1)r1+a1(ϕ2)r2+a2
.

3.2.2. Bayes estimator under Linex loss function (LINEX)

The Bayes estimators of α1, α2 and p based on the LINEX loss function are given by:

α̂1LINEX
= −1

q
ln

[
k−1
1 β(r1+c , r2+d )

Γ (r1+a1) Γ (r2+a2)

(ϕ1+q)r1+a1(ϕ2)r2+a2

]
,

α̂2LINEX
= −1

q
ln

[
k−1
1 β (r1+c , r2+d)

Γ (r1+a1) Γ (r2+a2)

(ϕ1)r1+a1(ϕ2+q)r2+a2

]
,

p̂
LINEX

= −1

q
ln

[
k−1
1

Γ (r1+a1) Γ (r2 + a2)

(ϕ1)r1+a1(ϕ2)r2+a2

∞∑
k=0

(−q)k

k!
β(r1+c+ k , r2+d)

]
.
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3.2.3. Bayes estimator under general entropy loss function (GE)

The Bayes estimator of α1, α2 and p based on general entropy loss function are given by:

α̂1GE
=

[
k−1
1 β (r1+c , r2+d)

Γ(r1+a1−h )Γ (r2+a2)

(ϕ1)r1+a1−h(ϕ2)r2+a2

]− 1
h

,

α̂2GE
=

[
k−1
1 β (r1+c, r2+d)

Γ (r1+a1) Γ(r2+a2−h)

(ϕ1)
r1+a1 (ϕ2)

r2+a2−h

]− 1
h

,

p̂GE=

[
k−1
1 β(r1+c− h , r2+d)

Γ (r1+a1) Γ (r2+a2)

(ϕ1)r1+a1(ϕ2)r2+a2

]− 1
h

.

3.3. The posterior distribution under the non-informative prior
Jeffery’s prior is a formal rule for obtaining a non-informative prior. The non-informative
priors are recommended when there is no formal prior information about the parameters.
This is defined as the distribution of the parameters proportional to the square root of the
determinants of the Fisher information matrix. The prior distribution for the mixing parameter
p, i.e., p ∼ uniform(0,1). Assuming independence, the joint prior distribution is given by:

πi(αi) ∝ 1

ai
, αi > 0, i = 1, 2,

π3(p) = 1, 0 < p < 1. (3.11)

Then, the joint prior distribution of α1, α2 and p can be written as follows

π (α1, α2, p)∝
1

α1α2

, α1, α2> 0 , 0 < p < 1. (3.12)

It follows from ( 2.6) and ( 3.12) that, the joint posterior density function of α1, α2 and p
is given by

g (p, α1, α2|x) ∝ k−1
2 pr1 (1− p)r2 αr1−1

1 αr2−1
2 e−α1ϕ

∗
1 e−α2ϕ

∗
2 , (3.13)

where, k2 is the normalizing constant given by k2 = β(r1+1 , r2+1 )
Γ (r1) Γ (r2)

(ϕ∗
1)

r1 (ϕ∗
2)

r2 , with

ϕ∗
1=
∑r1

j=1x
θ
1j and ϕ∗

2=
∑r2

j=1(e
x2j−1).

3.3.1. Bayes estimator under squared error loss function (SE)

The Bayes estimators of α1, α2 and p based on the squared error loss function are given
by:

α̂1SEN
= k−1

2 β(r1+1, r2+1)
Γ(r1+1)Γ (r2)

(ϕ∗
1)

r1+1 (ϕ∗
2)

r2
,

α̂2
SEN

= k−1

2
β(r1+1 , r2+1)

Γ (r1) Γ (r2+1)

(ϕ∗
1)

r1 (ϕ∗
2)

r2+1 ,

p̂SEN = k−1
2 β(r1+2 , r2+1)

Γ (r1) Γ (r2)

(ϕ∗
1)

r1 (ϕ∗
2)

r2 .

3.3.2. Bayes estimator under Linex loss function (LINEX)
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The Bayes estimators of α1, α2 and p based on the LINEX loss function are given by:

α̂1LINEXN
= −1

q
ln

[
k−1
2 β (r1+1, r2+1)

Γ(r1)Γ (r2)

(ϕ∗
1+q)r1 (ϕ∗

2)
r2

]
,

α̂2LINEXN
= −1

q
ln

[
k−1
2 β (r1+1 , r2+1)

Γ (r1) Γ(r2)

(ϕ∗
1)

r1 (ϕ∗
2+q)r2

]
,

p̂LINEXN= −1
q
ln

[
k−1
2

Γ(r1)Γ(r2)

(ϕ∗
1)

r1(ϕ∗
2)

r2

∞∑
k=0

(−q)k

k!
β(r1+k + 1 , r2+1)

]
.

3.3.3. Bayes estimator under general entropy loss function (GE)

The Bayes estimators of α1, α2 and p based on general entropy loss function are given by:

α̂1GEN
=

[
k−1
2 β(r1+1, r2+1)

Γ(r1−h)Γ(r2)

(ϕ∗
1)

r1−h(ϕ∗
2)

r2

]− 1
h

,

α̂2GEN
=

[
k−1
2 β(r1+1 , r2+1)

Γ(r1)Γ(r2−h)

(ϕ∗
1)

r1(ϕ∗
2)

r2−h

]− 1
h

,

p̂GEN =

[
k−1
2 β(r1 − h+ 1, r2 + 1)

Γ(r1)Γ(r2)

(ϕ∗
1)

r1(ϕ∗
2)

r2

]− 1
h

.

4. BAYESIAN PREDICTION

In this section, the Bayesian two-sample prediction of a future order statistics sample
considered on the basis of observed data used in the informative and non-informative prior. A
random sample of size m of future observation, independent sample of size n, is drawn from
the same population with Eq(1.1) . Therefore Ys represents the sth ordered statistic in the
future sample of size m, 1 ⩽ s ⩽ m. The sth order statistic in a sample of size m represents
the life length of a (m− s+ 1) out of m system. The distribution function of Ys , the ordered
future sample is given by (See, Arnold et al. (1992) and Jaheen (2003)),

FYs (ys|α1, α2, p) =
m∑
l=s

(
m

l

)
[FX(ys|α1, α2, p)]

l [1− FX (ys|α1, α2, p) ]
m−l

=
m∑
l=s

l∑
j1=0

(
m

l

)(
l
j1

)
(−1)j1 [R(ys)]

m−l+j1 , (4.14)

where FX (ys|α1, α2, p) = 1−R(ys) is the distribution function of the mixture model and
R(ys) is the reliability function of the mixture model after replacing x by ys.

Using the binomial expansion for [R(ys)]
m−l+j1 as follows:

[R(ys)]
m−l+j1=

[
p1 e

−α1y
θ
s+p2 e

−α2(e
ys−1)

]m−l+j1
,

=

m−l+j1∑
j2=0

(
m− l + j1

j2

)
pδ11 pj22 e−α1δ1y

θ
s e−α2j2(e

ys−1).
(4.15)

Therefore, we get
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FYs (ys|α1, α2, p) =
m∑
l=s

l∑
j1=0

m−L+j1∑
j2=0

(
m

l

)(
l
j1

)(
m− l + j1

j2

)
(−1)j1

pδ11 pj22 (e−α1y
θ
s )δ1 (e−α2(e

ys−1))j2 , (4.16)

where δ1 = m− l + j1 − j2.

f ∗(ys|x) =
∫ 1

0

∫ ∞

0

∫ ∞

0

f (ys|α1, α2, p) g (α1, α2, p|x) dα1dα2dp, (4.17)

where g (α1, α2, p|x) is the joint posterior density for parameters α1, α2 and p and
f (ys|α1, α2, p) is the pdf of sth component in a future sample. Therefore, Bayesian prediction
density of Ys for a given value v, can be obtained as:

P [Ys ≥ v|x] =
∞∫
v

f ∗(ys|x)dys

=1−
∫ 1

0

∫ ∞

0

∫ ∞

0

FYs (v|α1, α2, p) g (α1, α2, p|x) dα1dα2dp, (4.18)

Substitution of (3.9) and (4.16) in (4.18), we get Bayes predictive distribution bounds with
value v for Ys in case of informative as

P [Ys ≥ v |x] = 1− k−1
1

∑
B β (δ1+δ2, δ3)

Γ (r1+a1) Γ (r2+a2)

(ϕ∗∗
1 )r1+a1 (ϕ∗∗

2 )r2+a2
.

where δ2 = r1 + c, δ3 = r2 + d+ j2.

Substitution of (3.11) and (4.16) in (4.18), we get Bayes predictive distribution bounds
with value v for Ys in case of non- informative as

p [Ys ≥ v |x] = 1− k−1
2

∑
B β (δ∗1+1 , δ∗2+1)

Γ (r1) Γ (r2)

(ϕ∗∗∗
1 )r1 (ϕ∗∗∗

2 )r2
.

where∑
=

m∑
l=s

l∑
j1=0

m−l+j1∑
j2

, B =
(
m
l

)(
l
j1

)(
m−l+j1

j2

)
(−1)j1

δ∗1 = δ1 + r1 , δ∗2 = j2 + r2
ϕ∗∗
1 = δ1v

θ + ϕ1 , ϕ∗∗
2 = j2(e

v − 1) + ϕ2

ϕ∗∗∗
1 = δ1v

θ + ϕ∗
1 , ϕ∗∗∗

1 = j2(e
v − 1) + ϕ∗

2

A 100 γ% prediction interval for Ys is given by

P [L(x) < Ys < U(x)] = γ,

where L(x) and U(x) are obtained respectively by solving the following two equations:

P [Ys > L(x)] =
1 + γ

2
and P [Ys > U(x)] =

1− γ

2
. (4.19)
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5. SIMULATION STUDY AND REAL DATA

In this section, we present some simulation results to compare the performance of various
estimates by using the Monte Carlo simulation method from the mixture of Weibull and
Gompertz distributions. The following steps were considered:

1. For the parameter we have considered (α1, α2, p) = (0.2, 0.1, 0.7) along with θ is known
and θ = 0.61. The values of q and h are (0.5, -0.5) for LINEX and general entropy loss
functions. The method of choosing the hyper parameters values introduced in Ahmadi
et al.(2020). Let (a1 = 0.03, a2 = 0.04, b1 = 0.2, b2 = 0.35, c = 96.23, and d =
41.167) for informative prior. In case of non-informative prior, we take (a1 = a2 = b1 =
b2 = 0; c = d = 1). In all these cases samples of size n = 20, 40, 60, 80, 100 and 150,
are generated.

2. Generate a uniform random number u from the interval(0,1).
3. If u ⩽ p the observation has been randomly taken from first sub-population and if u > p

then the observation have been taken from the second sub-population.
4. The obtained results for maximum likelihood estimates and Bayes estimates are

calculated.
5. Bayesian prediction for the future observations of Ys are obtained by solving

numerically, Equations (4.6) with γ = 0.95.
6. The above steps are repeated 1000 times, and the average of the estimates are calculated

and presented in the Tables (5.1)-(5.3). Also the average lower and average upper

interval of Ys when s =
m

2
is even or

m+ 1

2
is odd for different sample size

n and different future sample size m, simulated coverage probability and average
interval lengths are obtained in Tables (5.4)-(5.5). All results were obtained by using
Mathematica 10.
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Table 5.1. Average estimates and corresponding MSE of the parameter α1 = 0.2
based on informative and non- informative Prior

n MLE

Bayes
SE LINEX GE

informative non-informative
informative non-informative informative non-informative

q=-0.5 q=0.5 q=-0.5 q=0.5 h=-0.5 h=0.5 h=-0.5 h=0.5

20
0.217318 0.217035 0.21770 0.217996 0.216086 0.218285 0.216363 0.213051 0.205008 0.21332 0.205247
(0.00451) (0.00446) (0.00475) (0.00458) (0.00435) (0.00463) (0.0044) (0.00418) (0.00372) (0.00423) (0.00376)

40
0.209797 0.209695 0.21531 0.210106 0.209287 0.210209 0.209388 0.207823 0.204061 0.207922 0.204154
(0.00176) (0.00175) (0.00273) (0.00177) (0.00173) (0.00178) (0.0017) (0.00169) (0.00158) (0.00169) (0.00159)

60
0.205851 0.205791 0.20781 0.206052 0.205531 0.206113 0.205591 0.204558 0.202084 0.204617 0.202141
(0.00107) (0.00107) (0.00116) (0.00108) (0.00106) (0.00108) (0.0011) (0.00105) (0.00101) (0.00105) (0.00101)

80
0.202925 0.202884 0.20450 0.203072 0.202696 0.203113 0.202737 0.2019757 0.200154 0.202016 0.200194
(0.00076) (0.00076) (0.00098) (0.00077) (0.00076) (0.00077) (0.0008) (0.00075) (0.00073) (0.00075) (0.00074)

100
0.202708 0.202675 0.20293 0.202825 0.202526 0.202858 0.202558 0.201949 0.200494 0.201981 0.200525
(0.00063) (0.00062) (0.00067) (0.00063) (0.00062) (0.00063) (0.0006) (0.00062) (0.0006) (0.00062) (0.00061)

150
0.201981 0.200088 0.20288 0.202024 0.20209 0.202079 0.201883 0.200249 0.200195 0.198195 0.200575
(0.00041) (0.00078) (0.00052) (0.00055) (0.00042) (0.00041) (0.0004) (0.00064) (0.00044) (0.00106) (0.0004)

Table 5.2. Average estimates and corresponding MSE of the parameter α2 = 0.1
based on informative and non- informative Prior

n MLE

Bayes
SE LINEX GE

informative non-informative
informative non-informative informative non-informative

q=-0.5 q=0.5 q=-0.5 q=0.5 h=-0.5 h=0.5 h=-0.5 h=0.5

20
0.122528 0.121892 0.12360 0.123059 0.120817 0.123818 0.121374 0.116016 0.103891 0.116521 0.104117
(0.00532) (0.004878) (0.00641) (0.00532) (0.00454) (0.00594) (0.00488) (0.00401) (0.00273) (0.00432) (0.00287)

40
0.111112 0.11105 0.11245 0.111384 0.110721 0.111449 0.11078 0.10856 0.103519 0.10861 0.103544
(0.00183) (0.001781) (0.00289) (0.00183) (0.00173) (0.00188) (0.00178) (0.00163) (0.00139) (0.00168) (0.00142)

60
0.108024 0.108021 0.10953 0.108201 0.107841 0.108205 0.107844 0.106479 0.103373 0.106479 0.103365
(0.00079) (0.00079) (0.00095) (0.0008) (0.00078) (0.0008) (0.00079) (0.00074) (0.00067) (0.00075) (0.00067)

80
0.103682 0.103692 0.10633 0.103813 0.103572 0.103803 0.103562 0.102581 0.100348 0.10257 0.100332
(0.00043) (0.000433) (0.00079) (0.00044) (0.00043) (0.00044) (0.00043) (0.00042) (0.00039) (0.00042) (0.00039)

100
0.103475 0.103483 0.10521 0.103578 0.103389 0.103569 0.10338 0.102607 0.100849 0.102598 0.100837
(0.00041) (0.000411) (0.00052) (0.00041) (0.00041) (0.00041) (0.00041) (0.0004) (0.00038) (0.0004) (0.00038)

150
0.101673 0.101554 0.10172 0.101613 0.101495 0.101733 0.101614 0.100986 0.0998459 0.101101 0.099953
(0.00027) (0.000266) (0.00029) (0.00027) (0.00027) (0.00027) (0.00027) (0.00026) (0.00026) (0.00027) (0.00026)

Table 5.3. Average estimates and corresponding MSE of the parameter p = 0.7
based on informative and non- informative Prior

n MLE

Bayes
SE LINEX GE

informative non-informative
informative non-informative informative non-informative

q=-0.5 q=0.5 q=-0.5 q=0.5 h=-0.5 h=0.5 h=-0.5 h=0.5

20
0.69115 0.699258 0.69973 0.699589 0.6989326 0.676418 0.671834 0.69878 0.367819 0.670447 0.662696

(0.01073) (0.000173) (0.00947) (0.00017) (0.00017) (0.0093) (0.00967) (0.00017) (0.00018) (0.009988) (0.01083)

40
0.7034 0.701061 0.70132 0.701354 0.700767 0.694919 0.692503 0.70064 0.699792 0.691894 0.68816

(0.0052) (0.00026) (0.00474) (0.00027) (0.00026) (0.00471) (0.0048) (0.00027) (0.00027) (0.00483) (0.00502)

60
0.697767 0.699586 0.69986 0.69985 0.699321 0.692219 0.690552 0.699205 0.698441 0.690144 0.687615
(0.00346) (0.00032) (0.00331) (0.00032) (0.00032) (0.00329) (0.0033) (0.00032) (0.00032) (0.00336) (0.00347)

80
0.700113 0.700282 0.70053 0.700521 0.700042 0.695861 0.6946 0.699937 0.699244 0.694303 0.692422
(0.00272) (0.00037) (0.00261) (0.00037) (0.00037) (0.0026) (0.0026) (0.00037) (0.00037) (0.00264) (0.0027)

100
0.69908 0.699832 0.69991 0.700052 0.699612 0.695685 0.694666 0.699516 0.698881 0.69443 0.692921

(0.00203) (0.00036) (0.00197) (0.00036) (0.00036) (0.00197) (0.002) (0.00036) (0.00036) (0.00199) (0.00203)

150
0.700313 0.699868 0.69998 0.699949 0.699786 0.69802 0.697335 0.699506 0.698982 0.697181 0.69618
(0.00136) (0.00035) (0.00132) (0.00035) (0.00035) (0.00132) (0.0013) (0.00035) (0.00035) (0.00133) (0.00135)
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Table 5.4. The 95% Bayesian prediction bounds, length of Bayesian prediction
and their simulated coverage probability for Ys based informative prior

(n,m)
Y1 Y4 Ym

(Lower, Upper) Length Coverage (Lower, Upper) Length Coverage (Lower, Upper) Length Coverage

(15,8) (0.000303,0.4654) 0.465106 0.934 (0.103358,1.96123) 1.85788 0.934 (0.620589,34.0201) 33.3995 0.977

(20,8) (0.000275,0.45017) 0.449896 0.936 (0.106456,1.90021) 1.79375 0.935 (0.760848,32.4311) 31.6703 0.967

(30,8) (0.000265,0.44291) 0.442654 0.945 (0.109328,1.86521) 1.75588 0.945 (0.463508,30.5226) 30.0591 0.981

(50,8)

(n,m)
Y1 Y5 Ym

(Lower, Upper) Length Coverage (Lower, Upper) Length Coverage (Lower, Upper) Length Coverage

(15,10) (0.000216,0.36387) 0.363661 0.946 (0.130549,1.82091) 1.69036 0.933 (0.879757,39.4524) 38.5727 0.958

(20,10) (0.0002006,0.3515) 0.351314 0.941 (0.137363,1.78166) 1.6443 0.944 1.05329,34.2686) 33.2153 0.957

(30,10) (0.000190,0.34323) 0.343049 0.951 (0.141384,1.72623) 1.58484 0.936 (0.936194,32.7176) 31.7814 0.963

(50,10) (0.000174,0.33177) 0.331604 0.946 (0.145217,1.69538) 1.55017 0.937 (0.779346,34.6254) 33.8461 0.983

(n,m)
Y1 Y6 Ym

(Lower, Upper) Length Coverage (Lower, Upper) Length Coverage (Lower, Upper) Length Coverage

(15,12) (0.000165,0.29767) 0.297512 0.935 (0.1511,1.69131) 1.54021 0.929 (1.06404,39.1433) 38.0793 0.968

(20,12) (0.000154,0.28254) 0.282393 0.945 (0.150129,1.61944) 1.46931 0.936 (0.900551,38.0184) 37.1179 0.965

(30,12) (0.000139,0.27243) 0.272296 0.954 (0.165389,1.63105) 1.46566 0.946 (0.861137,34.6709) 33.8098 0.978

(50,12) (0.000129,0.26469) 0.264562 0.947 (0.169259,1.56466) 1.3954 0.947 (0.949135,33.8375) 32.8884 0.978

(n,m)
Y1 Y7 Ym

(Lower, Upper) Length Coverage (Lower, Upper) Length Coverage (Lower, Upper) Length Coverage

(15,13) (0.000152,0.27705) 0.277058 0.938 (0.193216,1.9467) 1.75349 0.936 (0.964702,42.2606) 41.2959 0.973

(20,13) (0.000141,0.26195) 0.26181 0.941 (0.208467,2.03536) 1.82689 0.935 (1.17018,39.2434) 38.0732 0.976

(30,13) (0.0001234,0.24464) 0.244524 0.945 (0.210109,1.90317) 1.69306 0.931 (1.17348,35.6211) 34.4476 0.966

(50,13) (0.0001143,0.23821) 0.238096 0.957 (0.211075,1.81535) 1.60427 0.958 (1.18585,33.1661) 31.9803 0.982

Table 5.5. The 95% Bayesian prediction bounds,length of Bayesian prediction
and their simulated coverage probability for Ys based non - informative prior

(n,m)
Y1 Y4 Ym

(Lower, Upper) Length Coverage (Lower, Upper) Length Coverage (Lower, Upper) Length Coverage

(15,8) (0.000248,0.49451) 0.49427 0.953 (0.111943,2.86765) 2.75571 0.948 (0.779858,33.9345) 33.1547 0.955

(20,8) (0.0002421,0.46972) 0.469481 0.951 (0.102928,2.46754) 2.36461 0.949 (0.558534,36.6563) 36.0978 0.988

(30,8) (0.000240,0.46191) 0.461669 0.963 (0.106012,2.21552) 2.10951 0.961 (0.537214,32.6924) 32.1552 0.979

(50,8) (0.000235,0.45122) 0.450991 0.948 (0.108414,2.01425) 1.90583 0.952 (0.183484,30.7059) 30.5224 0.988

(n,m)
Y1 Y5 Ym

(Lower, Upper) Length Coverage (Lower, Upper) Length Coverage (Lower, Upper) Length Coverage

(15,10) (0.000187,0.38934) 0.389161 0.954 (0.147564,2.78801) 2.64045 0.948 (1.14207,45.6324) 44.4903 0.949

(20,10) (0.000177,0.36678) 0.366609 0.951 (0.141181,2.34187) 2.20069 0.947 (1.11316,37.6697) 36.5566 0.961

(30,10) (0.000165,0.34543) 0.345268 0.957 (0.1373962.01525) 1.87786 0.953 (1.05137,32.9594) 31.908 0.968

(50,10) (0.0001621,0.33803) 0.337875 0.947 (0.143411,1.86337) 1.71996 0.953 (1.06816,39.8492) 38.7811 0.973

(n,m)
Y1 Y6 Ym

(Lower, Upper) Length Coverage (Lower, Upper) Length Coverage (Lower, Upper) Length Coverage

(15,12) (0.0001403,0.3082) 0.30812 0.961 (0.16975,2.64656) 2.47681 0.923 (1.31578,45.0772) 43.7614 0.953

(20,12) (0.0001340,0.291961) 0.291827 0.952 (0.173968,2.29415) 2.12018 0.939 (1.17472,40.9827) 39.808 0.967

(30,12) (0.0001238,0.275178) 0.275055 0.947 (0.179458,2.0297) 1.85024 0.961 (1.35481,38.1587) 36.8039 0.968

(50,12) (0.0001214,0.265905) 0.265784 0.962 (0.171414,1.74186) 1.57044 0.959 (1.33663,33.6541) 32.3175 0.974

(n,m)
Y1 Y7 Ym

(Lower, Upper) Length Coverage (Lower, Upper) Length Coverage (Lower, Upper) Length Coverage

(15,13) (0.0001372,0.28479) 0.284626 0.941 (0.205341,2.78688) 2.58154 0.939 (1.01779,49.069) 48.0512 0.983

(20,13) (0.000191,0.266334) 0.266213 0.949 (0.206602,2.48416) 2.27756 0.956 (1.37849,43.4506) 42.0721 0.967

(30,13) (0.0001098,0.24637) 0.246269 0.956 (0.217119,2.22986) 2.01274 0.961 (1.1813,37.8901) 36.7088 0.976

(50,13) (0.000125,0.23432) 0.234541 0.954 (0.224957,1.99452) 1.76956 0.958 (1.4746,33.8247) 32.3501 0.958
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5.1. Numerical Example
Now, we presents a numerical example to illustrate the methodology for the proposed
estimates based on real data. Consider the following data set is from Kotz and Johhnson
(1983) and represents the survival times (in years) after diagnosis of 43 patient with certain
kind of leukemia. The data has been classified into two sets using probabilistic mixing weights
for p=0.7, which produced r1 = 30 and r2 = 13,, as follows:

population-I population-II
0.019, 0.159, 0.636, 0.748, 1.175, 1.206,

1.282, 1.356, 1.362, 1.458, 1.564, 1.586,

1.592, 1.781, 1.923, 1.959, 2.134, 2.548,

2.652, 2.951, 3.038, 3.655, 3.754, 4.690,

4.888, 5.143, 5.167, 5.603, 6.192, 6.874

6.655, 0.129, 0.485, 2.466, 0.203, 4.203,

2.413, 1.219, 1.219, 0.781, 0.869, 3.6, 5.633

The estimated and prediction results are presented in Tables [(5.6)-(5.11)].

Table 5.6. Average estimates corresponding to real data set in case informative Prior

Parameter MLE

Bayes
Loss Function

SE
LINEX GE

q=0.5 q=-0.5 q=1 q=-1 h=0.5 h=-0.5 h=1 h=-1

α1 0.241776 0.241112 0.240629 0.241597 0.240148 0.242086 0.235093 0.239111 0.233075 0.241112

α2 0.010971 0.0109709 0.0109686 0.0109733 0.0109663 0.0109756 0.0103402 0.010762 0.0101271 0.0109709

p 0.697674 0.65625 0.655097 0.657399 0.653939 0.658542 0.650806 0.654462 0.648936 0.65625

Table 5.7. Average estimates corresponding to real data set in case non- informative Prior

Parameter MLE

Bayes
Loss Function

SE
LINEX GE

q=0.5 q=-0.5 q=1 q=-1 h=0.5 h=-0.5 h=1 h=-1

α1 0.241776 0.241776 0.24129 0.242264 0.240807 0.242755 0.23574 0.239769 0.233716 0.241776

α2 0.010971 0.0109713 0.010969 0.0109736 0.0109667 0.010976 0.0103405 0.0107624 0.0101274 0.0109713

p 0.697674 0.688889 0.687721 0.690051 0.686547 0.691206 0.683628 0.687163 0.681818 0.688889
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Table 5.8. Bayesian prediction bounds Ys, length of the Bayesian prediction
corresponding 90% in case informative prior for the real data set

(n,m)
Y1 Y4 Ym

(Lower, Upper) Length (Lower, Upper) Length (Lower, Upper) Length

(63,8) (0.0897561,2.00536) 1.9156039 (1.23083,4.29157) 3.06074 (4.01878,9.16364) 5.14486

(n,m)
Y1 Y5 Ym

(Lower, Upper) Length (Lower, Upper) Length (Lower, Upper) Length

(63,10) (0.0759191,1.69281) 1.6168909 (1.38585,4.2249) 2.83905 (4.29473,9.51146) 5.21673

(n,m)
Y1 Y6 Ym

(Lower, Upper) Length (Lower, Upper) Length (Lower, Upper) Length

(63,12) (0.0662061,1.4729) 1.4066939 (1.50481,4.17095) 2.66614 (4.49234,9.79406) 5.30172

(n,m)
Y1 Y7 Ym

(Lower, Upper) Length (Lower, Upper) Length (Lower, Upper) Length

(63,13) (0.0623424,1.38559) 1.3232476 (1.72943,4.32339) 2.59396 (4.57268,9.9177) 5.34502

Table 5.9. Bayesian prediction bounds Ys, length of the Bayesian prediction
corresponding 90% in case non-informative prior for the real data set

(n,m)
Y1 Y4 Ym

(Lower, Upper) Length (Lower, Upper) Length (Lower, Upper) Length

(63,8) (0.0870625,1.93105) 1.8439875 (1.18344,4.27051) 3.08707 (3.97367,9.4282) 5.45453

(n,m)
Y1 Y5 Ym

(Lower, Upper) Length (Lower, Upper) Length (Lower, Upper) Length

(63,10) (0.0736783,1.62945) 1.5557717 (1.33145,4.19961) 2.86816 (4.27084,9.78129) 5.51045

(n,m)
Y1 Y6 Ym

(Lower, Upper) Length (Lower, Upper) Length (Lower, Upper) Length

(63,12) (0.0642801,1.41804) 1.3537599 (1.44492,4.14233) 2.69741 (4.4837,10.0682) 5.5845

(n,m)
Y1 Y7 Ym

(Lower, Upper) Length (Lower, Upper) Length (Lower, Upper) Length

(63,13) (0.0605408,1.33419) 1.2736492 (1.65938,4.30482) 2.64544 (4.57015,,10.1938) 5.62365

Table 5.10. Bayesian prediction bounds Ys, length of the Bayesian prediction
corresponding 95% in case informative prior for the real data set

(n,m)
Y1 Y4 Ym

(Lower, Upper) Length (Lower, Upper) Length (Lower, Upper) Length

(63,8) (0.0528,2.36052) 2.30772 (1.03033,4.54519) 3.51486 (3.69989,10.2809) 6.58101

(n,m)
Y1 Y5 Ym

(Lower, Upper) Length (Lower, Upper) Length (Lower, Upper) Length

(63,10) (0.0446395,1.99962) 1.9549805 (1.18738,4.46186) 3.27448 (4.01896,10.6249) 6.60594

(n,m)
Y1 Y6 Ym

(Lower, Upper) Length (Lower, Upper) Length (Lower, Upper) Length

(63,12) (0.0389124,1.74192) 1.7030076 (1.31001,4.39521) 3.0852 (4.24416,10.9047) 6.66054

(n,m)
Y1 Y7 Ym

(Lower, Upper) Length (Lower, Upper) Length (Lower, Upper) Length

(63,13) (0.0366346,1.63903) 1.6023954 (1.52286,4.53485) 3.01199 (4.33457,11.0273) 6.69273
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Table 5.11. Bayesian prediction bounds Ys, length of the Bayesian prediction
corresponding 95% in case non-informative prior for the real data set

(n,m)
Y1 Y4 Ym

(Lower, Upper) Length (Lower, Upper) Length (Lower, Upper) Length

(63,8) (0.0513029,2.27814) 2.2268371 (0.991506,4.54152) 3.550014 (3.63099,10.5643) 6.93331

(n,m)
Y1 Y5 Ym

(Lower, Upper) Length (Lower, Upper) Length (Lower, Upper) Length

(63,10) (0.0434,1.92644) 1.88304 (1.14161,4.45264) 3.31103 (3.97304,10.9139) 6.94086

(n,m)
Y1 Y6 Ym

(Lower, Upper) Length (Lower, Upper) Length (Lower, Upper) Length

(63,12) (0.0378516,1.67744) 1.6395884 (1.25864,4.38166) 3.12302 (4.21589,11.1984) 6.98251

(n,m)
Y1 Y7 Ym

(Lower, Upper) Length (Lower, Upper) Length (Lower, Upper) Length

(63,13) (0.0356443,1.57834) 1.5426957 (1.46169,4.53063) 3.06894 (4.31345,11.323) 7.00955

6. CONCLUSION

In this paper, we have addressed the estimation and prediction problems of the mixture of
Weibull and Gompertz distributions. Different estimators of the parameters are obtained using
maximum likelihood and Bayesian methods, under the informative and non-informative prior
distributions, we conclude.

1. The Bayes estimates perform better under informative prior that non-informative prior
for all different loss functions.

2. The mean squared error of maximum likelihood estimates and Bayesian estimates of the
proposed parameters decrease as the sample size increases.

3. The estimates of α1 and α2 in the case of asymmetric loss function is better, at the
positive values of q and h than with negative values.

4. Tables (5.4)and (5.5) show that the lengths of the Bayesian prediction intervals lengths
decrease as the sample size increases, and that the Bayesian simulated coverage
probability of Ys one when to the confidence level. The lengths of the Bayesian
prediction intervals increases as s increases.

5. Based on real data, It can be noticed from Tables (5.8)-(5.11) that the length of the
Bayesian prediction intervals increase as s increase, also, when we fix n and m increase,
the length of intervals increase.
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