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Abstract: The paper presents the identification of a linearized model of the quadcopter attitude
dynamics. The attitude is described by the Euler angles of roll, pitch and yaw. Closed loop
identification is performed, when the quadcopter control system operates providing flight stability.
The experimental flight data, when the sequence of the sine waves is fed as required value for
each angle separately, are used. The transfer functions from the controls, which provide the
torques related to the body frame axes, to the Euler angles are obtained via the finite frequency
identification procedure. Moreover, components of the rotational dynamics are considered in
detail. The unknown parameters of the transfer functions are found by optimization procedure
using the experimentally obtained values of the frequency response for the set of test frequencies.
The difference in the parameters values of the fixed linearized model structure, identified for two
operating points, shows that the tilt angle dynamics is sufficiently nonlinear.

Keywords: system identification, frequency domain identification, quadcopter attitude, Euler
angles, transfer function

1. INTRODUCTION

The complex flight dynamics of a quadcopter is a widely studied benchmark for control
design methods. Although there are several well-functioning control systems for commercial
quadcopters and there are open source projects for experimental multirotor setups, research
is ongoing on the application of classical and original methods of control design for the
quadcopter flight control system. Identification is an essential step for model based control
design. The quadcopter model identification was studied by various methods [14].

In [7, 10, 13] coefficients of the linearized quadcopter models were identified using the
software CIFER. The test signal called frequency sweep is applied during the test flight of the
quadcopter, then the corresponding frequency response is calculated and model coefficients
are found. In [13] the full linearized quadcopter model in form of the several transfer functions
was identified, in particular, for lateral and longitudinal motions there were obtained the third
order systems with pure differentiation plus time delay and the poles were stable, one was real
and the rest were complex-conjugate. The authors of [7, 10] identified quadcopter models in
state-space form basing on the results of transfer function identification. In [7] the third order
functions similar to [13] were used but augmented with a real zero. The article [8] develops
a method of linear model identification in state-space form for a multirotor vehicle based
on the equation-error maximum likelihood estimator which reduces to least-square approach
applied to experiment data in the time domain. The real-time identification method for a
quadcopter model was proposed in [1]. Here, the recursive Fourier transform coupled with
least-square estimation was used to find the state-space model coefficients estimates. The
proposed method uses multisine excitation signal added to the full motor command.
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The finite frequency identification approach [2] is used in our works to find the transfer
function of the control plant model. The problem for altitude control loop identification has
been studied in [5]. The transfer function from the horizontal projection of a full thrust to the
horizontal velocity of the quadcopter was experimentally identified, and aerodynamic drag
was detected in [4]. It should be noted, that the horizontal part of thrust is determined by the
combination of pitch and roll angles. Identification of the tilt angle dynamics is considered
in [6], where, in addition to frequency domain identification, the time domain nonlinear gray-
box parameters estimation is used.

This article develops the results of [6], considering also the rotational dynamics for the
yaw angle. The problem of transfer functions identification for separated loops of roll, pitch
and yaw angles that describe the quadcopter attitude is stated in Section 2 more detailed.
Section 3 briefly describes the finite frequency identification method and results of the
experimental flight data processing. The structures of the transfer functions for roll, pitch and
yaw loops are introduced and evaluated via optimization procedure in Section 4. Moreover,
the test flight data for another operating point of the pitch angle is analyzed. Conclusion is in
Section 5.

The experimental quadcopter [4–6] is the frame S500 with 10-inch propellers, the on-
board flight controller Pixhawk 4 and the standard ArduPilot software suite.

2. PROBLEM STATEMENT

The quadcopter rotational motion description based on Newton-Euler formalism [14] is ϕ̇
θ̇
ψ̇

 =

[
1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ
0 sinϕ/ cos θ cosϕ/ cos θ

][
p
q
r

]
, (2.1)

[
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ṙ

]
=
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qr
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pq

+
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1

Jx
τϕ

1

Jy
τθ

1

Jz
τψ

 , (2.2)

where ϕ, θ, ψ are roll, pitch, yaw Euler angles, p, q, r are angular velocities in body frame
coordinates x, y, z respectively, Jx, Jy, Jz are inertia values assuming that the quadcopter is
symmetric about the body axes, τϕ, τθ, τψ are torques around the respective axes, which are
shown on Fig. 2.1.

The torques are determined by the difference in the rotational speeds Ω1...4 of each
propeller. Formulas for the case of symmetric X-type quadcopter frame are

τϕ = Kτ (Ω2
2 + Ω3

2 − Ω1
2 − Ω4

2),

τθ = Kτ (Ω2
2 + Ω4

2 − Ω1
2 − Ω3

2),

τψ = Kψ(Ω1
2 + Ω2

2 − Ω3
2 − Ω4

2),

(2.3)

where Kτ , Kψ are proportionality coefficients. Thus, the control signals u1...4 for each motor
are formed as

u1 = uF − 0.5uϕ − 0.5uθ + uψ,
u2 = uF + 0.5uϕ + 0.5uθ + uψ,

u3 = uF + 0.5uϕ − 0.5uθ − uψ,
u4 = uF − 0.5uϕ + 0.5uθ − uψ,
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Fig. 2.1. Body frame axes

where uF is the control value for thrust providing the altitude hold, uϕ, uθ, uψ are controls for
torques related to body frame axes x, y and z. It is assumed that

u1...4 ∈ [0, 1], uϕ, uθ, uψ ∈ [−0.5, 0.5].

Some dynamics of motors is present from ui to Ωi. Usually installed electronic speed
controllers (ESC) for each motor provide a constant gain from control ui to the rotational
speed Ωi. A simplified description for the rotor speed dynamics is a first order transfer
function [9]:

PΩ(s) =
KΩ

TΩs+ 1
(2.4)

with the time constant TΩ and the gainKΩ. A time delay Tdelay should be added to this transfer
function to account the ESC discrete operation.

If a separate control for a one channel is considered, when, for example, uϕ = const ̸= 0
and uθ = uψ = 0, then the rotational speed can be divided into parts ΩF and Ωϕ dependent
from the controls uF and uϕ

Ωi = ΩF ± Ωϕ

and then
Ωi

2 = ΩF
2 ± 2ΩFΩϕ + Ωϕ

2.

Therefore, squares are canceled in (2.3), and the torque is linear with respect to the
additional rotational speed generated from the angular control uϕ, when ΩF is assumed as
a constant:

τϕ = 4KτΩFΩϕ.

Moreover, when uθ = uψ = 0 for roll control consideration separately, then one can
assumed that angular velocities q = r = 0 in (2.2). Thus, a basic model for roll angular
velocity p from the angular control uϕ can be described by transfer function

Pp(s) =
Kϕ

s(TΩs+ 1)
e−sTdelay , (2.5)

Kϕ =
4KτΩFKΩ

Jx
,

where values of gain Kϕ, time constant TΩ and time delay Tdelay should be determined. The
transfer function for roll angle ϕ can be obtained from (2.5) by adding one more integrator if
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pitch and yaw angles values are negligible in (2.1):

Pϕ(s) =
Kϕ

s2(TΩs+ 1)
e−sTdelay . (2.6)

The basic models for pitch and yaw angles loops are similar to (2.6) on the strength of
(2.2).

Nevertheless, the experimentally identified models in a number of papers have a different
structure. Transfer functions for roll and yaw angular velocities obtained in [13] are

Pp(s) =
K1s

(T1s+ 1)(s2 + 2ξωps+ ωp2)
e−sTdelay , (2.7)

Pr(s) =
K2

T2s+ 1
e−sTdelay , (2.8)

and the transfer function for the pitch angular velocity is similar to the roll one. Another
model structure for roll and pitch angular velocities is considered in [12], where the state-
space model for the roll loop is[

v̇
ṗ
ϕ̇

]
=

[
a1 0 g
a2 0 0
0 1 0

][
v
p
ϕ

]
+

[
b1
b2
0

]
uϕ(t− Tdelay), (2.9)

where a1, a2, b1, b2 are identified parameters, g is the gravitational acceleration, v is the
translational velocity projection onto the body frame y axis. The transfer function from
control uϕ to angular velocity p for the model (2.9) is

Pp(s) =
K̃s(s+ b̃1)

s3 + ã2s2 + ã0
e−sTdelay ,

where K̃, b̃1, ã2, ã0, are some parameters, calculated from parameters of the system (2.9). The
pitch loop model in the paper [12] is similar to (2.9) and the yaw loop model is the same as
(2.8).

The first order rotor speed dynamics is added to pitch and roll model of the form (2.9)
in [7]. Moreover, the yaw loop model is complemented by a lead time constant Tlead, i.e. the
transfer function for yaw angular velocity is

Pr(s) =
K2(Tleads+ 1)

(T2s+ 1)(TΩs+ 1)
e−sTdelay . (2.10)

One more example of the pitch and roll loop model is described in [10]. For brevity, the
roll model only is separated:[

v̇
ṗ
ϕ̇

]
=

[
a11 a12 g
a21 a22 0
0 1 0

][
v
p
ϕ

]
+

[
0
b2
0

]
uϕ, (2.11)

where a11, a12, a21, a22, b2 are identified parameters. The corresponding transfer function is

Pp(s) =
K̃s(s+ b̃1)

s3 + ã2s2 + ã1s+ ã0
, (2.12)

where K̃, b̃1, ã2, ã1, ã0 are coefficients calculated from the parameters of (2.11).
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Thus, the model structure (2.6) is not confirmed by the identification results. However,
there is no generally accepted model, parameters of which need to be identified.

Therefore, the considered problem is to find the transfer functions from the controls
uϕ, uθ, uψ to roll, pitch and yaw angles in the form

P (s) =
b̂ms

m + . . .+ b̂0
sn + ân−1sn−1 + . . .+ â0

(2.13)

with orders m,n under the condition m < n and parameters b̂0, . . . , b̂m, â0, . . . , ân−1.

3. FINITE FREQUENCY IDENTIFICATION

The finite-frequency identification approach is based on analysis of the experimental data
when the sine wave test signals on several different frequencies from wide enough range
are fed to the system input. The quadcopter cannot be tested in open loop mode, since
horizontal stabilization is provided by default attitude controllers. In the case of closed loop
identification [3,5] the sine wave test signals are added to the controller setpoint. The required
values of the pitch, roll and yaw angles θ∗, ϕ∗, ψ∗ for attitude controllers in identification test
for the pitch angle loop should be the follows ones:

θ∗ = ηi sin(ωi(t− t0)), ϕ∗ = 0, ψ∗ = 0, (3.14)

where ηi and ωi are amplitude and frequency of the test signal (i = 0, .., nω, where nω is a
number of the test frequencies from a given test set that are fed consequently to the system
input), t is time and t0 is the start time of the experiment on the current frequency. Then,
uθ, uϕ and uψ are outputs of corresponding controllers to stabilize the roll and yaw angles
values and provide the sinusoidal variation of the pitch angle. Identification tests for the roll
and yaw angles loops are similar. The ArduPilot onboard control system is used for the test
flight, where the author’s new software procedures are added to form the test signals (3.14)
and collect the experimental data.

The finite-frequency identification procedure consists of two steps: 1) obtaining estimates
of frequency response for several test frequencies ωi and 2) finding estimates of coefficients
of the identified transfer function using the frequency response estimates. The frequency
response estimates are obtained according to

P (jωi) = αi + jβi =
αyi + jβyi
αui + jβui

, i = 1, . . . , nω, (3.15)

where αi and βi are called the frequency parameters, which are found using output αyi, jβyi
and input αui, jβui values calculated from the experimental data by Fourier filter formulae
[2, 5]:

αyi =
2

ηiTi

∫ t0+Ti

t0

θ(t) sin(ωi(t− t0))dt,

βyi =
2

ηiTi

∫ t0+Ti

t0

θ(t) cos(ωi(t− t0))dt,

αui =
2

ηiTi

∫ t0+Ti

t0

uθ(t) sin(ωi(t− t0))dt,

βui =
2

ηiTi

∫ t0+Ti

t0

uθ(t) cos(ωi(t− t0))dt,

i = 1, . . . , nω,

(3.16)
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where Ti = 2πq/ωi is the filtration time (experiment duration), where q ∈ N is the number
of periods of the test frequency. Some examples of the experimental data are shown on Fig.
3.2. It is seen that the system output value follows the setpoint sine wave very accurately for
low frequency but with lag and reduced amplitude for high frequency, which is in line with
expectations for the closed loop system. In other hand, the control signal absorbs the noises
and nonlinearities.

The frequency parameters estimates obtained from the experimental flight data, where
inputs are the controls uϕ,θ,ψ ∈ [−0.5, 0.5] and outputs are angles ϕ, θ, ψ in radians, are in
table 3.1.

Fig. 3.2. Sine wave test for the pitch closed loop with frequencies 16 and 2 rad/s

Table 3.1. The frequency parameters estimates

Roll Pitch Yaw
i Frequency, ωi, rad/s αi βi αi βi αi βi

1 30.28 -0.044 -0.008
2 20.11 -0.397 0.344 -0.385 0.287 -0.094 -0.055
3 16.01 -0.736 0.552 -0.724 0.438 -0.139 -0.0864
4 12.03 -1.532 0.722 -1.409 0.628 -0.195 -0.122
5 8.00 -3.642 1.517 -3.571 0.972 -0.316 -0.243
6 5.34 -8.642 3.662 -6.815 2.142 -0.630 -0.422
7 4.00 -9.436 9.005 -9.040 5.771 -1.039 -0.552
8 3.50 -8.479 12.253 -7.689 6.591 -1.317 -0.731
9 3.00 -4.108 11.115 -6.914 7.417 -1.657 -0.838
10 2.00 0.559 8.897 -2.384 7.335 -3.217 -2.439
11 1.00 0.843 3.979 0.007 3.643

These estimates are used to write a system of linear equations, where they are equated for
each test frequency to (2.13) with unknown parameters, but with chosen order values n,m :

b̂m(jωi)
m + . . .+ b̂0

(jωi)n + ân−1(jωi)n−1 + . . .+ â0
= αi + jβi, (3.17)

where ωi, αi, βi are values from experiments and b̂0, . . . , b̂m, â0, . . . , ân−1 are unknowns.
When condition 2nω > n+m+ 1 is satisfied, the overdetermined system of 2nω linear
algebraic equations with n+m+ 1 unknowns is obtained by separating the real and
imaginary parts in (3.17). Then, the solution of this system provides estimates of the transfer
function coefficients by the least squares criterion. The values n,m are chosen by decreasing
until the identified transfer function contains no obviously cancellable stable poles and zeros.
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The identification results for the data from table 3.1 are

Pϕ(s) =
58.65(s+ 0.304)

(0.050s+ 1)(0.193s+ 1)(s2 − 3.44s+ 13.8)
, (3.18)

Pθ(s) =
49.39(s− 0.156)

(0.046s+ 1)(0.181s+ 1)(s2 − 3.79s+ 12.9)
, (3.19)

Pψ(s) =
1294(s+ 10.93)

s(0.834s+ 1)(s2 + 28.9s+ 1036)
. (3.20)

Comparison of these functions with the data of table 3.1 is shown on Fig. 3.3 – 3.5.

Fig. 3.3. Nyquist diagram of identified transfer function for roll

Fig. 3.4. Nyquist diagram of identified transfer function for pitch
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Fig. 3.5. Nyquist diagram of identified transfer function for yaw

The identified transfer functions differ from those given in Section 2. The function
structures for roll and pitch are expectedly the same. This structure is similar to the form of
(2.12), where the differentiating element is added in the numerator, since (2.12) is the transfer
function for angular velocity. The smallest time constant in the denominators of (3.18) and
(3.19) can be considered a first-order rotor speed model as proposed in [7] added to (2.12).
More detailed study of the experimental data is presented in the next section.

4. IDENTIFICATION IN DETAILS

4.1. Rotors dynamics
Electronic speed controllers (ESC) type BLHeli32 are installed on the experimental
quadcopter, so the rotors angular velocities Ω1...4 are measured. Then, the rotor speed
dynamics can be identified from the collected experimental data. The frequency parameters
obtained via (3.15)–(3.16) during the yaw tests from the controls u1...4 ∈ [0, 1] to the rotors
angular velocities Ω1...4 in rad/s are in the table 4.2 for each rotor.

Table 4.2. The frequency parameters estimates for the rotors dynamics

rotor 1 rotor 2 rotor 3 rotor 4
i Frequency, ωi, rad/s αi βi αi βi αi βi αi βi

1 30.28 251 -570 285 -443 273 -508 221 -589
2 20.11 475 -568 538 -521 518 -560 390 -591
3 16.01 627 -551 665 -517 575 -557 620 -516
4 12.03 751 -503 772 -457 754 -490 737 -478
5 8.00 899 -378 908 -341 870 -334 907 -386
6 5.34 991 -281 936 -254 995 -248 991 -257
7 4.00 997 -211 990 -202 996 -203 980 -199
8 3.50 1012 -189 995 -147 1003 -178 1008 -175
9 3.00 1013 -145 1015 -125 -1002 -158 1009 -160

The structure of the main dynamics for rotors can be set as the first order (2.4) with delay.
The delay is due to the discreteness of the flight controller and ESC. Thus, the parameters

Copyright © 2023 ASSA. Adv Syst Sci Appl (2023)
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KΩ, TΩ, Tdelay of the transfer function should be identified:

PΩ(s) =
KΩ

TΩs+ 1
e−sTdelay . (4.21)

The estimates of (4.21) parameters can be found via optimization procedure with variables
vector

x = [KΩ, TΩ, Tdelay].

For the convenience of notation, hereinafter the vector of variables for the optimization
procedure will be denoted as a row vector. The objective function is

min
x

nω∑
i=1

4∑
k=1

|PΩ(x, jωi)− (αki + jβki)|
|αki + jβki|

,

where PΩ(x, jωi) is the value for s = jωi of the transfer function (4.21) with parameters from
the variables vector x, k is the rotor number and αki, βki are corresponding estimates of the
frequency parameters from the table 4.2, i.e., an average function for four rotors is found. The
identification result is

PΩ(s) =
1033

0.048s+ 1
e−0.0042s. (4.22)

The delay value correlates with the fast loop of the flight controller, which operates with
step of 0.0025 s. The rotors time constant is expectedly small, but it cannot be considered
negligible when the controller sampling time is essentially less. Its Nyquist diagram and
experimental points from the table 4.2 are shown on Fig. 4.6.

Thus, one part of all considered loops is identified.

Fig. 4.6. Nyquist diagram of identified transfer function for rotors

4.2. Roll and pitch model
Further, the pitch model will be considered mainly, since the roll model is similar.

Translation velocity is included into the differential equation describing the angular
velocity dynamics in (2.9) and (2.11) [10, 12], which is different from the base model

Copyright © 2023 ASSA. Adv Syst Sci Appl (2023)
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(2.2). For a detailed consideration, it is proposed here to use a system of three differential
equations for the angular velocity dynamics with the state variables: angle, angular velocity
and translation velocity. The nonlinear model for translation velocity is obtained in [4]. Then,
the pitch model is:

v̇ = g tan θ − Cx|v|v,
q̇ = −a1θ − a2q − a3v + a4τθ,

θ̇ = q,

(4.23)

where v is horizontal translation velocity under assumptions that the vertical velocity is zero,
i.e. the vertical projection of the thrust mg compensates to the quadcopter mass m, the pitch
loop is considered separately, i.e. roll and yaw angles are zero and v corresponds to the pitch
angle, and no wind, since the airspeed is implied in (4.23) but the ground speed is measured
in the flight controller; g is acceleration of gravity; Cx is the aerodynamic parameter, which
is not a constant, but can be considered as some value for the operating point; a1, a2, a3, a4
are other parameters of the model. The torque τθ is determined by the rotors dynamics (4.22)
with some gain.

The aerodynamic parameter Cx is the product of 1) the aerodynamic coefficient cx, which
in turn depends on the velocity, 2) air density, i.e. the value ofCx may vary slightly depending
on the weather conditions and decreases noticeably in the mountains, and 3) surface area,
which depends on the tilt angle, which in the case of a quadcopter can be a very complex
dependence, since the rotating propellers are not a rigid body. The experimental flight data
contains the horizontal translation velocity values. An analysis of these data shows that for
low velocity up to 10 m/s the nonlinear first formula in (4.23) is not confirmed, and the
dynamics of the translation velocity depending on the angle can be described by the transfer
function

Pv(s) =
g

s+ a5
, (4.24)

where g = 9.8065 and a5 is the parameter, which value is identified from the experimental
flight data: a5 = 0.16.

Then, the transfer function from the control uθ to the pitch angle formed from the system
(4.23) taking into account (4.21) and (4.24) is

Pθ(s) =
ã4(s+ a5)

(TΩs+ 1)((s+ a5)(s2 + a2s+ a1) + ã3)
e−sTdelay , (4.25)

where ã4 = a4 · K̃τ and ã3 = ga3 are new unknowns as products of the corresponding
parameters of (4.23) and the gains of torque and translation velocity; TΩ and Tdelay are
evaluated in (4.22), a5 is already identified too. Thus, the estimates of unknowns x =
[a1, a2, ã3, ã4] of the model (4.25) should be found. The GlobalSearch optimization
procedure from the MATLAB Global optimization Toolbox can be used to find these values
from the experimentally obtained frequency parameters given in table 3.1. This procedure is
based on the multistart approach [11] with nonlinear programming solver fmincon, where
interior-point algorithm is chosen. This procedure usually provides a reliable result, while
the most effective optimization procedure for the problem being solved is not discussed here.
The objective function is

min
x

nω∑
i=1

|P (x, jωi)− (αi + jβi)|
|αi + jβi|

. (4.26)
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The estimates are found for roll and pitch:
xϕ = [−1.28, 1.86, 73.07, 286.6], (4.27)
xθ = [−14.61, 2.97, 83.06, 295.5]. (4.28)

The identified transfer functions are

Pϕ(s) =
56.67 · (s+ 0.16)

(0.048s+ 1)(0.198s+ 1)(s2 − 3.04s+ 14.4)
e−0.0042s, (4.29)

Pθ(s) =
42.91 · (s+ 0.16)

(0.048s+ 1)(0.145s+ 1)(s2 − 3.75s+ 11.7)
e−0.0042s. (4.30)

These functions match enough to the experimental data that is shown on Fig. 4.7, 4.8 and
differ little from (3.18), (3.19).

Fig. 4.7. Nyquist diagram of identified transfer function for roll

The problem of the validity of the identified models under other flight conditions remains.
The following flight test was carried out, where the required value of the pitch angle is formed
as

θ∗ = ηi sin(ωi(t− t0)) + θ0,

where θ0 is an operating point. The values for the test are θ0 = 5°, ηi = 3°. The obtained
frequency parameters estimates are in table 4.3.

The estimates of the model (4.25) parameters other than (4.28) are found for the pitch
loop:

xθ = [−34.01, 3.41, 26.38, 241.9]. (4.31)
The identified transfer function is

Pθ(s) =
30.05 · (s+ 0.16)

(0.048s+ 1)(0.124s+ 1)(s− 3.79)(s− 0.685)
e−0.0042s. (4.32)

The correspondence of the identified transfer function to the experimental data is shown on
Fig. 4.9

Thus, the identified transfer functions (4.29), (4.30) represent the roll and pitch dynamics
only for small values of the tilt angle and the translation velocity. The parameters a1 and a3
of (4.23) change significantly when the tilt angle is not near zero.
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Fig. 4.8. Nyquist diagram of identified transfer function for pitch

Table 4.3. The frequency parameters estimates for the pitch loop (5°operating point)

i Frequency, ωi, rad/s αi βi

1 20.11 -0.328 0.223
2 16.01 -0.562 0.304
3 12.03 -1.073 0.404
4 8.00 -1.971 0.390
5 5.34 -3.68 0.296
6 4.00 -5.003 0.545
7 3.50 -5.885 0.225
8 3.00 -5.735 0.672
9 2.00 -6.186 1.727
10 1.00 -4.554 3.292

Fig. 4.9. Nyquist diagram of identified transfer function for pitch (5°operating point)

Copyright © 2023 ASSA. Adv Syst Sci Appl (2023)
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4.3. Yaw model
It should be noted that the structure of the identified transfer functions (4.29), (4.30) for
roll and pitch angles does not contain an integration element, in contrast to the preliminary
structure (2.6), while the integrator is present in (3.20) for the yaw loop. Thus, the transfer
function for angular velocity r can be considered, and then, the transfer function for yaw
angle is obtained by adding the integrator. This approach is further approved by the fact that
in the case of yaw loop the measured data of the angular velocity during the sine wave test
have less fluctuations than the angle data that makes it possible to obtain more reliable values
of the frequency parameters.

It is obvious that the rotors dynamics (4.22) should be used for the model from control
uψ to torque τψ. The next idea follows from the presence of numerator in identified transfer
function (3.20). This suggests the existence of some state variable, such that the dynamics of
the angular velocity can be described as a system

ν̇ = −a4ν +Kνr,
ṙ = −a1ν − a2r + a3τψ,

(4.33)

where ν is some state variable, a1..4, Kν are model parameters. Then, the transfer function
from the control uψ to the yaw angular velocity r has the form

Pr(s) =
ã3(s+ a4)

(TΩs+ 1)((s+ a4)(s+ a2) + ã1)
e−sTdelay , (4.34)

where ã3 = a3 · K̃τ and ã1 = a1 ·Kν . The estimates of unknowns xψ = [ã1, a2, ã3, a4] are
found via the GlobalSearch optimization procedure from the experimentally obtained
frequency parameters for the yaw angular velocity:

xψ = [−1875, 352.6, 992.0, 5.62]. (4.35)

The identified transfer function is

Pr(s) =
992 · (s+ 5.62)

(0.048s+ 1)(s+ 358)(s+ 0.296)
e−0.0042s. (4.36)

The identified function (4.36) match enough to the experimental data that is shown on Fig.
4.10. The transfer function for yaw angle can be presented:

Pψ(s) =
992 · (s+ 5.62)

s(0.048s+ 1)(s+ 358)(s+ 0.296)
e−0.0042s. (4.37)

This function differs from (3.20), since the frequency parameters for yaw angle are less
accurate than for yaw angular velocity one, and the result obtained with criterion (4.26) and
structure (4.34) is more reasonable.

5. CONCLUSION

Frequency domain identification allows to identify and analysis complex non-obvious
dynamics. The transfer functions (4.29), (4.30), (4.37) for roll, pitch and yaw angles of the
quadcopter attitude are obtained in this article. The advantage of separated identification for
simple loops is shown, such as the rotors dynamics, to reduce the complicity of the non-
obvious part of the system. Solution of the optimization problem can provide better results
than the least squares due to the correct cost function and also allows to find the delay
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Fig. 4.10. Nyquist diagram of identified transfer function for yaw angular velocity

estimation. The unknown parameters for optimization procedure can be more sensible, than
the coefficients of the transfer function.

Identification of the pitch loop for operating points of 0° and 5° proves that the system
is nonlinear, since the obtained transfer functions differ significantly. Further research is
required to find limits and dependencies of the system parameters.
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