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Abstract: In this paper, we study an SIR epidemic model with general nonlinear incidence
function, general function of treatment and two discrete time delays, the first described the time
delay due to the latent period of the disease and the second is the time delay due to the period
that the infected individuals use to move into the recovered class. Lyapunov’s method is used to
show the global stability of the disease-free equilibrium if the basic reproduction number R0 ≤ 1,
while if R0 > 1 and under some conditions of delays, the existence of Hopf bifurcation appears
for the endemic equilibrium.
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1. INTRODUCTION

Mathematical modeling has been used in several areas, it is considered as a decision support
tool on any situation. In the epidemiological area, it has contributed to the epidemiological
surveillance of the disease because it makes to predict the health consequences of actions as
varied as vaccination, quarantine or the distribution of screening tests. Among the models
used in epidemiology, there are the SIR models which are compartment models, where
S stands for susceptible subpopulation, I is infected subpopulation, and R is recovered
subpopulation.

The incidence rate of a disease measures how fast the disease is spreading and it plays
an important role in the research of mathematical epidemiology. In many previous epidemic
models, the bilinear incidence rate βSI was frequently used [13, 21, 22, 26, 27, 29, 34, 40,
43, 44]. However, there are some advantages for adopting more general forms of incidence
rates. For instance, Capasso et al. [14–16] observed that the incidence rate may increase
more slowly as I increases. So, they proposed a saturated incidence rate βSI

1+αI
which was

used in [2, 9, 33, 41], where α is the saturation factor that measures the inhibitory effect,
βI measures the infection force of the disease and 1

1+αI
measures the inhibition effect from

the behavioral change of the susceptible individuals when their number increases or from
the crowding effect of the infected individuals. This incidence rate seems more reasonable
than the bilinear incidence rate βSI , because it includes the behavioral change and crowding
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effect of the infected individuals and prevents the unboundedness of the contact rate by
choosing suitable parameters. In the last years, many forms of incidence function have been
considered by the researchers in mathematical epidemiology. For example, the first one is
the saturated incidence βSI

d+S+I
[3], where β and d are the positive constants. The second

one is the Beddington-Deangelis incidence βSI
1+α1S+α2I

[6], where α1 and α2 are the positive
constants. The effect of saturation factor (refers to α1 and α2) stems from epidemic control
and the protection mesures. The third one is the standard incidence βSI

N
[18, 26]. In addition,

a recent Hattaf-Yousfi incidence βSI
α0+α1S+α2I+α3SI

that includes the three above functions was
introduced in [24] and used in [36]. Models with incidence functions of the form g(I)h(S)
have been studied in [30, 37]. The most general incidence function f(S, I)I [25] which
generalizes the previous incidence functions has been studied by the many authors [4,10–12].

It is well known that treatment is an important and effective method to prevent and control
the spread of various infectious diseases. Therefore, it very important to adopt a suitable
treatment function. For instance, Wang and Ruan [40] introduced a constant treatment in SIR
model as follows: {

r, I > 0,
0, I = 0,

which simulated a limited capacity for treatment. Further, Wang [39] considered the following
piecewise linear treatment function: {

rI, 0 ≤ I ≤ I0,
rI0, I > I0,

where I0 is the infective level at which the health care system reaches capacity.
Based on this, Zhang et al. [42] proposed the following saturated treatment function rI

1+kI
,

where r is the maximal medical resources supplied per unit time and k is the saturation factor
that measures the effect of the infected being delayed treatment. A very general from of
treatment function T (I) was considered by Elazzouzi et al. [19].

Epidemiological models can contain a delay that is either discrete [8, 17] or continuous
[7,10,35] because the delays appear in differential equations to describe the time lag between
the action on the system and the system’s response to this action, or because a some threshold
must be reached before the system is activated. In [33], Liu proposed an SEIR epidemic
model with saturated incidence and saturated treatment function with two discrete delays: the
time delay due to the latent period of the disease and the time delay due to the period that the
infected individuals use to move into the recovered class.

Motivated by the above works, we propose a mathematical SIR model that generalizes
the above models and incorporates the general nonlinear incidence function f(S, I)I , general
function treatment T (I) and two discrete time delays, the first τ1 described the time delay
due to the latent period of the disease and the second τ2 is the time delay due to the period
that the infected individuals use to move into the recovered class. This model is given by the
following nonlinear system:

dS(t)
dt

= A− µS(t) + γ1I(t)− f(S(t), I(t))I(t),
dI(t)
dt

= f(S(t− τ1), I(t− τ1))I(t− τ1)− η1I(t)− γ2I(t− τ2)− T (I(t− τ2)),
dR(t)
dt

= T (I(t− τ2)) + γ2I(t− τ2)− µR(t),
(1.1)

where η1 = µ+ γ1 + α. Here A is the constant recruitment rate into the population, S(t)
represents the number of individuals who are susceptible to disease, that is, who are not yet
infected at time t, I(t) represents the number of infected individuals who are infectious and
are able to spread the disease by contact with susceptible individuals at time t, R(t) is the
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number of individuals who have been infected and temporarily recovered at time t, µ is the
natural death rate of the population, τ1 is the units of time after infection expressing latent
period, τ2, is the time delay due to the period that the infected individuals use to move into the
recovered class, γ1 is the transfer rate from the infected class to the susceptible class, γ2 is the
transfer rate from the infected class to the recovered class, α is the disease-induced death rate,
T (I) is the general treatment function and f(S, I)I is the incidence function, i.e., the number
of susceptible individuals infected through their contacts with the infectious individuals.

Model (1.1) generalizes several special cases existing in the literature. For example, Abta
et al. [1] studied the model (1.1) with f(S, I)I = βSI

1+α1S+α2I
, γ1 = 0, τ2 = 0 and T (I) = 0.

In [25], Hattaf et al. studied the model (1.1) with γ1 = 0, τ2 = 0 and T (I) = 0. In [40], Wang
and Ruan studied the model (1.1) with f(S, I)I = βSI, γ1 = 0, τ1 = τ2 = 0 and T (I) = r.
In [39], Wang studied the model (1.1) with f(S, I)I = βSI, γ1 = 0, τ1 = τ2 = 0 and

T (I) =

{
rI, 0 ≤ I ≤ I0,
rI0, I > I0.

In [5], Balamuralitharan et al. studied the model (1.1) with f(S, I)I = βSI, γ1 = 0, τ1 =
τ2 = 0 and T (I) = rI . In this paper, the initial condition for the system (1.1) is:

S(θ) = φ1(θ), I(θ) = φ2(θ), R(θ) = φ3(θ), θ ∈ [−τ, 0], (1.2)

where τ = max{τ1, τ2} and φ = (φ1, φ2, φ3)
T ∈ C such that φi(θ) ≥ 0 for −τ ≤ θ ≤ 0 and

i = 1, 2, 3. The space C denotes the Banach space C([−τ, 0],R3
+0) of continuous functions

mapping the interval [−τ, 0] into R3
+0 with the supremum norm, where R+0 = {x ∈ R | x ≥

0}. Also, we assume that φi(0) > 0 for i = 1, 2, 3. On the other hand, the first two equation in
system (1.1) do not depend on the third equation, and therefore this equation can be omitted
without loss of generality. System (1.1) can be rewritten as{

dS(t)
dt

= A− µS(t) + γ1I(t)− f(S(t), I(t))I(t),
dI(t)
dt

= f(S(t− τ1), I(t− τ1))I(t− τ1)− η1I(t)− γ2I(t− τ2)− T (I(t− τ2)),
(1.3)

the incidence function f(S, I)I : R+ × R+ → R+ is a continuously differentiable and locally
Lipschitz function on R+ × R+ and satisfying the following hypotheses (see [11, 25]):

(H0) f(0, I) = 0 for I ≥ 0;

(H1) f(S, I) is a strictly monotone increasing function of S > 0, for any fixed I ≥ 0;

(H2) f(S, I) is a monotone decreasing function of I ≥ 0, for any fixed S ≥ 0;

(H3) ϕ(S, I) = f(S, I))I is a monotone increasing function of I ≥ 0, for any fixed S ≥ 0.

Moreover, the treatment function T : R+ → R+ is a locally Lipschitz continuous
differentiable function on R+ satisfying the following hypotheses (see [19])

(T0) T (0) = 0;

(T1)
T (I)
I

is a monotone increasing function of I > 0.

The rest of the paper is organized as follows. In Section 2, we carry out mathematical
analysis about the basic reproduction number and the existence of equilibria of the model
(1.1). In Section 3, we study the global stability of the disease-free equilibrium. Section 4 is
devoted to the stability and Hopf bifurcation of the endemic equilibrium. An application of
our results and some numerical simulations are presented in Section 5. At the end, we present
some concluding remarks.
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2. MATHEMATICAL ANALYSIS

In this section, we prove the basic results which guarantee the positivity of solutions as well
as the existence and uniqueness of the endemic equilibrium for system (1.3) under initial
condition (1.2).
Lemma 2.1:
The closed set:

Ω :=

{
(S, I) ∈ (R+)2|S + I ≤ A

µ

}
is positively invariant with respect to system (1.3).

Proof
Let N(t) = S(t) + I(t), and (S, I) ∈ (R+)2. Then it follows from system (1.3) that

dN(t)

dt
= A− µS(t)− µI(t)− αI(t)− γ2I(t− τ2)− f(S(t), I(t))I(t)

+ f(S(t− τ1), I(t− τ1))I(t− τ1)− T (I(t− τ2))

= A− µN(t)−
∫ t

t−τ1

f(S(σ), I(σ))I(σ)dσ − T (I(t− τ2))− αI(t)− γ2I(t− τ2).

By the hypotheses, we have

T (I(t− τ2)) ≥ 0 and f(S(t), I(t))I(t) ≥ 0 for all t ≥ 0 and τ2 ≥ 0.

Then
dN(t)

dt
≤ A− µN(t),

which implies that N(t) ≤ A
µ

when N(0) ≤ A
µ

. This completes the proof.

Hence, we discuss system (1.3) in the closed set Ω. Next, we discuss the existence of
equilibria for system (1.3).
The basic reproduction number of system (1.3) can be defined by

R0 =
f(A

µ
, 0)

η1 + η2
,

where η2 = γ2 + T
′
(0). Note that the system (1.3) always has a disease-free equilibrium

P0 = (A
µ
, 0). On the other hand, to prove the existence and uniqueness of an endemic

equilibrium, we need the following Lemma as in [19].
Lemma 2.2:
Assume that the assumptions (T0) and (T1), are satisfied. Then b2 − a2u− T (u) = 0, for
a2 > 0 and b2 > 0, has a unique positive solution u1, and b2 − a2u− T (u) > 0, for all
u ∈ [0, u1), and b2 − a2u− T (u) ≤ 0 for all u ∈ [u1,

b2
a2
].

Proof
Let L be the function defined on R+ by

L(u) := b2 − a2u− T (u),

we have: L(0) = b2 > 0 and L( b2
a2
) = −T ( b2

a2
) < 0 and L

′
= −a2 − T

′
< 0.

Since L is continuous and is strictly monotone decreasing function, then the equation
L(u) = 0, has a unique positive solution in the interval (0, b2

a2
). This completes the proof.
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Theorem 2.1:
Under the hypotheses (H1), (H2), (T0) and (T1) if R0 > 1, then system (1.3) admits a unique
endemic equilibrium P ∗ = (S∗, I∗), with

S∗ =
A

µ
− (µ+ γ2 + α)I∗ + T (I∗)

µ
,

and I∗ is the unique solution of the following equation:

f(
A

µ
− (µ+ γ2 + α)I + T (I)

µ
, I) = η1 + γ2 +

T (I)

I
.

Proof
For simplicity, we put

K(I) =
T (I)

I
.

At an equilibrium point (S, I) of system (1.3), the following equations hold.{
A− µS + γ1I − f(S, I)I = 0,

f(S, I)I − (η1 + γ2)I − T (I) = 0.
(2.4)

Substituting the second equation into the first equation of (2.4), we obtain the following
system: S =

A

µ
− (µ+ γ2 + α)I + T (I)

µ
,

f(S, I)I = (η1 + γ2)I + T (I).

(2.5)

If I = 0, we obtain the disease-free equilibrium point P0 = (A
µ
, 0). If I ̸= 0, then using (2.5)

we get the following equation

f(
A

µ
− (µ+ γ2 + α)I + T (I)

µ
, I) = η1 + γ2 +K(I).

We have S = A
µ
− [(µ+γ2+α)I+T (I)]

µ
, which implies that S ≤ A

µ
. By Lemma 2.2, we have

A
µ
− (µ+γ2+α)I+T (I)

µ
> 0 if and only if I ∈ [0, I1), where I1 is a unique positive solution of

the equation A
µ
− [(µ+γ2+α)I+T (I)]

µ
= 0. Hence, there is no positive equilibrium point if S > A

µ

or I ≥ I1. Now, we consider the function g defined on the interval [0, I1] as follows

g(I) := f(
A

µ
− (µ+ γ2 + α)I + T (I)

µ
, I)− (η1 + γ2 +K(I)).

We have

lim
I→0

g(I) = f(
A

µ
, 0)− (η1 + η2)

= (η1 + η2)
(f(A

µ
, 0)

η1 + η2
− 1

)
= (η1 + η2)(R0 − 1) > 0 for R0 > 1,

and
g(I1) = −(η1 + γ2 +K(I1)) < 0.
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Furthermore,

g
′
(I) = −µ+ γ2 + α + T

′

µ

∂f

∂S
+

∂f

∂I
−K

′
.

According to the hypotheses (H1), (H2) and (T1), we have g
′
(I) < 0. Hence, there exists

a unique endemic equilibrium P ∗ = (S∗, I∗) with I∗ ∈ (0, I1) and S∗ > 0 satisfies the
equations S∗ = A

µ
− (µ+γ2+α)I∗+T (I∗)

µ
. This completes the proof.

3. GLOBAL STABILITY OF THE DISEASE-FREE EQUILIBRIUM

In this section, we establish the global stability of the disease-free equilibrium P0 of system
(1.3). We can defined

Rc =
f(A

µ
, 0)

η1
.

Note that
R0 < Rc.

Theorem 3.1:
Suppose the hypotheses (H1), (H2), (T0) and (T1) hold.

• If R0 > 1, then the disease-free equilibrium P0 of system (1.3) is unstable.
• If R0 ≤ 1 then we distinguish three cases:

(i) The disease-free equilibrium P0 of system (1.3) is globally asymptotically stable
whenever τ1 ≥ τ2.

(ii) When Rc ≤ 1, the disease-free equilibrium P0 of system (1.3) is globally
asymptotically stable for all τ1 ≥ 0 and τ2 ≥ 0, then in particularly for τ2 ≥ τ1.

(iii) When Rc > 1, the equation (3.9) has a purely imaginary root. If more h
′
0(ω

∗
22,0) ̸= 0,

then there exists a positive τ ∗22,0 where system (1.3) undergoes Hopf bifurcation at
P0 when τ2 = τ ∗22,0. However, the steady state P0 is locally asymptotically stable
when τ2 ∈ [0, τ ∗22,0) and unstable when τ2 > τ ∗22,0, where τ ∗22,0 is given by

τ ∗22,0 =
1

ω∗
22,0

arccos (
f(A

µ
, 0) cos (ω∗

22,0τ1)− η1

η2
),

and ω∗
22,0 is the positive root of equation (3.9), and h0 are defined in equation (3.13).

Proof

• If R0 > 1, then the characteristic equation at P0 is given by

(λ+ µ)(λ− f(
A

µ
, 0)e−λτ1 + η1 + η2e

−λτ2) = 0. (3.6)

Obviously, λ = −µ is eigenvalue for (3.6), and hence, the stability of P0 is determined by the
distribution of the roots of equation

λ− f(
A

µ
, 0)e−λτ1 + η1 + η2e

−λτ2 = 0. (3.7)
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We put

Ψ(λ) = λ− f(
A

µ
, 0)e−λτ1 + η1 + η2e

−λτ2 .

We have
lim

λ→+∞
Ψ(λ) = +∞,

and

Ψ(0) = −f(
A

µ
, 0) + η1 + η2

= (η1 + η2)(1−
f(A

µ
, 0)

(η1 + η2)
)

= (η1 + η2)(1−R0).

Since the function Ψ(λ) is continuous on the interval [0,+∞), we conclude that the equation
Ψ(λ) = 0 has a positive real root and the disease-free equilibrium is unstable when R0 > 1.

• If R0 ≤ 1, then there are three cases:
- First case τ1 > τ2

Consider the following Lyapunov functional

V0(t) =

∫ S(t−τ1)

A
µ

(1−
f(A

µ
, 0)

f(σ, 0)
)dσ + I

+ η1

∫ t

t−τ2

I(ξ)dξ +

∫ t−τ2

t−τ1

f(A
µ
, 0)

f(S(σ), 0)
f(S(σ), I(σ))I(σ)dσ.

We will show that dV0(t)
dt

≤ 0 for all t ≥ 0. We have

dV0(t)

dt
= (1−

f(A
µ
, 0)

f(S(t− τ1), 0)
)(A− µS(t− τ1) + γ1I(t− τ1)

− f(S(t− τ1), I(t− τ1))I(t− τ1))

+ f(S(t− τ1), I(t− τ1))I(t− τ1)− η1I(t)− γ2I(t− τ2)− T (I(t− τ2))

+ η1I(t)− η1I(t− τ2)

+
f(A

µ
, 0)

f(S(t− τ2), 0)
f(S(t− τ2), I(t− τ2))I(t− τ2))

−
f(A

µ
, 0)

f(S(t− τ1), 0)
f(S(t− τ1), I(t− τ1))I(t− τ1))

= µ(1−
f(A

µ
, 0)

f(S(t− τ1), 0)
)(
A

µ
− S(t− τ1)) + γ1I(t− τ1)(1−

f(A
µ
, 0)

f(S(t− τ1), 0)
)

+
f( A

(µ)
, 0)

f(S(t− τ2), 0)
f(S(t− τ2), I(t− τ2))I(t− τ2))

− (η1 + γ2)I(t− τ2)− T (I(t− τ2)).
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Then we have

dV0(t)

dt
= µ(1−

f(A
µ
, 0)

f(S(t− τ1), 0)
)(
A

µ
− S(t− τ1)) + γ1I(t− τ1)(1−

f(A
µ
, 0)

f(S(t− τ1), 0)
)

+
(
(η1 + γ2)I(t− τ2) + T (I(t− τ2))

)
×

( f(A
µ
, 0)f(S(t− τ2), I(t− τ2))I(t− τ2)

f(S(t− τ2), 0)[(η1 + γ2)I(t− τ2) + T (I(t− τ2))]
− 1

)
= µ(1−

f(A
µ
, 0)

f(S(t− τ1), 0)
)(
A

µ
− S(t− τ1)) + γ1I(t− τ1)(1−

f(A
µ
, 0)

f(S(t− τ1), 0)
)

+
(
(η1 + γ2)I(t− τ2) + T (I(t− τ2))

)
×

(
R0

η1 + η2
η1 + γ2 +K(I(t− τ2))

f(S(t− τ2), I(t− τ2))

f(S(t− τ2), 0)
− 1

)
.

Furthermore, it follows from the hypotheses (H2), (T0) and (T1) that

f(S(t− τ2), I(t− τ2))

f(S(t− τ2), 0)
≤ 1,

and

η1 + η2
η1 + γ2 +K(I(t− τ2))

=
η1 + γ2 + limI→0

T (I(t−τ2))
I(t−τ2)

η1 + γ2 +
T (I(t−τ2))
I(t−τ2)

≤ 1.

Hence,

dV0(t)

dt
≤ µ(1−

f(A
µ
, 0)

f(S(t− τ1), 0)
)(
A

µ
− S(t− τ1)) + γ1I(t− τ1)(1−

f(A
µ
, 0)

f(S(t− τ1), 0)
)

+ [(η1 + γ2)I(t− τ2) + T (I(t− τ2))](R0 − 1).

By the hypothesis (H1), we obtain that

(1−
f(A

µ
, 0)

f(S(t− τ1), 0)
)(
A

µ
− S(t− τ1)) ≤ 0,

and

I(t− τ1)(1−
f(A

µ
, 0)

f(S(t− τ1), 0)
) ≤ 0,

where equality holds if and only if S = A
µ

.

Since R0 ≤ 1, ensures that dV0(t)
dt

≤ 0, for all t ≥ 0, Thus, the disease-free equilibrium P0 is
stable and dV0(t)

dt
= 0 holds if and only if S = A

µ
and

[(η1 + γ2)I(t− τ2) + T (I(t− τ2))]
(
R0

η1+η2
η1+γ2+K(I(t−τ2))

f(S(t−τ2),I(t−τ2))
f(S(t−τ2),0)

− 1
)
= 0. We dis-

cuss two cases:
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• If R0 < 1, then it follows from S = A
µ

and Lemma 2.1 that I = 0.

• If R0 = 1, then it follows from S = A
µ

and Lemma 2.1 that I = 0.

By the above discussions, we deduce that {P0} is the largest invariant set in{
(S, I)|dV0(t)

dt
= 0

}
. From the Lyapunov-LaSalle theorem [31, 32], we conclude that

P0 is globally asymptotically stable.

- Second case τ1 = τ2 = τ
Consider the following Lyapunov functional

W0(t) =

∫ S(t−τ)

A
µ

(1−
f(A

µ
, 0)

f(σ, 0)
)dσ + I + η1

∫ t

t−τ

I(ξ)dξ.

We will show that dW0(t)
dt

≤ 0 for all t ≥ 0. We have

dW0(t)

dt
= (1−

f(A
µ
, 0)

f(S(t− τ), 0)
)(A− µS(t− τ) + γ1I(t− τ)

− f(S(t− τ), I(t− τ))I(t− τ))

+ f(S(t− τ), I(t− τ))I(t− τ)− η1I(t)− T (I(t− τ)) + η1I(t)

− (η1 + γ2)I(t− τ)

= µ(1−
f(A

µ
, 0)

f(S(t− τ), 0)
)(
A

µ
− S(t− τ)) + γ1I(t− τ)(1−

f(A
µ
, 0)

f(S(t− τ), 0)
)

+
f(A

µ
, 0)

f(S(t− τ), 0)
f(S(t− τ), I(t− τ))I(t− τ))

− (η1 + γ2)I(t− τ)− T (I(t− τ)).

Then we have

dW0(t)

dt
= µ(1−

f(A
µ
, 0)

f(S(t− τ), 0)
)(
A

µ
− S(t− τ)) + γ1I(t− τ)(1−

f(A
µ
, 0)

f(S(t− τ), 0)
)

+
(
(η1 + γ2)I(t− τ) + T (I(t− τ))

)
×

( f(A
µ
, 0)f(S(t− τ), I(t− τ))

f(S(t− τ), 0)(η1 + γ2 +K(I(t− τ)))
− 1

)
= µ(1−

f(A
µ
, 0)

f(S(t− τ), 0)
)(
A

µ
− S(t− τ)) + γ1I(t− τ)(1−

f(A
µ
, 0)

f(S(t− τ), 0)
)

+
(
(η1 + γ2)I(t− τ) + T (I(t− τ))

)
×

(
R0

η1 + η2
η1 + γ2 +K(I(t− τ))

f(S(t− τ), I(t− τ))

f(S(t− τ), 0)
− 1

)
.

Furthermore, it follows from the hypotheses (H2), (T0) and (T1), we have

f(S(t− τ), I(t− τ))

f(S(t− τ), 0)
≤ 1,
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and

η1 + η2
(η1 + γ2) +K(I(t− τ))

=
η1 + γ2 + limI→0

T (I(t−τ))
I(t−τ)

η1 + γ2 +
T (I(t−τ))
I(t−τ)

≤ 1.

Then

dW0(t)

dt
≤ µ(1−

f(A
µ
, 0)

f(S(t− τ), 0)
)(
A

µ
− S(t− τ)) + γ1I(t− τ)(1−

f(A
µ
, 0)

f(S(t− τ), 0)
)

+ [(η1 + γ2)I(t− τ) + T (I(t− τ))](R0 − 1).

By the hypothesis (H1), we get that

(1−
f(A

µ
, 0)

f(S(t− τ), 0)
)(
A

µ
− S(t− τ)) ≤ 0,

and

I(t− τ)(1−
f(A

µ
, 0)

f(S(t− τ), 0)
) ≤ 0,

where equality holds if and only if S = A
µ

.

Since R0 ≤ 1, we deduce that dW0(t)
dt

≤ 0 for all t ≥ 0. Thus, the disease-free equilibrium P0

is stable and dW0(t)
dt

= 0, holds if and only if S = A
µ
,

and [(η1 + γ2)I(t− τ) + T (I(t− τ))]
(
R0

η1+η2
η1+γ2+K(I(t−τ))

f(S(t−τ),I(t−τ))
f(S(t−τ),0)

− 1
)
= 0. We dis-

cuss two cases:

• If R0 < 1, then it follows from S = A
µ

and Lemma 2.1 that I = 0.

• If R0 = 1, then it follows from S = A
µ

and Lemma 2.1 that I = 0.

Therefore, {P0} is the largest invariant set in
{
(S, I)|dW0(t)

dt
= 0

}
. From the Lyapunov-

LaSalle theorem [31, 32], we conclude that P0 is globally asymptotically stable.

- Third case τ2 > τ1

Suppose that Rc ≤ 1. Consider the following Lyapunov functional

U0(t) =

∫ S(t)

A
µ

(1−
f(A

µ
, 0)

f(σ, 0)
)dσ + I +

∫ t

t−τ1

f(S(ξ), I(ξ))I(ξ)dξ.
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We will show that dU0(t)
dt

≤ 0 for all t ≥ 0. We have

dU0(t)

dt
= (1−

f(A
µ
, 0)

f(S(t), 0)
)(A− µS(t) + γ1I(t)− f(S(t), I(t))I(t))

+ f(S(t− τ), I(t− τ))I(t− τ)− η1I(t)− γ2I(t− τ2)− T (I(t− τ2))

+ f(S(t), I(t))I(t)− f(S(t− τ), I(t− τ))I(t− τ)

= µ(1−
f(A

µ
, 0)

f(S(t), 0)
)(
A

µ
− S(t)) + γ1I(t)(1−

f(A
µ
, 0)

f(S(t), 0)
)

+
f(A

µ
, 0)

f(S(t), 0)
f(S(t), I(t))I(t))− η1I(t)− γ2I(t− τ2)− T (I(t− τ2)).

Then we have

dU0(t)

dt
= µ(1−

f(A
µ
, 0)

f(S(t), 0)
)(
A

µ
− S(t)) + γ1I(t)(1−

f(A
µ
, 0)

f(S(t), 0)
)

+ η1I(t)
(f(A

µ
, 0)f(S(t), I(t))

f(S(t), 0)η1
− 1

)
− γ2I(t− τ2)− T (I(t− τ2)).

Hence,

dU0(t)

dt
= µ(1−

f(A
µ
, 0)

f(S(t), 0)
)(
A

µ
− S(t)) + γ1I(t)(1−

f(A
µ
, 0)

f(S(t), 0)
)

+ η1I(t)
(
Rc

f(S(t), I(t))

f(S(t), 0)
− 1

)
− γ2I(t− τ2)− T (I(t− τ2)).

(3.8)

Furthermore, it follows from the hypotheses (H2) that

f(S(t), I(t))

f(S(t), 0)
≤ 1,

and by the hypotheses, we have

I(t− τ2) ≥ 0 and T (I(t− τ2)) ≥ 0.

Then

dU0(t)

dt
≤ µ(1−

f(A
µ
, 0)

f(S(t), 0)
)(
A

µ
− S(t)) + γ1I(t)(1−

f(A
µ
, 0)

f(S(t), 0)
)

+ η1I(t)
(
Rc − 1

)
.

By the hypothesis (H1), we obtain that

(1−
f(A

µ
, 0)

f(S(t), 0)
)(
A

µ
− S(t)) ≤ 0,
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and

I(t− τ)(1−
f(A

µ
, 0)

f(S(t), 0)
) ≤ 0,

where equality holds if and only if S = A
µ

.

Since Rc ≤ 1, ensures that dU0(t)
dt

≤ 0 for all t ≥ 0, Thus, the disease-free equilibrium P0 is
stable and by the equation (3.8) dU0(t)

dt
= 0, holds if and only if S = A

µ
and I = 0.

By the above discussions, we deduce that {P0} is the largest invariant set in{
(S, I)|dU0(t)

dt
= 0

}
. From the Lyapunov-LaSalle theorem [31, 32], we conclude that

P0 is globally asymptotically stable for all τ1 ≥ 0 and τ2 ≥ 0. Then P0 is globally
asymptotically stable for all τ2 > τ1.

Now, we suppose that R0 < 1 and Rc > 1 The characteristic equation at P0 is given by
the equation (3.6), obviously, λ = −µ, is eigenvalue for (3.6), and hence, the stability of P0

is determined by the distribution of the roots of equation

λ− f(
A

µ
, 0)e−λτ1 + η1 + η2e

−λτ2 = 0. (3.9)

Equation (3.9) has a purely imaginary root iω22, with ω22 > 0 if and only if

f(
A

µ
, 0) cos (ω22τ1)− η1 = η2 cos (ω22τ2), (3.10)

ω22 + f(
A

µ
, 0) sin (ω22τ1) = η2 sin (ω22τ2). (3.11)

Squaring and adding the squares together, we obtain

ω2
22 + η21 + f(

A

µ
, 0)2 − η22

− 2η1f(
A

µ
, 0) cos (ω22τ1) + 2ω22f(

A

µ
, 0) sin (ω22τ1) = 0.

(3.12)

We put

h0(ω22) = ω2
22 + η21 + f(

A

µ
, 0)2 − η22

− 2η1f(
A

µ
, 0) cos (ω22τ1) + 2ω22f(

A

µ
, 0) sin (ω22τ1).

(3.13)

On the other hand, we have

−1 ≤ cos (ω22τ1) ≤ 1 and − 1 ≤ sin (ω22τ1) ≤ 1.

Then we have
g01(ω22) ≤ h0(ω22) ≤ g02(ω22),

where
g01(ω22) = ω2

22 + η21 + f(
A

µ
, 0)2 − η22 − 2η1f(

A

µ
, 0)− 2ω22f(

A

µ
, 0),

and
g02(ω22) = ω2

22 + η21 + f(
A

µ
, 0)2 − η22 + 2η1f(

A

µ
, 0) + 2ω22f(

A

µ
, 0).
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We have
lim

ω22→+∞
g01(ω22) = lim

ω22→+∞
g02(ω22) = +∞.

Then
lim

ω22→+∞
h0(ω22) = +∞,

and

h0(0) = η21 + f(
A

µ
, 0)2 − η22 − 2η1f(

A

µ
, 0)

= (f(
A

µ
, 0)− η1)

2 − η22

=
(
f(

A

µ
, 0)− η1 − η2

)(
f(

A

µ
, 0)− η1 + η2

)
=

(
η1 + η2

)(
R0 − 1

)(
η1(Rc − 1) + η2

)
≤ 0.

Since h0(ω22) is continuous in [0,+∞), then the equation (3.9) has at least one positive root.
We assume that equation (3.9) admits a finite family of solution ω∗

22,o, with o = 1, ...,m and
m ∈ N.
By the equation (3.10), we have

τ f2,o =
1

ω∗
22,o

(
arccos (

f(A
µ
, 0) cos (ω∗

22,oτ1)− η1

η2
) + 2Πf

)
, f = 0, 1, ...; o = 1, 2, ...,m.

Then ±iω∗
22,o is a pair of purely imaginary root of equation (3.9), with τ2 = τ f2,o, f =

1, 2, ....; o = 1, 2, ...,m. Clearly,

lim
f→∞

τ f2,o = ∞, o = 1, 2, ...,m.

Thus, we can define

τ ∗22,0 = τ f02,o0 = min
f=0,1...,o=1,2,...,m

(τ f2,o), ω
∗
22,0 = ω∗

2,o0
.

Lets show that iω∗
22,0 is simple, consider the branche of characteristic roots λ(τ2) = x1(τ2) +

iy1(τ2), of equation (3.9) bifurcating from iω∗
22,0 at τ2 = τ ∗22,0. By derivation (3.9) with respect

to the delay τ2, we obtain

dλ

dτ2

(
1 + τ1f(

A

µ
, 0)e−λτ1 − τ2η2e

−λτ2
)
= λη2e

−λτ2 . (3.14)

If we suppose, by contradiction, that iω∗
22,0 is not simple, the right hand side (3.14) gives

iω∗
22,0η2 = 0,

and leads a contradiction with the fact that ω∗
22,0 > 0, and η2 > 0.

Next, we need to grantee the transversality condition of the Hopf bifurcation theorem (see
[23]). Clearly, λ(τ2) = x1(τ2) + iy1(τ2), is a root of equation (3.9) if and only if

x1 + η1 − e−x1τ1f(
A

µ
, 0) cos (y1τ1) = −e−x1τ2η2 cos (y1τ2), (3.15)
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y1 + e−x1τ1f(
A

µ
, 0) sin (y1τ1) = e−x1τ2η2 sin (y1τ2). (3.16)

Let x1(τ
∗
22,0) and y1(τ

∗
22,0) satisfying x1(τ

∗
22,0) = 0, and y1(τ

∗
22,0) = ω∗

22,0. By
differentiating equations (3.15) and (3.16) with respect to τ2 and then set τ2 = τ ∗22,0. Doing
this, we get

G1,0

dx1(τ
∗
22,0)

dτ2
+G2,0

dy1(τ
∗
22,0)

dτ2
= h1,0,

−G2,0

dx1(τ
∗
22,0)

dτ2
+G1,0

dy1(τ
∗
22,0)

dτ2
= h2,0,

(3.17)

where
G1,0 = 1 + τ1f(

A

µ
, 0) cos (ω∗

22,0τ1)− τ2η2 cos (ω
∗
22,0τ2),

G2,0 = τ1f(
A

µ
, 0) sin (ω∗

22,0τ1)− τ2η2 sin (ω
∗
22,0τ2),

h1,0 = ω∗
22,0η2 sin (ω

∗
22,0τ2),

and
h2,0 = ω∗

22,0η2 cos (ω
∗
22,0τ2).

Calculating
dx1(τ∗22,0)

dτ2
, we get

dx1(τ
∗
22,0)

dτ2
=

G1,0h1,0 −G2,0h2,0

G2
1,0 +G2

2,0

.

Therefore, according to the equation (3.10) and (3.11) we have

dx1(τ
∗
22,0)

dτ2
=

ω∗
22,0h

′
(ω∗

22,0)

2(G2
1,0 +G2

2,0)
̸= 0.

This proves the Theorem.

4. STABILITY AND HOPF BIFURCATION OF THE ENDEMIC EQUILIBRIUM

In the next, we will study the local stability of the positive equilibrium P ∗ with respect to the
time delay.

We set x = S − S∗, and y = I − I∗. Then the linearized system of equations around the
equilibrium point P ∗ is given as follows:

dx

dt
= (−µ− ∂f(S∗, I∗)

∂S
I∗)x(t)− (

∂f(S∗, I∗)

∂I
I∗ + f(S∗, I∗)− γ1)y(t),

dy

dt
=

∂f(S∗, I∗)

∂S
I∗x(t− τ1) + (

∂f(S∗, I∗)

∂I
I∗ + f(S∗, I∗))y(t− τ1)− η1y(t)

−(γ2 + T
′
(I∗))y(t− τ2).

For simplicity, we put η3 = γ2 + T
′
(I∗), and η4 = µ+ I∗ ∂f(S

∗,I∗)
∂S

. Hence, the characteristic
equation at P ∗ is given by

∆(λ, τ1, τ2) =

∣∣∣∣ λ+ η4 I∗ ∂f(S
∗,I∗)

∂I
+ f(S∗, I∗)− γ1

−I∗ ∂f(S
∗,I∗)

∂S
e−λτ1 λ+ η1 − (I∗ ∂f(S

∗,I∗)
∂I

+ f(S∗, I∗))e−λτ1 + η3e
−λτ2

∣∣∣∣ = 0.
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By a simple computation, we get

∆(λ, τ1, τ2) = P (λ) +Q(λ)e−λτ1 + J(λ)e−λτ2 = 0, (4.18)

where
P (λ) = λ2 + A1λ+B,

Q(λ) = Cλ+D,

J(λ) = Eλ+ F,

A1 = η1 + η4,

B = η1η4,

C = −(
∂f(S∗, I∗)

∂I
I∗ + f(S∗, I∗)),

D = −η4(
∂f(S∗, I∗)

∂I
I∗ + f(S∗, I∗))

+
∂f(S∗, I∗)

∂S
I∗(

∂f(S∗, I∗)

∂I
I∗ + f(S∗, I∗))− γ1

∂f(S∗, I∗)

∂S
I∗

= −µ(
∂f(S∗, I∗)

∂I
I∗ + f(S∗, I∗))− γ1

∂f(S∗, I∗)

∂S
I∗,

E = η3,

and
F = η4η3.

By the hypotheses (H2) and (T1), we easily deduce that (see [20, 28])

T
′
(I∗)− T (I∗)

I∗
≥ 0, (4.19)

and

f(S∗, I∗)− ∂ϕ(S∗, I∗)

∂I
≥ 0. (4.20)

Several cases arise.

4.1. Case τ1 = τ2 = 0

Theorem 4.1:
If R0 > 1 and τ1 = τ2 = 0, then the endemic equilibrium P ∗ is locally asymptotically stable.

Proof
When τ1 = τ2 = 0, the characteristic equation (4.18) reads as

λ2 + (A1 + C + E)λ+ (B +D + F ) = 0

By using the second equation of system (1.3), we have

f(S∗, I∗) = (η1 + γ2) +
T (I∗)

I∗
. (4.21)
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Then

A1 + C + E = η1 + η4 − (
∂f(S∗, I∗)

∂I
I∗ + f(S∗, I∗)) + η3

= η4 −
∂f(S∗, I∗)

∂I
I∗ + (T

′
(I∗)− T (I∗)

I∗
),

and

B +D + F = η1η4 − µ(
∂f(S∗, I∗)

∂I
I∗ + f(S∗, I∗))− γ1

∂f(S∗, I∗)

∂S
I∗

+ η4η3

= µ(T
′
(I∗)− T (I∗)

I∗
) +

∂f(S∗, I∗)

∂S
I∗[(µ+ α) + η3]− µ

∂f(S∗, I∗)

∂I
I∗.

By the hypotheses (H1), (H2), (T1), and equation (4.19), we have A1 + C + E > 0 and
B +D + F > 0. Hence, according to the Routh-Hurwitz criterion, the endemic equilibrium
P ∗ is locally asymptotically stable. This completes the proof.

4.2. Case τ1 > 0 and τ2 = 0

Theorem 4.2:
If R0 > 1, τ1 > 0 and τ2 = 0, then the endemic equilibrium P ∗ is locally asymptotically
stable.

Proof
When τ1 > 0 and τ2 = 0 the characteristic equation (4.18) becomes

∆(λ, τ1) = λ2 + (A1 + E)λ+B + F + (λC +D)e−λτ1 = 0. (4.22)

Equation (4.22) has a purely imaginary root iω1, with ω1 > 0 if and only if

ω2
1 − (B + F ) = D cos (ω1τ1) + ω1C sin (ω1τ1),

and
ω1(A1 + E) = D sin(ω1τ1)− ω1C cos (ω1τ1).

Squaring and adding the squares together, we obtain

ω4
1 + cω2

1 + d = 0, (4.23)

with c = (A1 + E)2 − 2(B + F )− C2 and d = (B + F )2 −D2.
Letting z1 = ω2

1, then equation (4.23) becomes the following equation

z21 + cz1 + d = 0.

On the other hand, we have

d = (B + F )2 −D2

= (B + F −D)(B + F +D).

Using the case τ1 = τ2 = 0, we have (B + F +D) > 0 and by using the hypotheses (H1),
(H3) and (T1), we have (B + F −D) > 0 then we have d > 0. Now, we will prove c > 0.
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Indeed c = (A1 + E)2 − 2(B + F )− C2, we have

(A1 + E)2 = (η1 + η3 + η4)
2.

By using the equation (4.21), find that

(A1 + E)2 =
(
f(S∗, I∗) + η4 + T

′
(I∗)− T (I∗)

I∗

)2

= f(S∗, I∗)2 + η24 + 2f(S∗, I∗)η4

+ (T
′
(I∗)− T (I∗)

I∗
)2 + 2(T

′
(I∗)− T (I∗)

I∗
)f(S∗, I∗) + 2(T

′
(I∗)− T (I∗)

I∗
)η4,

and

−2(B + F ) = −2η4(η1 + η3)

= −2f(S∗, I∗)η4 − 2η4(T
′
(I∗)− T (I∗)

I∗
),

and

−C2 = −(
∂f(S∗, I∗)

∂I
I∗ + f(S∗, I∗))2

= −(
∂ϕ(S∗, I∗)

∂I
)2.

Then we have

c =
(
f(S∗, I∗)− ∂ϕ(S(t), I(t))

∂I

)(
f(S∗, I∗) +

∂ϕ(S(t), I(t))

∂I

)
+ η24

+ (T
′
(I∗)− T (I∗)

I∗
)2 + 2(T

′
(I∗)− T (I∗)

I∗
)f(S∗, I∗).

By the hypothesis (H3) and equations (4.19) and (4.20), we have c > 0. Then the equation
(4.23) has non positive solution.
Consequently, using the case τ1 = τ2 = 0, the endemic equilibrium P ∗ is locally
asymptotically stable . This completes the proof.

4.3. Case τ1 = τ2 = τ

Consider the assumption:

η1 − γ2 +
µ∂ϕ(S∗,I∗)

∂I
+ γ1

∂f(S∗,I∗)
∂S

I∗

η4
< T

′
(I∗). (4.24)

Theorem 4.3:
If R0 > 1 and (4.24) holds, then there exists a positive τ0 where system (1.3) undergoes Hopf
bifurcation at P ∗ when τ = τ0. However, the steady state P ∗ is locally asymptotically stable
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when τ ∈ [0, τ0) and unstable when τ > τ0. Here τ0 is given by

τ0 =
1

ω0

arccos (
(D + F )(ω2

0 −B)− ω2
0A1(C + E)

ω2
0(C + E)2 + (D + F )2

),

and

ω0 =

√
−x+

√
(x2 − 4y)

2
,

where x and y are defined in equation (4.28).

Proof
When τ1 = τ2 = τ , the characteristic equation (4.18) becones

∆(λ, τ) = λ2 + A1λ+B + [λ(C + E) + (D + F )]e−λτ = 0. (4.25)

Equation (4.25) has a purely imaginary root iω, with ω > 0

∆(iω, τ) = 0,

if and only if
ω2 −B = ω(C + E) sin (ωτ) + (D + F ) cos (ωτ), (4.26)
ωA1 = (D + F ) sin (ωτ)− ω(C + E) cos (ωτ). (4.27)

Squaring and adding the squares together, we obtain

ω4 + xω2 + y = 0, (4.28)

with
x = A2

1 − 2B − (C + E)2,

and
y = B2 − (D + F )2.

Letting z = ω2, equation (4.28), becomes the following equation

z2 + xz + y = 0. (4.29)
On the other hand, we have

y = B2 − (D + F )2

=
(
B +D + F

)(
B −D − F

)
.

Using the case τ1 = τ2 = 0, we have B + F +D > 0, and the assumption (4.24) implies that
B −D − F < 0, then we have y < 0.
Consequently, the equation (4.29) has a unique solution positive

z0 =
−x+

√
(x2 − 4y)

2
.

Then the equation (4.28) has a unique positive solution

ω0 =

√
−x+

√
(x2 − 4y)

2
.
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On the other hand, the equations (4.26) and (4.27) imply that

τ0 =
1

ω0

arccos (
(D + F )(ω2

0 −B)− ω2
0A1(C + E)

ω2
0(C + E)2 + (D + F )2

).

Lets show that iω0 is simple, consider the branche of characteristic roots λ(τ) = k(τ) +
ij(τ), of equation (4.25) bifurcating from iω0 at τ = τ0. By derivation (4.25) with respect
to the delay τ, we obtain

dλ

dτ

(
2λ+ A1 + e−λτ ([C + E]− [λ(C + E) + (D + F )]τ)

)
= λ[λ(C + E) + (D + F )]e−λτ .

(4.30)
If we suppose, by contradiction, that iω0 is not simple, the right hand side (4.30) gives

iω0(C + E) + (D + F ) = 0.

On the other hand, the equation (4.24) implies that B −D − F < 0, and by the
hypotheses (H1), (H3) and (T1), we have B > 0,−D > 0 and F > 0 then we have
−D < F. This contradicts −D = F.

Next, we need to guarantee the transversality condition of the Hopf bifurcation theorem
(see [23]). Clearly, λ(τ) = k(τ) + ij(τ) is a root of equation (4.25) if and only if

k2 − j2 + A1k +B = −e−kτ
(
[k(C + E) + (D + F )] cos (jτ) + j(C + E) sin (jτ)

)
,

(4.31)
and

2kj + jA1 = −e−kτ
(
j(C + E) cos (jτ)− [k(C + E) + (D + F )] sin (jτ)

)
. (4.32)

Let k(τ0) and j(τ0), satisfying k(τ0) = 0, and j(τ0) = ω0. By differentiating equations
(4.31) and (4.32) with respect to τ and then set τ = τ0. Doing this, we get

G1
dk(τ0)

dτ
+G2

dj(τ0)

dτ
= h1,

−G2
dk(τ0)

dτ
+G1

dj(τ0)

dτ
= h2,

where

G1 = A1 + [(C + E)− τ0(D + F )] cos (ω0τ0)− τ0ω0(C + E) sin (ω0τ0),

G2 = −2ω0 + τ0ω0(C + E) cos (ω0τ0) + [(C + E)− τ0(D + F )] sin (ω0τ0),

h1 = ω0(D + F ) sin (ω0τ0)− ω2
0(C + E) cos (ω0τ0),

and
h2 = ω2

0(C + E) sin (ω0τ0) + ω0(D + F ) cos (ω0τ0).

Also, we have
dk(τ0)

dτ
=

G1h1 −G2h2

G2
1 +G2

2

,

Therefore, according to the equations (4.26) and (4.27) we have

dk(τ0)

dτ
=

ω2
0

√
x2 − 4y

G2
1 +G2

2

.

This completes the proof.
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4.4. Case τ2 > 0 and τ1 = 0

Theorem 4.4:
If R0 > 1 and (4.24) holds, then there exists a positive τ2,0 where system (1.3) undergoes
Hopf bifurcation at P ∗ when τ2 = τ2,0. However, the steady state P ∗ is locally asymptotically
stable when τ2 ∈ [0, τ2,0) and unstable when τ2 > τ2,0. Here τ2,0 is given by

τ2,0 =
1

ω2,0

arccos [
ω2
2,0(F − E[A1 + C])− (B +D)F

ω2
2,0E

2 + F 2
],

and

ω2,0 =

√
−p+

√
(p2 − 4q)

2
,

where p and q are defined in equation (4.36).

Proof
When τ2 > 0 and τ1 = 0, the characteristic equation (4.18) becomes

∆(λ, τ2) = λ2 + (A1 + C)λ+B +D + (λE + F )e−λτ2 = 0. (4.33)

Equation (4.33), has a purely imaginary root iω2, with ω2 > 0,

∆(iω2, τ2) = 0,

if and only if
ω2
2 − (B +D) = ω2E sin (ω2τ2) + F cos (ω2τ2), (4.34)
ω2(A1 + C) = F sin (ω2τ2)− ω2E cos (ω2τ2). (4.35)

Squaring and adding the squares together, we get

ω4
2 + pω2

2 + q = 0, (4.36)

with
p = (A1 + C)2 − 2(B +D)− E2,

and
q = (B +D)2 − F 2.

Letting z2 = ω2
2, equation (4.36) becomes the following equation

z22 + pz2 + q = 0. (4.37)

On the other hand, we have

q = (B +D)2 − F 2

=
(
B +D + F

)(
B +D − F

)
.

Using the case τ1 = τ2 = 0, we have B +D + F > 0, and the equation (4.24) implies that
B −D < F, and by the hypotheses (H1), (H2), and (T1), we have B > 0, D < 0 and F > 0,
then we have B +D < F, then, we have q < 0.
Consequently, the equation (4.37) has a unique solution positive

z2,0 =
−p+

√
(p2 − 4q)

2
.
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Then the equation (4.36) has a unique positive solution

ω2,0 =

√
−p+

√
(p2 − 4q)

2
.

On the other hand, the equations (4.34) and (4.35) imply that

τ2,0 =
1

ω2,0

arccos [
ω2
2,0(F − E[A1 + C])− (B +D)F

ω2
2,0E

2 + F 2
].

Lets show that iω2,0 is simple, consider the branche of characteristic roots
λ(τ2) = u(τ2) + iv(τ2), of equation (4.33) bifurcating from iω2,0 at τ2 = τ2,0. By derivation
(4.33) with respect to the delay τ2, we obtain

dλ

dτ2

(
2λ+ A1 + C + e−λτ2(E − [λE + F ]τ2)

)
= λ(λE + F )e−λτ2 . (4.38)

If we suppose, by contradiction, that iω2,0 is not simple, the right hand side (4.38) gives

iω2,0E + F = 0,

and leads a contradiction with the fact that ω2,0 > 0, E > 0 and F > 0.
Next we need to guarantee the transversality condition of the Hopf bifurcation theorem
(see [23]). Clearly, λ(τ2) = u(τ2) + iv(τ2), is a root of equation (4.33), if and only if

u2 − v2 + (A1 + C)u+B +D = −e−uτ2
(
[uE + F ] cos (vτ2) + vE sin (vτ2)

)
, (4.39)

2uv + v(A1 + C) = −e−uτ2
(
vE cos (vτ2)− (uE + F ) sin (vτ2)

)
. (4.40)

Let u(τ2,0) and v(τ2,0), satisfying u(τ2,0) = 0, and v(τ2,0) = ω2,0. By differentiating
equations (4.39) and (4.40) with respect to τ2 and then set τ2 = τ2,0. Doing this, we get

G3
du(τ2,0)

dτ2
+G4

dv(τ2,0)

dτ2
= h3,

−G4
du(τ2,0)

dτ2
+G3

dv(τ2,0)

dτ2
= h4,

where
G3 = A1 + C + (E − τ2,0F ) cos (ω2,0τ2,0)− τ2,0ω2,0E sin (ω2,0τ2,0),

G4 = −2ω2,0 + τ2,0ω2,0E cos (ω2,0τ2,0) + (E − τ2,0F ) sin (ω2,0τ2,0),

h3 = ω2,0F (0) sin (ω2,0τ2,0)− ω2
2,0E cos (ω2,0τ2,0),

and
h4 = ω2

2,0E sin (ω2,0τ2,0) + ω2,0F (0) cos (ω2,0τ2,0).

Further, we have
du(τ2,0)

dτ2
=

G3h3 −G4h4

G2
3 +G2

4

.

Therefore, according to the equations (4.34) and (4.35) we have

du(τ2,0)

dτ2
=

ω2
2,0

√
p2 − 4q

G2
3 +G2

4

.

This completes the proof.
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4.5. Case τ1 > 0 and τ2 > 0

Theorem 4.5:
If R0 > 1, G5h5 −G6h6 ̸= 0 and (4.24) holds, then there exists a positive τ ∗2,0 where system
(1.3) undergoes Hopf bifurcation at P ∗ when τ2 = τ ∗2,0. However, the steady state P ∗ is locally
asymptotically stable when τ2 ∈ [0, τ ∗2,0) and unstable when τ2 > τ ∗2,0. Here τ ∗2,0 is given by

τ ∗2,0 =
1

ω∗
2,0

arccos[
(F − EA1)(ω

∗
2,0)

2 − FB + ω∗
2,0(ED − CF ) sin (ω∗

2,0τ1)

(ω∗
2,0E)2 + F 2

−
(DF + EC(ω∗

2,0)
2) cos (ω∗

2,0τ1)

(ω∗
2,0E)2 + F 2

].

where ω∗
2,0 is the positive root of the equation (4.43), and G5, G6, h5, h6 as defined in (4.48).

Proof
Equation (4.18) has a purely imaginary root iω∗

2, with ω∗
2 > 0,

∆(iω∗
2, τ1, τ2) = 0,

if and only if

(ω∗
2)

2 −B − ω∗
2C sin (ω∗

2τ1)−D cos (ω∗
2τ1) = Eω∗

2 sin (ω
∗
2τ2) + F cos (ω∗

2τ2), (4.41)

and

A1ω
∗
2 + ω∗

2C cos (ω∗
2τ1)−D sin (ω∗

2τ1) = F sin (ω∗
2τ2)− Eω∗

2 cos (ω
∗
2τ2). (4.42)

Squaring and adding the squares together, we obtain

(ω∗
2)

4 + (ω∗
2)

2(C2 + A2
1 − E2) +B2 +D2 − F 2 + 2

(
[−(ω∗

2)
3C

+ ω∗
2(BC − A1D)] sin (ω∗

2τ1) + [(ω∗
2)

2(A1C −D) +BD] cos (ω∗
2τ1)

)
= 0.

(4.43)

We define

h(ω∗
2) = (ω∗

2)
4 + (ω∗

2)
2(C2 + A2

1 − E2) +B2 +D2 − F 2

+ 2
(
[−(ω∗

2)
3C + ω∗

2(BC − A1D)] sin (ω∗
2τ1) + [(ω∗

2)
2(A1C −D) +BD] cos (ω∗

2τ1)
)
.

(4.44)
On the other hand, we have

−1 ≤ sin (ω∗
2τ1) ≤ 1 and − 1 ≤ cos (ω∗

2τ1) ≤ 1,

and by the hypotheses (H1), (H3) and (T1), we have

BD < 0, A1C < 0,−D > 0,−C > 0, BC < 0 and − A1D > 0.

Then
g2(ω

∗
2) ≤ h(ω∗

2) ≤ g1(ω
∗
2),

where
g1(ω

∗
2) = (ω∗

2)
4 − 2(ω∗

2)
3C + (ω∗

2)
2[C2 + A2

1 − E2 − 2A1C − 2D]

− ω∗
2(2BD + 2A1D) +B2 +D2 − F 2 − 2BD,
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and
g2(ω

∗
2) = (ω∗

2)
4 + 2(ω∗

2)
3C + (ω∗

2)
2[C2 + A2

1 − E2 + 2A1C + 2D]

+ ω∗
2(2BD + 2A1D) +B2 +D2 − F 2 + 2BD.

We have
lim

ω∗
2→+∞

g1(ω
∗
2) = lim

ω∗
2→+∞

g2(ω
∗
2) = +∞.

Then we have
lim

ω∗
2→+∞

h(ω∗
2) = +∞,

and

h(0) = B2 +D2 + 2BD − F 2

= (B +D)2 − F 2

=
(
B +D + F

)(
B +D − F

)
.

By the case τ1 = τ2 = 0, we have (B +D + F ) > 0, and by the case (τ2 > 0 and τ1 = 0) if
the equation (4.24) is satisfied then we have (B +D − F ) < 0. Therefore, h(0) < 0.
Since h is continuous in [0,+∞), then the equation (4.43) has at least one positive root.
We assume that equation (4.43) admits a finite family of solution ω∗

2,i with i = 1, 2, ..., n.
n ∈ N.
By the equations (4.41) and (4.42), we have

τ li =
1

ω∗
2,i

(
arccos [

(F − EA1)(ω
∗
2,i)

2 − FB + ω∗
2,i(ED − CF ) sin (ω∗

2,iτ1)

(ω∗
2,0E)2 + F 2

−
(DF + EC(ω∗

2,i)
2) cos (ω∗

2,iτ1)

(ω∗
2,0E)2 + F 2

] + 2Πl
)
, l = 0, 1, ....; i = 1, 2, ..., n.

Then ±iω∗
2,i is a pair of purely imaginary roots of equations (4.18), with τ2 = τ li , l =

0, 1, ...; i = 1, 2, ..., n. Clearly,

lim
l→∞

τ li = ∞, i = 1, 2, ..., n.

Thus, we can define

τ ∗2,0 = τ l0i0 = min
l=0,1...,i=1,2,...,n

(τ li ), ω
∗
2,0 = ω∗

2,i0
.

Lets show that iω∗
2,0 is simple, consider the branche of characteristic roots λ(τ2) =

u1(τ2) + iv1(τ2), of equation (4.18) bifurcating from iω∗
2,0 at τ2 = τ ∗2,0. By derivation (4.18)

with respect to the delay τ2, we obtain

dλ

dτ2

(
2λ+ A1 + [C − τ1(λC +D)]e−λτ1 + [E − τ2(λE + F )]e−λτ2

)
= λ[λE + F ]e−λτ2 .

(4.45)
If we suppose, by contradiction, that iω∗

2,0, is not simple, the right hand side (4.45) gives

iω∗
2,0E + F = 0,
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and leads a contradiction with the fact that ω∗
2,0 > 0, E > 0 and F > 0.

Next we need to guarantee the transversality condition of the Hopf bifurcation theorem
(see [23]). Clearly λ(τ2) = u1(τ2) + iv1(τ2), is a root of equation (4.18) if and only if

u2
1 − v21 + A1u1 + e−u1τ1

(
Cu1 cos (v1τ1) + Cv1 sin (v1τ1) +D cos (v1τ1)

)
= −e−u1τ2

(
Eu1 cos (v1τ2) + Ev1 sin (v1τ2) + F cos (v1τ2)

)
,

(4.46)

and

2u1v1 + A1v1 + e−u1τ1
(
Cv1 cos (v1τ1)− Cu1 sin (v1τ1)−D sin (v1τ1)

)
= −e−u1τ2

(
Ev1 cos (v1τ2)− Eu1 sin (v1τ2)− F sin (v1τ2)

)
.

(4.47)

Let u1(τ
∗
2,0) and v1(τ

∗
2,0), satisfying u1(τ

∗
2,0) = 0, and v1(τ

∗
2,0) = ω∗

2,0. By differentiating
equations (4.46) and (4.47) with respect to τ2, and then set τ2 = τ ∗2,0. Doing this, we get

G5

du1(τ
∗
2,0)

dτ2
+G6

dv1(τ
∗
2,0)

dτ2
= h5,

−G6

du1(τ
∗
2,0)

dτ2
+G5

dv1(τ
∗
2,0)

dτ2
= h6,

(4.48)

where

G5 = A1 − τ1Cω∗
2,0 sin (ω

∗
2,0τ1) + (C − τ1D) cos (ω∗

2,0τ1)− τ ∗2,0Eω∗
2,0 sin (ω

∗
2,0τ

∗
2,0)

+ (E − τ ∗2,0F ) cos (ω∗
2,0τ

∗
2,0),

G6 = −2ω∗
2,0 + (C − τ1D) sin (ω∗

2,0τ1) + τ1Cω∗
2,0 cos (ω

∗
2,0τ1) + (E − τ ∗2,0F ) sin (ω∗

2,0τ
∗
2,0)

+ τ ∗2,0Eω∗
2,0 cos (ω

∗
2,0τ

∗
2,0),

h5 = Fω∗
2,0 sin (ω

∗
2,0τ

∗
2,0)− E(ω∗

2,0)
2 cos (ω∗

2,0τ
∗
2,0),

and
h6 = E(ω∗

2,0)
2 sin (ω∗

2,0τ
∗
2,0) + Fω∗

2,0 cos (ω
∗
2,0τ

∗
2,0).

Calculating
du1(τ∗2,0)

dτ2
, we get

du1(τ
∗
2,0)

dτ2
=

G5h5 −G6h6

G2
5 +G2

6

.

This completes the proof.

5. NUMERICAL SIMULATION

In this section, we shall give some simulations to illustrate the previous results. For the
following, let’s consider the saturated incidence rate function:

f(S, I)I =
βSI

1 + α1I
,

Copyright © 2025 ASSA. Adv Syst Sci Appl (2025)



STABILITY ANALYSIS OF A DELAYED EPIDEMIC MODEL... 79

and the treatment function

T (I) = rI.

We take the parameters of the system (1.3) as follows:

A = 8, β = 0.955, µ = 0.5, γ2 = 0.935, α = 0.03
γ1 = 0.3, r = 0.9, and α1 = 0.5.

Some parameters are for the spread of tuberculosis disease in Turkey from 2005 to 2015
(see, [38]). The rest of the parameters are the hypothetical set of parameter values.

5.1. Case τ1 = τ2 = 0

By applying Theorem 4.1, the endemic equilibrium P ∗ is locally asymptotically stable when
R0 > 1 and τ1 = τ2 = 0. Figure 5.1 illustrates this result.

Fig. 5.1. Dynamics of system (1.3) when τ1 = τ2 = 0 and R0 = 5.7336 > 1.

5.2. Case τ1 > 0 and τ2 = 0

According to Theorem 4.2, the endemic equilibrium P ∗ is locally asymptotically stable if
R0 > 1, τ1 > 0 and τ2 = 0. Figure 5.2 demonstrates this result.

Fig. 5.2. Dynamics of system (1.3) when τ1 = 1.7678, τ2 = 0 and R0 = 5.7336 > 1.
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5.3. Case τ1 = τ2 = τ

From Theorem 4.3, the following figures show that if the delay is below τ0 = 1.7678, the
endemic equilibrium P ∗ is locally asymptotically stable (see, Figure 5.3a). When the value
of the delay τ increases we lose the stability of the endemic equilibrium (see, Figure 5.3b)
and P ∗ becomes unstable for τ > τ0 = 1.7678 (see, Figure 5.3c), and vice versa when the
delay is decreasing the model converges rapidly to P ∗.

(a) Dynamics of system (1.3) when τ1 = τ2 = 1.4178 and R0 = 5.7336 > 1.

(b) For τ1 = τ2 = 1.7678, Hopf bifurcation occurs
and periodic solutions appear for model (1.3) with R0 = 5.7336 > 1.

(c) For τ1 = τ2 = 2.1178, all solutions (S, I) of model (1.3) are unstable with R0 = 5.7336 > 1.

Fig. 5.3. Case τ1 = τ2 = τ

Copyright © 2025 ASSA. Adv Syst Sci Appl (2025)



STABILITY ANALYSIS OF A DELAYED EPIDEMIC MODEL... 81

5.4. Case τ1 = 0 and τ2 > 0

As in Theorem 4.4, the following figures show that if the delay is below τ2,0 = 0.8357, the
endemic equilibrium P ∗ is locally asymptotically stable (see, Figure 5.4a). When the value
of the delay τ2 increases we lose the stability of the endemic equilibrium (see, Figure 5.4b)
and P ∗ becomes unstable for τ2 > τ2,0 = 0.8357 (see, Figure 5.4c), and vice versa when the
delay is decreasing the model converges rapidly to P ∗.

(a) Dynamics of system (1.3) when τ1 = 0, τ2 = 0.7857 and R0 = 5.7336 > 1.

(b) For τ1 = 0 and τ2 = 0.8357, Hopf bifurcation occurs
and periodic solutions appear for model (1.3) with R0 = 5.7336 > 1.

(c) For τ1 = 0 and τ2 = 0.8651, all solutions (S, I) of model (1.3) are unstable with R0 = 5.7336 > 1.

Fig. 5.4. Case τ1 = 0 and τ2 > 0
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5.5. Case τ1 > 0 and τ2 > 0

Based on Theorem 4.5, the following figures show that if the delay τ2 is below τ ∗2,0 = 0.9249
with τ1 fixed by taking τ1 = 3.6688, the endemic equilibrium P ∗ is locally asymptotically
stable (see, Figure 5.5a). When the value of the delay τ2 increases we lose the stability of the
endemic equilibrium (see, Figure 5.5b) and P ∗ becomes unstable for τ2 > τ ∗2,0 = 0.9249 (see
,Figure 5.5c), and vice versa when the delay is decreasing the model converges rapidly to P ∗.

(a) Dynamics of system (1.3) when τ1 = 3.6688, τ2 = 0.8228 and R0 = 5.7336 > 1.

(b) For τ1 = 3.6688 and τ2 = 0.9249, Hopf bifurcation occurs and periodic solutions appear for model (1.3)
with R0 = 5.7336 > 1.

(c) For τ1 = 3.6688 and τ2 = 0.9976, all solutions (S, I) of model (1.3) are unstable
with R0 = 5.7336 > 1.

Fig. 5.5. Case τ1 > 0 and τ2 > 0

6. CONCLUDING REMARKS

In this work, we have proposed and analyzed a delayed SIR model with generalized incidence
and treatment functions. Our analysis proved that the two delays τ1 and τ2 have a very big
influence on the stability of the equilibrium points. In fact,

• When R0 ≤ 1, we have:
- If τ1 ≥ τ2, then the disease-free equilibrium is globally asymptotically stable for all

Rc, this shows that the disease disappears. This biologically mean that when the
latent period is greater than the healing period and the basic reproduction number is
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less than or equal to one, the infected individuals cured before becoming infectious
and the disease will disappear.

- If Rc ≤ 1, then the disease-free equilibrium is globally asymptotically stable
independently of delays.

- If Rc > 1 and τ1 is held fixed, then there exists a positive constant τ ∗22,0 such that
when τ2 ∈ [0, τ ∗22,0), the disease-free equilibrium is locally asymptotically stable.
When τ2 = τ ∗22,0 a Hopf bifurcation occurs and when τ2 > τ ∗22,0 the disease-free
equilibrium is unstable.

• When R0 > 1, the disease-free equilibrium is unstable and the proposed model admits
an endemic equilibrium P ∗. In this case, we have:
- If τ2 = 0 and τ1 ≥ 0, then the endemic equilibrium P ∗ is locally asymptotically stable.
- If τ2 > 0, then there exists a positive constant τ̃ such that when τ2 ∈ [0, τ̃),

the endemic equilibrium is locally asymptotically stable. When τ2 = τ̃ a Hopf
bifurcation occurs and the host populations and the disease coexists within an
oscillatory mode, and when τ2 > τ̃ the endemic equilibrium is unstable and the
disease persists.

From the aforementioned, we conclude that the longer the recovery period is for the
infected individuals, the higher the spreading risk becomes and vice versa.
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