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Abstract: In this paper, we propose a new method, called the pairwise similarity method, for
assessing the similarity of instances of optimization problems. This method is a generalization
of the metric approach proposed earlier for scheduling problems. It relaxes the requirements
to the structure of the problem constraints. The method involves a dissimilarity function for
the comparison of instances. It identifies “simple” instances that can be solved in polynomial
time and uses them to get good approximations for other instances. We apply the pairwise
similarity method to two discrete optimization problems: the majority domination problem and
the maximum cut problem.
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1. INTRODUCTION

The problem of NP-hardness is related to one of the key problems of theoretical computer
science of the relationship between complexity classes P and NP. To date, there is no way to
quantify the complexity of NP-hard problems. Analyzing the behavior of heuristic algorithms
as applied to various problem instances leads to the identification of patterns in the data.
Studying such patterns allows one to gain insight into the complexity structure of NP-hard
problems.

In this paper, we propose a general method for estimating the computational complexity of
NP-hard problems based on comparing the problem instances using a dissimilarity function.
The proposed method is based on the metric approach, which was originally formulated for
scheduling problems [2, 4, 6, 7, 8].

The metric approach was tested for problem instances of the same dimension without
taking into account the difference in the structure of the constraints. First, instances were
found that enables obtaining an exact solution in a reasonable time. To compare a general
instance with such an instance, metrics were proposed that evaluate the difference between
the objective functions of those two instances. An exact solution to the first instance induces
an approximate solution for the second instance and the characteristics of the latter solution
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have been assessed using the above metrics. More specifically, the metric was defined as the
upper bound for the absolute error of the approximate solution. Computational experiments
for solving some problems of scheduling theory by approximate algorithms in polynomial
time have shown that with increasing dimension, the upper bound for the relative error of the
objective function tends to zero, while the proportion of problems that can be solved exactly
in polynomial time tends to 100%. This means that the proposed algorithms can be effectively
used for most of the instances of the problems under consideration. This made it possible to
obtain exact or fairly close to exact solutions. Moreover, with an increase in the dimension of
the problem, the proportion of such instances increases [6, 7, 8].

Furthermore, [2] studied the possibility of finding approximate schedules using the metric
approach for an NP-complete scheduling problem on two parallel identical machines with
priority delays for jobs or for jobs of length 1 or 2 with minimization of execution time.
An application of these methods for finding the optimal solution for P2 | pred, pj = 1 |Cmax

using the Coffman and Sethi algorithms has been implemented. In [4], the metric approach
was developed for planning a two-station single-track railway. New metrics were proposed
and computational tests were carried out.

The pairwise similarity method generalizes the metric approach. It allows for different
structures of instances and involves pairwise dissimilarity functions for which satisfaction
of the axioms of metric is not required. This paper proposes a general method for assessing
heuristics called the pairwise similarity method. It is applied to two discrete optimization
problems: the problem of majority domination on graphs with a limited degree of vertices and
the maximum cut problem. The focus is on finding instances with the required characteristics
and using them to obtain efficient solutions for other instances. Relations are established
between the change in the value of the objective function and the difference between the
graphs of the problems under consideration.

The structure of the paper is as follows. Section 2 introduces the pairwise similarity
method and describes the algorithms that make it up. In Section 3.1, the pairwise similarity
method is applied for finding the strict majority domination number in a graph with cycles in
the framework of a two-level voting model. In particular, it is proved that graphs with a limited
cyclomatic number form a “semisimple” special case, a pairwise dissimilarity function is
introduced for them, and an approximate algorithm of polynomial complexity is constructed
that has a guaranteed bound for the absolute error of the objective function. In Section 3.2,
the pairwise similarity method is applied to the maximum cut problem in the case where it
is difficult to analytically obtain an absolute upper bound for the error and the estimates are
based on numerical simulation. In conclusion, a research program for further study of the
proposed method is outlined.

2. PAIRWISE SIMILARITY METHOD

We first introduce the formal definitions needed to construct the pairwise similarity method.

Definition 2.1. For an NP-hard problem P and a pattern α, the special case Pα is the subclass
of P comprising all instances A ∈ Pα that satisfy α.

Definition 2.2. A simple special case Pα
simple is a special case for which there is a polynomial

(or pseudopolynomial) algorithm that finds the exact solution for all instances A ∈ Pα
simple.

Definition 2.3. A semisimple special case Pα
ssimple is a special case for which there is

a polynomial (or pseudopolynomial) algorithm that finds an approximate solution with a
guaranteed error for all instances A ∈ Pα

ssimple.

Definition 2.4. A numerical special case Pα
num is a special case for which there exist a

polynomial (or pseudopolynomial) algorithm and an error estimate such that this estimate for
the algorithm is not proved analytically, but is confirmed by numerical experiments on Pα

num.
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Definition 2.5. A hard special case Pα
hard is a special case for which there is no polynomial

(or pseudopolynomial) algorithm that finds exact solutions for all instances A ∈ Pα
hard.

In what follows, by special cases, unless otherwise indicated, we mean simple,
semisimple, or numerically simple special cases. We now define the pairwise dissimilarity
function.

Definition 2.6. A pairwise dissimilarity function is a function that measures the difference
between instances according to some criterion.

Given a simple special case Pα
simple and the corresponding polynomial or pseudopolyno-

mial algorithm, for any B ∈ Pα
simple and A ̸∈ Pα

simple, the absolute (or relative) error of the
objective function for A when the polynomial (pseudopolynomial) exact solution for B is
applied to A will be used as the value of the dissimilarity function, denoted by τ , on the pair
(A,B). The steps of the pairwise similarity method are described below.

Note that different values, such as relative error, rate of convergence of the method,
convergence scores of several methods, number of operations, etc., can be used to construct
dissimilarity functions in the pairwise similarity method. Let us move on to the main
definitions assuming that the problem under consideration is a linear programming problem
with one objective function.

In the pairwise similarity method, a solution XB to the instance B obtained using a
polynomial (or pseudopolynomial) algorithm is applied to an instance A, for which it may
violate the internal constraints. Depending on how the solution XB is applied, we consider
three strategies.

1. Evaluation of instance A: using the obtained solution XB to evaluate the solution XA,
regardless of the feasibility of the resulting solution.

2. Relaxation of instance A: using the obtained solution XB to evaluate the solution XA,
taking into account which restrictions of instance A are violated when XB is applied
to A. To implement this strategy, it is necessary to check the resulting solution for
feasibility. That is, if instance B is a relaxation of instance A, then a procedure for
checking the satisfaction of constraints is needed in order to determine which particular
restrictions of instance A are violated by solution XB.

3. Constructing a valid solution for instance A using the obtained solution XB as an
approximate solution to instance A. To do this, it is necessary to check the feasibility
of XB and, if some constraints are violated, find the new solution X∗

B closest to XB

among the solutions that satisfy all the constraints of A. Thus, to obtain XA = X∗
B, it is

necessary to construct a function transforming XB into X∗
B.

Thus, the pairwise similarity method consists of the following steps.

1. Find one or more special cases of the problem. For many discrete optimization problems,
some special cases are known. Below we present guidelines for finding new special
cases.

2. Construct a pairwise dissimilarity function that allows one to estimate the distance from
any instance to each of the special cases. An algorithm for building such a function is
proposed below.

3. Given an instance A, find the closest special case using the chosen pairwise dissimilarity
function.

4. Find the solution to the closest to A instance that belongs to a special case.
5. Estimate the guaranteed error of the obtained solution using the chosen pairwise

dissimilarity function.
6. Choose a strategy for applying the solution of Item 4 to instance A.

– For the “Evaluation of instance A” strategy, we use XB without adjustment.
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– For the strategy “Relaxation of instance A”, we use XB, taking into account
information about whether the constraints of the original instance are violated, and
if so, which ones.

– For the strategy “Constructing a valid solution for instance A”, we check the
obtained solution for feasibility, and if some restrictions are violated, then use the
function transforming XB into XA = X∗

B.

Finding special cases is a non-trivial task, the solution of which is based on studying
the special properties of the problem under consideration. For example, for the classes
of problems where the graph included in a constraint is a tree, there are often fast exact
algorithms based on classical tree traversal algorithms. Expanding the set of special cases
allows one to more accurately determine the absolute error of the original instance. We now
give some guidelines that help find special cases.

The most obvious way is to expand the known special cases by slightly changing the
original pattern. Section 3.1 gives an instance of such an extension by adding additional
edges to the trees to form cycles.

The second way is based on the following statement. If for problem P there exists an
approximate algorithm Ã, then among the instances of P one can single out a subset of
instances P ∗ for which this algorithm provides exact solutions. To implement this guideline,
it is necessary to solve a number of randomly selected instances of problem P with different
parameters using the exact algorithm A and the approximate algorithm Ã. Next, a subset
of instances P ∗ ⊂ P for which exact solutions (or solutions with a guaranteed error) were
obtained by the approximate algorithm Ã must be selected. Note that the subset of instances
P ∗ is, by definition, a numerically simple special case. Then it is necessary to determine
whether there is a subset of instances P ∗∗ ⊆ P ∗ for which some pattern α can be formulated.
If the pattern α is found, then the resulting set of instances P ∗∗ is, by definition, a simple or
semisimple special case.

The third way involves an exact combinatorial algorithm A, for which the rate of
convergence is investigated. If for problem P it is possible to select a subset of instances P ∗ ⊂
P for which algorithm A converges fast enough, then one may try to construct a heuristic
algorithm Ã based on A, which provides an exact solution or an approximate solution with
a guaranteed error for all instances in P ∗. Note that the concept of fast convergence of an
algorithm in this context is used informally, since the formalization depends on a specific
problem. To implement this guideline, it is necessary to randomly select a number of instances
of P with different parameters and solve them using A. Next, we should single out a subset
of instances P ∗ ⊂ P for which A obtains exact solutions fairly quickly. Then it is necessary
to build a heuristic algorithm based on the steps of A, which are carried out in the course
of solving the instances in P ∗. As a result, we get P ∗ as a numerically simple special case.
Further, similarly to the second way, we look for a pattern α that describes some subset of
instances P ∗∗ ⊆ P ∗. If such a pattern has been found, then P ∗∗ is a simple special case.

We now turn to the construction of a pairwise dissimilarity function. This includes the
following steps.

1. Find a special case P ∗.
2. Fix all parameters of the P ∗ problem, except for one parameter q.
3. Solve some set of instances of the problem P ∗ for various q.
4. Determine the relationship βq between q and the exact value of the objective function.
5. Construct a pairwise dissimilarity function ρq that approximately represents βq.
6. Repeat steps (2)–(5) for the other problem parameters.
7. As the resulting pairwise dissimilarity function, consider the sum ρ =

∑n
q=1 ρ

q of partial
functions for all parameters of problem P .
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An example of the application of this procedure is the variation of the cyclomatic number
of a graph in Section 3.1, where the pairwise similarity method is used to build an analytical
estimate with a limited absolute error.

Note that, due to the complexity of the problem, the pairwise dissimilarity function
cannot always be found analytically. In this case, it is proposed to evaluate the pairwise
dissimilarity function numerically. For instance, in Section 3.2 the pairwise dissimilarity
function is evaluated using computational experiments. It is proposed to majorize from above
and tabulate the numerical values of the pairwise dissimilarity function.

3. APPLICATIONS OF THE PAIRWISE SIMILARITY METHOD

3.1. Majority domination problem
In this section, the pairwise similarity method is illustrated by the its application to the
problem of finding the strict majority domination number for a graph with cycles within
the two-tier voting model. The pairwise dissimilarity function is built using the procedure
described in Section 2. The special case is constructed by extending the well-known special
case, where the constraint graph is a tree.

In social and technical systems, two-tier majority procedures are often used to make
decisions. In such procedures, at the first stage, majority voting is carried out in local
groups of agents, at the second stage, the results of group voting are aggregated, also using
majority, into the final decision [3]. One of the central questions in the analysis of two-
tier procedures is: “For what minimum proportion of agents that support a proposal can it
ultimately be accepted by this procedure?” For a given graph of information connections
between the agents, the minimum difference between the number of agents that support an
accepted proposal and the number of agents that do not support it is called the strict majority
domination number of the graph.

We will use the following notation. G = (V,E), |V | = n, is a graph, each vertex of
which has a loop. Vertex v ∈ V has the set of neighbors Nv = {w ∈ V : {v, w} ∈ E}, which
includes v. We will write Nv(G) when several graphs share the same vertex set. An opinion
function f : V → {−1, 1} associates an opinion with each vertex. The opinion function is
extended to subsets W ⊆ V as the sum of the opinions of the vertices that belong to W :
f(W ) =

∑
v∈W f(v). Each vertex v ∈ V votes “for” if f(Nv) > 0 or “against” otherwise. A

pair (G, f) ≡ Gf will be called a configuration. Let V + = {v ∈ V : f(Nv) > 0} be the set of
vertices voting “for”.

Definition 3.1. Given a configuration, a proposal put to a vote is accepted if |V +| > |V |/2
and rejected otherwise; acceptance or rejection are the possible results of the vote. An opinion
function for which a proposal is accepted is called a strict majority function for G.

Definition 3.2. The strict majority domination number of a graph G is γ(G) =
minf∈F+f(V ), where F+ is the set of strict majority functions for G. A strict majority
function f will be called optimal whenever f(V ) = γ(G).

Finding the strict majority domination number of a given graph G and the corresponding
optimal opinion function is a discrete optimization problem whose solution space is given by
2n possible opinion functions. For the case of an arbitrary graph G, this is an NP-complete
problem [1], however, there are special cases for which a polynomial algorithm that solves
it exists. In particular, if G is a tree, then an optimal opinion function can be constructed in
polynomial time using a dynamic programming algorithm [9].

The problems of finding the strict majority domination number on trees act as a simple
special case in the application of the pairwise similarity method described below. In
accordance with the general scheme of the method given in Section 2, we will show that
the case of graphs with an upper bounded cyclomatic number is a semisimple special case for
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the problem of finding the strict majority domination number of a graph, that is, it allows the
construction of an approximate solution with a guaranteed absolute error by reduction to the
case of a tree. Thus, a limited number of independent cycles is the pattern α around which
the application of the pairwise similarity method can be developed.

In Theorem 3.1 below, we prove that for any spanning tree T of graph G having k
cycles, γ(G) ≥ γ(T )− 4k holds. It also follows from the proof that knowing the optimal
opinion function f of a spanning tree T, one can construct a strict majority function f̃ for
the graph G such that f̃(V ) ≤ γ(T ) + 2k, which follows that the error of the approximate
solution f̃(V )− γ(G) does not exceed 6k. This theorem allows us to reduce the search for an
approximate solution for G to the search for an optimal opinion function for a tree T , which
can be done in polynomial time [1], while the guaranteed error of the solution depends only
on the number of cycles in the graph, not on its order or size.

We first introduce a technical notion and prove an auxiliary result.

Definition 3.3. Let configurations Gf and G′f̃ share vertex set V . We say that the voting
conditions of v ∈ V in G′f̃ are no worse than in Gf if v has at least as many neighbors in G′f̃

with opinion +1 than in Gf and no more neighbors in G′f̃ with opinion −1 than in Gf .
Lemma 3.1:
Let G be a graph with E(G) ̸= ∅ and H be the graph obtained from G by removing some
edge uv. Then

−4 ≤ γ(G)− γ(H) ≤ 2. (3.1)

Proof

Suppose f is an optimal opinion function for H; therefore, f(V ) = γ(H). Let us bound
γ(G) from above and below. To do this, consider the cases where f is not a strict majority
function for G along with modifications of f that make the resulting function f̃ a strict
majority function for G. Then f̃(V ) is an upper bound for γ(G).

First consider the cases where vertices u and/or v vote “for” in Hf , while without this the
proposal would be rejected. In such cases, after adding edge uv, the voting conditions for u
and/or v may worsen, which may lead to the violation of the strict majority condition for f
in Gf . If these vertices vote “against” in Hf , then changing the voting conditions for them
with the addition of edge uv does not cancel the acceptance of the proposal and preserves the
strict majority condition for f in Gf .

1. Let f(u) = f(v) = 1. In this case, adding a neighbor with opinion +1 will not worsen
the voting conditions for either vertex. Therefore, f remains a strict majority function
on G, but may cease to be optimal. Hence γ(G) ≤ f̃(V ) = f(V ) = γ(H).

2. Let f(u) = f(v) = −1. Then the addition of edge uv worsens the voting conditions for
both u and v.

• If u and v vote “for” in Hf and f(Nu(H)) = 1 or f(Nv(H)) = 1, then after
adding edge uv, the vote of one of the vertices changes to ”against”. As a result,
f may cease to be a strict majority function. To obtain a function f̃ having this
property, it is sufficient to change the opinion of u or v (let it be u) from −1
to +1. Then f̃(Nu(G)) = f(Nu(H)), while f̃(Nv(G)) = f(Nv(H)) + 1. Thus,
after adding edge uv and setting f̃(u) = f(u) + 2, the votes are preserved and so f̃

is a strict majority function for G. Hence γ(G) ≤ f̃(V ) = f(V ) + 2 = γ(H) + 2.
• If u or v votes “for” and the other vertex votes “against” in Hf , then to define a

strict majority function f̃ for G, it suffices to set f̃(u) = +1 or f̃(v) = +1. In this
case also γ(G) ≤ f̃(V ) = f(V ) + 2 = γ(H) + 2.
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3. Let f(u) = −1, f(v) = 1. For u, adding edge uv does not worsen the voting conditions.
If v votes “against” in Hf , then f remains a strict majority function after adding
edge uv, since the number of votes “for” does not decrease. If v votes “for”, then
obtaining a strict majority function f̃ for G reduces to setting f̃(u) = +1, which implies
f̃(V ) = f(V ) + 2. Therefore, γ(G) ≤ f̃(V ) = γ(H) + 2.

Now let f be an optimal strict majority function for G, which implies f(V ) = γ(G). Let
us bound γ(H) from above by transforming f into a strict majority function f̃ for H .

1. Let f(u) = f(v) = −1. Removing edge uv does not worsen the voting conditions for u
or v. Hence f remains a strict majority function for H and γ(H) ≤ f(V ) = γ(G).

2. Let f(u) = f(v) = 1. Then removing edge uv worsens the voting conditions for both u
and v.

• If u or v votes “for” in Gf (let it be u), while the other vertex votes “against”, then f
may cease to be a strict majority function for H . This may happen if f(Nu(G)) = 1,
in which case f(Nu(H)) = 0. To obtain a strict majority function f̃ for H , it suffices
to change the opinion of one of the neighbors of u from −1 to 1. This can always
be done, since f(Nu(H)) = 0 and f(u) = +1 imply the existence of a neighbor of
u with opinion −1. Therefore, f̃(V ) = f(V ) + 2.

• If both u and v vote “for” in Gf , then f may cease to be a strict majority function
for H if f(Nu(G)) = 1 or f(Nv(G)) = 1 (or both). Then a strict majority function
f̃ for H can be obtained by changing the opinion of one neighbor of u or/and one
neighbor of v from −1 to +1, as in the previous case. Then f̃(V ) ≤ f(V ) + 4.
Thus, γ(H) ≤ f̃(V ) ≤ γ(G) + 4.

3. Let f(u) = 1, f(v) = −1. Removing edge uv improves the voting conditions for u and
worsens them for v. If v votes “for” in Gf , then this may lead to its vote “against” in Hf .
As a result, f may cease to be a strict majority function for H . To obtain a strict majority
function f̃ for H , it suffices to set f̃(v) = +1, which yields f̃(Nv(H)) = f(Nv(G)) + 1

and f̃(Nu(H)) = f(Nu(G)) + 1. Then γ(H) ≤ f̃(V ) = f(V ) + 2 = γ(G) + 2, since
f(V ) = γ(G).

Collecting the obtained inequalities, we get (3.1).

G H

Fig. 3.1. Graph G and graph H obtained from G by removing one edge such that γ(G)− γ(H) = −4, since
γ(G) = −7 and γ(H) = −3.

Inequality (3.1) is sharp. Examples of graph G and graph H obtained from G by removing
one that satisfy that γ(G)− γ(h) = −4 and γ(G)− γ(h) = 2 are shown in Fig. 3.1 and
Fig. 3.1, respectively.
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G H

Fig. 3.2. Graph G and graph H obtained from G by removing one edge such that γ(G)− γ(H) = 2, since
γ(G) = 1 and γ(H) = −1.

Theorem 3.1:
Let a connected graph G have cyclomatic number k, and let T be its arbitrary spanning tree.
Then γ(T )− 4k ≤ γ(G) ≤ γ(T ) + 2k.

Proof
By the definition of cyclomatic number, tree T is obtained from G by removing k edges.
Deleting these edges one by one generates a sequence of graphs G :=H0, H1, ..., Hk=:T . The
proof of the theorem reduces to applying Lemma 3.1 to pairs of graphs Hi−1, Hi, i = 1, ..., k
and summing the resulting inequalities (3.1) for them.

Theorem 3.1 defines a pairwise dissimilarity function, according to which each spanning
tree of a graph G with cyclomatic number k is at distance k from G. A spanning tree of
G can be found via breadth-first search or depth-first search algorithms, which have linear
time complexity. On the other hand, spanning trees refer to a simple special case of the strict
majority domination number problem, which allows one to find the strict majority domination
number for any of them in polynomial time O(n2) and use the tree’s optimal strict majority
function to construct a strict majority function for the graph G, which gives an approximate
solution to the original problem.

A strict majority function for a graph G with cyclomatic number k can be found as
follows:

1. Find a spanning tree T of G. Determine an optimal strict majority function for T using
the polynomial algorithm [9].

2. Sequentially add k edges to T until G is obtained:
• Add an edge that belongs to E(G)∖E(T ). With the current opinion function, check

if |V +| > |V |/2. If this is true, proceed by adding the next edge.
• Otherwise, change the opinion −1 of a vertex incident to the new edge to +1.

In accordance with the general scheme of the pairwise similarity method, as an
approximate strict majority domination number of G, the best solution constructed on the
basis of the optimal strict majority functions of the spanning trees of G should be taken. In
practice, one can limit oneself to constructing several randomly selected spanning trees.

3.2. Maximum cut problem
In this section, the pairwise dissimilarity function based on the relative error is estimated
numerically. For this, an estimate of the error is constructed, based on the reduction of
problem instances to a simple special case. We use bipartite graphs as a simple special case
for the maximum cut problem. First, we introduce the main definitions related to this problem.
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Definition 3.4. A bipartite graph is a graph whose set of vertices can be divided into two
parts in such a way that each edge of the graph connects a vertex of one part with a vertex of
the other part.

Definition 3.5. A cut is a partition of the vertices of a graph into two subsets. Any cut
determines a cut-set, the set of edges that have one endpoint in each subset of the partition.
These edges are said to cross the cut.

Definition 3.6. In the case of an unweighted graph, the size or weight of a cut is the number
of edges crossing the cut; in the case of a weighted graph, the weight of a cut is the sum of
the weights of the crossing edges.

Definition 3.7. A maximum cut of a graph is a cut whose size is at least the size of any other
cut (an example is shown in Fig. 3.3).

The maximum cut problem for unweighted undirected graphs can be formulated as
follows. Given a connected graph G, find a subset S of its vertices such that the number
of edges connecting S with V (G)∖S is maximum.

Fig. 3.3. Maximum cut of a graph

This problem is NP-hard [5]. Consider the maximum cut problems on bipartite graphs
(Definition 3.4) as a special case. For them, the solution is trivial: the maximum cut includes
all edges. It can be easily checked in linear time in the number of edges whether a graph is
bipartite, therefore, by Definition 2.2, bipartite graphs determine a simple special case for the
maximum cut problem.

The following simple depth-first search algorithm finds an approximate solution to the
maximum cut problem; this solution is exact for bipartite graphs. The error of this algorithm
gives rise to a dissimilarity function, which is an upper-bound estimate of the error.

The input of Algorithm 1 is an arbitrary undirected connected graph G = (V,E). By
removing edges, the algorithm selects a bipartite graph Gb = (V,Eb). It works recursively
and paints the vertices in two colors, red and blue for definiteness. First, we color an arbitrary
vertex blue and the adjacent vertices a different color (in this case, red).

Further, the algorithm recursively repeats this procedure on all adjacent vertices that were
painted at the current iteration. If the current and an adjacent vertices have the same color,
then instead of repainting the latter one, we remove the edge between them. As a result, the
algorithm returns a bipartite graph with blue and red vertices, the colors of adjacent vertices of
which differ. The complexity of the algorithm is O(|V |2), since the algorithm passes through
all the vertices of the graph, and for each vertex, its adjacent vertices are checked.

According to the general concept of dissimilarity function (Section 2), the dissimilarity
based on the relative error between the maximum cut problems AG with graph G and AH
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Algorithm 1 MAX-CUT heuristic algorithm
function MAX-CUT HEURISTICS(v)

A – adjacency matrix of the connected graph
color = [0 for v in V ] # 0 – not colored, −1 – first color, 1 – second color
v := Random(V) # choose an arbitrary vertex
color[v] = 1 # paint first vertex
COLOR ADJACENT VERTICES(v)

return
∑

u,v
A[u,v]

2

end function
procedure COLOR ADJACENT VERTICES(v)

for u in V do
if A[u, v] = 1 and color[u] = color[v] then

A[u, v] := 0 #remove the edge
else if A[u, v] = 1 and color[u] = 0 then

color[u] := −color[v] #paint the vertex in the opposite color
COLOR ADJACENT VERTICES(u)

end if
end for

end procedure

with a bipartite graph H such that E(H) ⊆ E(G) can be defined as

τ(AG, AH) =
f(AG)− f(AH)

f(AG)
,

where f(AG) is the optimal value of the objective function for AG. In what follows, for
simplicity, we will use f(G) as an abbreviation for f(AG).

For the above algorithm, it is not easy to obtain the upper bound for the dissimilarity
between AG and AH , where H is the bipartite graph provided by the algorithm, analytically.
However, this bound can be approximated by numerical experiments.

In such experiments, graphs Gi(N, p) are randomly generated with two parameters: the
number of vertices N and the density p (the ratio of the number of edges in the graph to the
maximum possible number of edges N(N − 1)/2). That is, the probability that there is an
edge between any two vertices is p. All edge weights are equal to 1. Each point in the figures
below is the average over 100 random instances.

To estimate the upper bound of the pairwise dissimilarity function, the average relative
error and the maximum relative error are used:

δav(N, p) =
1

K

K∑
i=1

f(Gi(N, p))− f̂(Gi(N, p))

f(Gi(N, p))
;

δmax(N, p) = max
i∈{1,...,K}

f(Gi(N, p))− f̂(Gi(N, p))

f(Gi(N, p))
,

where K is the number of instances with given parameters, f̂(Gi(N, p)) is the value of the
objective function of the algorithm, and f(Gi(N, p)) is the optimal value of the objective
function.

Fig. 3.4 shows the dependence of the average relative error δav(N, p) of the objective
function on the number of vertices in a graph with a density p = 0.6. It can be seen that with
an increase in the number of vertices, the relative error decreases.
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Fig. 3.4. Dependence of the relative error of the objective function on the number of vertices.

Fig. 3.5 shows the dependence of the average relative error δav(N, p) of the objective
function on the density of a graph with a constant number of vertices N = 150. It can be seen
that with increasing density the relative error decreases.

Fig. 3.6 shows the dependence of the average relative error δav(N, p) of the objective
function on the density of a graph and on the number of vertices. It can be seen that the
density of the graph has a much stronger effect on the relative error than the number of
vertices.

Fig. 3.7 shows the dependence of the maximum relative error δmax(N, p) of the objective
function on the density of a graph. The shape of this curve is very similar to that of the average
relative error one.

Fig. 3.8 shows the dependence of the maximum relative error δmax(N, p) of the objective
function on the number of vertices. This curve is also similar to the curve of the average
relative error, but it is less robust.

Fig. 3.9 shows the dependence of the maximum relative error δmax(N, p) of the objective
function on the density and number of vertices. It is not monotonic in the region of small
numbers of vertices, since for such numbers, the solution is very unstable.

Since we choose a random vertex to start the algorithm, the algorithm works in a non-
deterministic way. Obviously, it is necessary to remove as few edges as possible from the
initial graph, since the number of remaining edges determines the value of the objective
function. Therefore, in the general case, appropriate heuristics can be used to select the first
vertex and study the influence of this choice on the size of the resulting bipartite graph.
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Fig. 3.5. The dependence of the relative error of the objective function on the density.

According to the general scheme of pairwise similarity method, it is suggested to run
the heuristic Algorithm 1 several times and choose the graph with the least number of
removed edges. In this case δav(N, p) can be used as an estimate for the upper bound for
the dissimilarity, while δmax(N, p) is more appropriate if the algorithm was run once.

4. CONCLUSION

In this paper, a new pairwise similarity method is proposed for measuring the quantitative
complexity of NP-hard problems. This method, which generalizes the metric approach,
allows one to compare problem instances of different dimensions and with different constraint
structures. This, in turn, makes it possible to use algorithms developed for some special
cases of problems as heuristic algorithms for a wider class of problems. Using the pairwise
dissimilarity function, one can estimate the error of the obtained solutions.

Since the pairwise similarity method includes two non-trivial tasks, namely, searching
for new special cases and defining the pairwise dissimilarity function, the paper provides
recommendations for solving these problems.

The proposed method is illustrated for two optimization problems. For the problem of
finding the strict majority domination number of a graph with cycles in the framework of
a two-level voting model, the pairwise similarity method is applied in the case where it is
possible to analytically estimate the absolute error as specified in Section 2. For the maximum
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Fig. 3.6. The dependence of the relative error of the objective function on the density and number of vertices.

cut problem, the pairwise similarity method is applied in the case where it is not possible to
estimate the error analytically and the estimates are based on numerical experiments.

In the future, it is planned to apply the pairwise similarity method to other well-known
optimization problems on graphs and to study a number of variations of similarity criteria.
It is also planned to develop a system of complexity maps for the most important similarity
criteria.
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Fig. 3.8. The dependence of the maximum relative error of the objective function on the number of vertices.
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Fig. 3.9. The dependence of the maximum relative error of the objective function on the density and number of
vertices.
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