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Abstract: In the present paper, we have provided a five-compartmental epidemic model in
an interval environment to analyze the spread of COVID-19 infection in India. The proposed
model divides the entire population of India into five classes. They are susceptible, exposed,
asymptomatic, symptomatic, and recovered classes. Under some suppositions, the crisp model
is constructed and converted to an imprecise model by the interval number. We introduced
a parametric functional form of an interval number to study the imprecise epidemiological
model. The main objective of this study is to develop an epidemiological model in an imprecise
environment and to try to understand the dynamics of the epidemic model of COVID-19 infection
spread in India. We also presented the COVID-19 model with two controls to effectively control
COVID-19 disease in India. Finally, a numerical simulation is carried out considering that the
model parameters are imprecise. The numerical results show that our proposed imprecise model
is reliable from a practical point of view.

Keywords: COVID-19 infection, Basic Reproduction Number, Stability, optimal control,
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1. INTRODUCTION

The objective of mathematical epidemiology is to find the factors behind the occurrence
of a disease. Today, mathematical modeling has played a vital role in understanding
epidemiological prototypes of diseases. It also predicts the consequences of the foreword
of public health interventions to manage the spread of diseases. In recent times, many
researchers and scientists [1–3] have attracted attention to epidemiological systems and
have paid great attention to their corresponding research. In an epidemiological system,
the transmission of disease from an infected person to a susceptible individual occurs
by a mechanism known as the incidence rate, that is, a function describing the above
mechanism through different forms. Among them, homogeneous transmission is widely used.
This transmission follows the law of mass action. It is also notable that the cost of the
treatment strategy to control epidemic diseases is very high. In some cases, proper treatment
is only available and inexpensive. Therefore, it is very important to provide the most cost-
effective control strategies to prevent the spread of epidemic diseases. Several researchers
and scientists [4–6] are trying their best to provide appropriate optimal control strategies for
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epidemic diseases to protect the human community. Their efforts predict some cost-effective
strategies to restrict the extent of epidemic diseases and minimize the cost of the control
program.

Recently, coronavirus turned out to be a pandemic disease spreading throughout the world
and created a panic situation in many countries. COVID-19 infection is a large family of
viruses that cause disease like ordinary cold in the primary stage. The latter can create
a big problem, such as acute respiratory syndrome. This virus also showed the ability to
cause serious health problems among a certain group of individuals, including the elderly
population and patients with cardiovascular disease and diabetes. However, the nature of this
epidemiology is still changing [7].

On 11 February 2020, this disease was termed coronavirus disease 2019 (COVID-19).
The virus behind this disease was declared severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) [8]. This virus has been shown to transform from human to human [9]; as a
result, the COVID-19 disease spreads day by day around the world [10–14].

Recently, India has become one of the hardest affected country in Asia with COVID-
19 endemic due to its very high population density. The number of COVID positive cases
increases progressively, the Indian Government has monitor the succession of this outburst
and have taken different public health actions together with social distancing procedures
in real time. The figure of positive COVID-19 infection started to increase from 4th
March, 2020. As on 8th May, 2020, a total of 59690 confirmed COVID cases together
with 17887 recovered and 1986 deaths in India [15]. The Indian government has taken
different precaution measures [16–18] to maintain the social distance [19] among the large
population of India. To date, there are no specific drugs for COVID-19 infection. Mostly,
doctors recommended different treatments via medications to COVID-19 patients depending
on their symptoms. As it is not possible to invented anti-COVID therapeutic treatment, it
should be restricted via apposite precautionary measures like quarantine mechanisms [21,22],
individual safeguard from the infected individual by using social distancing [20], etc. As the
COVID-19 virus spread very quickly throughout the world, so various mathematical models
depending on the COVID-19 outbreak [23–27] have been performed already. Recntly, Cadoni
and Gaeta [28] presented COVID-19 infection in SIR framework. Zhang et al. [29] developed
COVID-19 dynamics via fractional derivative. Higazy [30] described COVID-19 virulent
disease by using SIDARTHE model. Wu et al. [31] studied a SEIR model to understand the
dynamics behind the spread of COVID-19 virus world wise. Read et al. [32] developed a
COVID-19 SEIR model based on Poisson-distributed daily time augmentation.

Pal et al. [33] explored a COVID-19 based SEQIR model to understand the situation
of disease in India. Since the COVID-19 virus has sinister harmful health upshots and
pessimistic social impact, a remarkable quantity of awareness and research work are desired
on COVID-19 infection.

Recently, many researchers [34–36] concentrate their research to develop epidemic
models in uncertain / imprecise environments. From their observations, they feel that in
reality data cannot be collected precisely due to some unavoidable reasons such as fluctuation
of environment, changes in the nature of the virus, ambiguous death rate (like co-morbidity
death), uncertainty about the number of undetected infections, human errors, availability of
proper information, etc.

This paper introduces a five-compartmental COVID-19 infection model in interval
environment. We consider parameters of the model that are imprecise in nature and
represented by interval numbers. First we formulate the crisp model then we formulate the
imprecise model by considering the parameters are interval in nature. We have also introduced
two treatment controls in our proposed model under impriseness.

The entire paper is organized into several sections and subsections. Section 1 presents the
introduction to the paper, which includes a description of the problem and its origin. Section
2 presents the material & Methods which are divided into model variables and parameters,
some useful basic mathematical concepts, and the mathematical formulation of the model.
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The model derivation and preliminaries are explained in Section 2. The basic properties
of our proposed model structure are discussed in Section 3. In Section 4, we introduce the
concept of the basic reproduction number R0 [37]. Next, we are dealing with two types of
equilibrium points in the system, namely disease-free equilibrium (DFE) E0, and endemic
equilibrium E1. It is clear that COVID-19 infection is not only a community health trouble
[38] but also a great social and monetary shock for developing countries like India. Therefore,
it is a very essential concern to control [39–42] the spread of COVID-19 infection in India by
adopting an optimal control policy. In Section 5, we have formulated the COVID-19 epidemic
model with control treatment. This section provides a procedure for finding an optimal
control [43] u(t) that increases the recovery rate and minimizes the cost associated with
treatment. The analytical results obtained in the previous sections are numerically verified in
Section 6 with the help of realistic values of the model parameters using MATLAB. Lastly, a
general conclusion about our proposed model structure is provided in Section 7.

2. MATERIALS & METHODS

2.1. Variables and parameters involved in the Model
Following variables and parameters are used to develop the COVID-19 model:

Variable Description

N(t) : Total populations at time t

S(t) : Susceptible people at the time t

E(t) : Exposed populations at the time t

IA(t) : Infective people in the asymptomatic phase at the time t

IS(t) : Infective populations in the symptomatic phase at the time t

R(t) : Recovered populations at the time t

Parameter Description

Λ : Recruitment rate.

α : Transmission coefficient due to asymptomatic class (IA).

β : Transmission coefficient due to symptomatic class (IS).

µ : Natural death rate.

ρ : Incubation period.

(1− σ) : Fraction of symptomatically infected people (IS).

σ : Fraction of asymptotically infected people (IA).

(1− k)r : Transfer rate from the asymptomatic phase (IA) to symptomatic phase (IS).

kr : Recover rate from the asymptomatic class (IA).

m : Recover rate from symptomatic class (IS).

d : Death rate from COVID-19 in symptomatic class (IS).
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2.2. Some Useful Definitions
Definition 2.1:
Interval number: A closed interval number A = [al, ar] in the set of real numbers (R) is
defined by A = [al, ar] = {x : al ≤ x ≤ ar, x ∈ R} , where al, and ar are the left and right
bound of the interval, respectively.

Definition 2.2:
Interval Valued Function: The interval valued function [44, 45] of [al, ar] can be expressed
as f(p) = a1−p

l apr for p ∈ [0, 1].

Arithmetic operations on interval numbers using the concept of interval valued functions
are given in Appendix C.

2.3. COVID-19 pandemic model formulation
To develop a mathematical model of COVID-19 infection spread in India. The following
assumptions and notations are considered throughout the paper. The total human population
of India is split up into five mutually exclusive compartments, specifically, susceptible
class (S), exposed class (E), infective class in asymptomatic phase (IA), infective class
in symptomatic phase (IS) and recovered class (R). Therefore, total population of India
N(t) = S(t) + E(t) + IS(t) + IA(t) +R(t).

Assumptions:

1. The susceptible population (S) is collected of non-infected persons by COVID-19 still
now but can be infected via get in touch with both types of infective (asymptomatic (IA)
as well as symptomatic (IS) phase).

2. The exposed population (E) is collected of infected persons by COVID-19 but not
infectious.

3. The asymptomatic phase (IA) population is collected of COVID-19 infection persons
without any symptoms (but capable of infecting).

4. The infective symptomatic (IS) population is collected of persons with difficulties and
diverse symptoms of COVID-19 and need treatment.

5. The recovered (R) population from the disease by treatment or otherwise.
6. The susceptible persons become infected by ample contact with contagious

(asymptomatic or symptomatic) persons, and enter into the exposed class.
7. One fraction of asymptomatic infective goes into symptomatic phase and one portion

becomes recovered.
8. One fraction of symptomatic contagious goes into recovered class and other portion dies

out due to disease related death.
9. All class of population is decreased by natural death.

The flow of individuals from one class to another class is presented in Figure 2.1.
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Fig. 2.1. Flow diagram of individuals of COVID-19 infection

2.4. Crisp model
The proposed COVID-19 infection is presented in a crisp environment based on the above
stated assumptions through the following set of ordinary differential equations:

dS

dt
= Λ− (αIA + βIS)S − µS

dE

dt
= (αIA + βIS)S − (ρ+ µ)E

dIA
dt

= σρE − (r + µ)IA (2.1)

dIS
dt

= (1− σ)ρE + (1− k)rIA − (m+ µ+ d)IS

dR

dt
= krIA +mIS − µR

with their initial conditions :

S(0) > 0;E(0) ≥ 0; IA(0) ≥ 0; IS(0) ≥ 0;R(0) ≥ 0. (2.2)

2.5. Imprecise model with interval coefficient
Most of the models have been considered in the crips environment, but the data may not
be recorded or collected exactly owing to several occasions in reality. Therefore, the model
parameters are not to be considered as constants. However, it may be considered as imprecise
in nature. To handle with this type of impreciseness, we take the parameters as interval
numbers. Therefore, for an imprecise coefficient, we present the epidemic model with an
interval counterpart of coefficients, i.e., Λ̂, α̂, β̂, µ̂, ρ̂, r̂, m̂ and d̂. Then the COVID-19
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infection model (2.1) with interval valued parameters modified to the following form:

dS

dt
= Λ̂−

(
α̂IA + β̂IS

)
S − µ̂S

dE

dt
=

(
α̂IA + β̂IS

)
S − (ρ̂+ µ̂)E

dIA
dt

= σρ̂E − (r̂ + µ̂)IA (2.3)

dIS
dt

= (1− σ)ρ̂E + (1− k)r̂IA − (m̂+ µ̂+ d̂)IS

dR

dt
= kr̂IA + m̂IS − µ̂R

with their initial conditions of equation (2.2),
where Λ̂ ∈ [Λl,Λu], α̂ ∈ [αl, αu], β̂ ∈ [βl, βu], µ̂ ∈ [µl, µu], ρ̂ ∈ [ρl, ρu], r̂ ∈ [rl, ru], m̂ ∈

[ml,mu] and d̂ ∈ [dl, du]. Also Λl > 0, αl > 0, βl > 0, µl > 0, ρl > 0, rl > 0, ml > 0, dl > 0.
Using the parametric functional form of the interval number, the pandemic system (2.3)

in the parametric form is as follows:

dS

dt
= Λ1−p

l Λp
u −

{
α1−p
l αp

uIA + β1−p
l βp

uIS
}
S − µ1−p

l µp
uS

dE

dt
=

{
α1−p
l αp

uIA + β1−p
l βp

uIS
}
S −

{
ρ1−p
l ρpu + µ1−p

l µp
u

}
E

dIA
dt

= σρ1−p
l ρpuE −

{
r1−p
l rpu + µ1−p

l µp
u

}
IA (2.4)

dIS
dt

= (1− σ)ρ1−p
l ρpuE + (1− k)r1−p

l rpuIA −
{
m1−p

l mp
u + µ1−p

l µp
u + d1−p

l dpu
}
IS

dR

dt
= kr1−p

l rpuIA +m1−p
l mp

uIS − µ1−p
l µp

uR

for p ∈ [0,1].
The above system formulation (2.4) can be rewritten as:

dS

dt
= Λ1−p

l Λp
u −

{
α1−p
l αp

uIA + β1−p
l βp

uIS
}
S − µ1−p

l µp
uS

dE

dt
=

{
α1−p
l αp

uIA + β1−p
l βp

uIS
}
S − AE

dIA
dt

= σρ1−p
l ρpuE −BIA (2.5)

dIS
dt

= (1− σ)ρ1−p
l ρpuE + (1− k)r1−p

l rpuIA − CIS

dR

dt
= kr1−p

l rpuIA +m1−p
l mp

uIS − µ1−p
l µp

uR

Where A =
[
ρ1−p
l ρpu + µ1−p

l µp
u

]
; B =

[
r1−p
l rpu + µ1−p

l µu)
p
]
; C =

[(ml)
1−p(mu)

p + (µl)
1−p(µu)

p + (dl)
1−p(du)

p] and p ∈ [0,1], with initial conditions as
stated in equation (2.2).
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3. THEORETICAL STUDY OF THE MODEL

3.1. Positivity of the solutions
Theorem 3.1:
Each solution of the system (2.5) under conditions (2.2) exists in the interval [0,∞) and
initial conditions (2.2) are satisfied for all t ≥ 0.

Proof
In view of the fact that the right-hand side of the parametric pandemic system (2.5) is com-
pletely continuous and locally Lipschitzian on C, the solution (S(t), E(t), IA(t), IS(t), R(t))
of (2.5) with initial conditions (2.2) exists and is unique on [0, κ), where 0 < κ < +∞.
First, we show that S(t) > 0, ∀ t ∈ [0, κ). Otherwise, ∃ a t ∈ (0, κ) such that S(t1) = 0,
·
S(t1) ≤ 0 and S(t) > 0 for all t ∈ [0, t1). Hence, there must have E(t) ≥ 0 for all t ∈ [0, t1).

If this statement is not true, then there exists a t2 ∈ (0, t1) such that E(t2) = 0,
·
E(t2) < 0

and E(t) ≥ 0 on [0, t2). We claim that IA(t) ≥ 0, ∀ t ∈ [0, t2). If this is not true, then ∃ a

t3 ∈ (0, t2) such that IA(t3) = 0,
·
IA(t3) < 0 and IA(t) ≥ 0 on [0, t3). Now, from the third

equation of (2.5), we have

dIA(t3)

dt
= σ(ρl)

1−p(ρu)
pE(t3)−BIA(t3) = σ(ρl)

1−p(ρu)
pE(t3) ≥ 0,

which is a contradiction with
·
IA(t3) < 0. So IA(t) ≥ 0, ∀ t ∈ [0, t2).

Next, we assert that IS(t) ≥ 0, ∀ t ∈ [0, t2) . If this is not correct, then ∃ a t4 ∈ (0, t2) such

that IS(t4) = 0,
·
IS(t4) < 0 and IS(t) ≥ 0 on [0, t4). Now, from the fourth equation of (2.5),

we have

dIS(t4)

dt
= (1− σ)(ρl)

1−p(ρu)
pE(t4) + (1− k)(rl)

1−p(ru)
pIA(t4)− CIS(t4)

= (1− σ)(ρl)
1−p(ρu)

pE(t4) + (1− k)(rl)
1−p(ru)

pIA(t4) ≥ 0,

which contradict the consideration
·
IS(t4) < 0, therefore IS(t) ≥ 0, ∀ t ∈ [0, t2).

Now, using the second equation of (2.5), we have

dE(t2)

dt
=

(
(αl)

1−p(αu)
pIA(t2) + (βl)

1−p(βu)
pIS(t2)

)
S(t2)− AE(t2)

=
(
(αl)

1−p(αu)
pIA(t2) + (βl)

1−p(βu)
pIS(t2)

)
S(t2) ≥ 0

which is a contradiction with
·
E(t2) < 0, therefore E(t) ≥ 0, ∀ t ∈ [0, t1). Hence,

E(t), IA(t), IS(t) ≥ 0, ∀ t ∈ [0, t1).
Next, we claim that R(t) ≥ 0, ∀ t ∈ [0, t1). If this is not true, then ∃ a t5 ∈ (0, t1) such

that R(t5) = 0,
·
R(t5) < 0 and R(t) ≥ 0 on [0, t5) . From the last equation of (2.5), we have

dR(t5)

dt
= k(rl)

1−p(ru)
pIA(t5) + (ml)

1−p(mu)
pIS(t5)− (µl)

1−p(µu)
pR(t5)

= k(rl)
1−p(ru)

pIA(t5) + (ml)
1−p(mu)

pIS(t5) ≥ 0,

which contradict the consideration
·
R(t5) < 0, therefore R(t) ≥ 0, ∀ t ∈ [0, t1).
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Again, from the first equation of (2.5) follows that

dS(t1)

dt
= Λ1−p

l Λp
u −

(
α1−p
l αp

uIA(t1) + β1−p
l βp

uIS(t1)
)
S(t1)− µ1−p

l µp
uS(t1)

= Λ1−p
l Λp

u > 0,

This shows that S(t) > 0, ∀ t ∈ [0, κ).
Based on the steps discussed previously, it observes that E(t) ≥ 0, IA(t) ≥ 0, IS(t) ≥ 0,

R(t) ≥ 0 for all t ∈ [0, κ), where 0 < κ < +∞.
This completes the proof.

3.2. Invariant region
Theorem 3.2:
The feasible region µ defined by µ =

{
(S(t), E(t), IA(t), IS(t), R(t)) ∈ R6

+ : 0 < N ≤ Λ1−p
l Λp

u

ϑ

}
where ϑ = min {(µl)

1−p(µu)
p, (µl)

1−p(µu)
p + (dl)

1−p(du)
p}, with intial conditions (2.2) is

positively invariant.

Proof
By adding the equations of the system (2.5) we obtain

dN

dt
= (Λl)

1−p(Λu)
p − (µl)

1−p(µu)
p(S + E + IA + IS +R)− (dl)

1−p(du)
pIS

Therefore,

dN

dt
+ ϑN = Λ1−p

l Λp
u − (µ1−p

l µp
u − ϑ)(S + E + IA +R)− (µ1−p

l µp
u + d1−p

l dpu − ϑ)IS

≤ (Λl)
1−p(Λu)

p (3.6)

where ϑ = min {(µl)
1−p(µu)

p, (µl)
1−p(µu)

p + (dl)
1−p(du)

p}. The solution N(t) of the
differential equation (3.6) has the following property,

0 < N(t) ≤ N(0) exp(−ϑt) +
(Λl)

1−p(Λu)
p

ϑ
(1− exp(−ϑt)),

where N(0) represents the sum of the initial values of the variables. As t → ∞, we have
0 < N(t) ≤ (Λl)

1−p(Λu)p

ϑ
. Moreover, if N(0) ≤ (Λl)

1−p(Λu)p

ϑ
then also N(t) ≤ (Λl)

1−p(Λu)p

ϑ
for

all t. This means that (Λl)
1−p(Λu)p

ϑ
is the upper bound of N . On the other hand, if N(0) >

(Λl)
1−p(Λu)p

ϑ
, then N(t) will decrease to (Λl)

1−p(Λu)p

ϑ
. This means that if N(0) > (Λl)

1−p(Λu)p

ϑ
,

then the solution (S(t), E(t), IA(t), Is(t), R(t)) enters µ or approaches it asymptotically.
Hence, it is positively invariant under the flow induced by the systems (2.5) with initial
conditions (2.2).

Thus in µ the model (2.5) with initial conditions (2.2) is well-posed both mathematically
and epidemiologically. Therefore, the study of the dynamics of the proposed COVID-19
system in µ is mathematically sufficient.

3.3. Existence of Equilibria and Basic reproduction number
We will study the existence and stability behavior of the system (2.5) at different equilibrium
points. The equilibrium points of the proposed system are as follows:
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(i) Disease-free equilibrium (DFE): E0(
(Λl)

1−p(Λu)p

(µl)1−p(µu)p
, 0, 0, 0, 0),

(ii) Endemic equilibrium: E1(S
∗, E∗, I∗A, I

∗
S, R

∗).

The Basic Reproduction Number (BRN):
The basic reproduction number [46] is defined as ”the number of new infective individuals

produced by a single infective individual during his or her effective infectious period when
introduced into susceptible populations”.

Now, the BRN of COVID-19 system (2.5) will be derived using the next generation matrix
method [47].

Let z = (E(t), IA(t), IS(t), R(t), S(t))T , the proposed pandemic system (2.5) can be
written in the following form:

dz

dt
= 𭟋(z)− υ(z)

where

𭟋(z) =


((αl)

1−p(αu)
pIA + (βl)

1−p(βu)
pIS)S

0
0
0
0

 and

υ(z) =


AE

−σ(ρl)
1−p(ρu)

pE +BIA
−(1− σ)(ρl)

1−p(ρu)
pE − (1− k)(rl)

1−p(ru)
pIA + CIS

−k(rl)
1−p(ru)

pIA − (ml)
1−p(mu)

pIS + (µl)
1−p(µu)

pR
−(Λl)

1−p(Λu)
p + ((αl)

1−p(αu)
pIA + (βl)

1−p(βu)
pIS + (µl)

1−p(µu)
p)S


The Jacobian matrices of 𭟋(z) and υ(z) at E0 are as follows:

D𭟋(E0) =

[
F3×3 0 0
0 0 0
0 0 0

]
and

Dυ(E0) =

 V3×3 0 0
0 −kr −(ml)

1−p(mu)
p (µl)

1−p(µu)
p 0

0 (Λl)
1−p(Λu)pα

(µl)1−p(µu)p
(Λl)

1−p(Λu)pβ
(µl)1−p(µu)p

0 (µl)
1−p(µu)

p


where

F =

0 (Λl)
1−p(Λu)pα

(µl)1−p(µu)p
(Λl)

1−p(Λu)pβ
(µl)1−p(µu)p

0 0 0
0 0 0


and

V =

[
A 0 0

−σ(ρl)
1−p(ρu)

p B 0
−(1− σ)(ρl)

1−p(ρu)
p −(1− k)r C

]
Now, FV −1 is the next generation matrix of (2.5), consequently the spectral radius of the
matrix FV −1 is denoted and defined by [47]:

r
(
FV −1

)
=

Λ1−p
l Λp

u

µ1−p
l µp

u

[α1−p
l αp

uσρ
1−p
l ρpuC + β1−p

l βp
uρ

1−p
l ρpu{σ(1− k)r1−p

l rpu +B(1− σ)}]
ABC
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According to Ref. [47], the BRN of system (2.5) is

R0 = r
(
FV −1

)
=

Λ1−p
l Λp

u

µ1−p
l µp

u

[α1−p
l αp

uσρ
1−p
l ρpuC + β1−p

l βp
uρ

1−p
l ρpu{σ(1− k)r1−p

l rpu +B(1− σ)}]
ABC

Notice that (Λl)
1−p(Λu)p

(µl)1−p(µu)p
is the number of susceptibles at the DFE.

Existence of Endemic Equilibrium E1(S
∗, E∗, I∗A, I

∗
S, R

∗):
Here, we analyze the existence of nontrivial endemic equilibrium E1(S

∗, E∗, I∗A, I
∗
S, R

∗)
of the system (2.5). To find the endemic equilibrium of pandemic model (2.5), we consider
the following:

S(t) > 0, E(t) > 0, IA(t) > 0, IS(t) > 0, R(t) > 0

and
dS

dt
= 0,

dE

dt
= 0,

dIA
dt

= 0,
dIS
dt

= 0,
dR

dt
= 0 (3.7)

The solution of the equations of system (3.7) is:
S∗ = ABC

(αl)1−p(αu)pσ(ρl)1−p(ρu)pC+(βl)1−p(βu)p(ρl)1−p(ρu)p{σ(1−k)(rl)1−p(ru)p+B(1−σ)} =
(Λl)

1−p(Λu)p

(µl)1−p(µu)p
1
R0

,

E∗ =
BI∗A

σ(ρl)1−p(ρu)p
,

I∗A =
(Λl)

1−p(Λu)pσ(ρl)
1−p(ρu)p(1− 1

R0
)

AB
,

I∗S =
{σ(1−k)(rl)

1−p(ru)p+B(1−σ)}I∗A
σC

,

R∗ =
[k(rl)

1−p(ru)pσC+(ml)
1−p(mu)p{σ(1−k)(rl)

1−p(ru)p+B(1−σ)}]I∗A
σ(µl)1−p(µu)pC

,
Hence, I∗A has positive solution iff R0 > 1.
Summarizing the above discussions, we arrive at the following result.

Theorem 3.3:
The system (2.5) has a DFE E0(

Λ1−p
l Λp

u

µ1−p
l µp

u
, 0, 0, 0, 0) for all parameter values. If R0 > 1, the

system (2.5) also asserts a unique endemic equilibrium E1(S
∗, E∗, I∗A, I

∗
S, R

∗).

3.4. Stability Behavior
Here, we examine the condition of stability of the pandemic system (2.5) in two different
equilibrium points E0 and E1.

For the stability of DFE E0(
(Λl)

1−p(Λu)p

(µl)1−p(µu)p
, 0, 0, 0, 0) we consider the theorems given below

Theorem 3.4:
The DFE E0 of the system (2.5) is locally asymptotically stable if R0 < 1.

Proof
Detailed proof of this theorem is given in Appendix A.

Theorem 3.5:
The DFE E0(

(Λl)
1−p(Λu)p

(µl)1−p(µu)p
, 0, 0, 0, 0) is globally asymptotically stable for the system (2.5) if

R0 < 1 and became unstable if R0 > 1.

Proof
The COVID-19 system (2.5) rewrite as

dX
dt

= F (X, V )
dV
dt

= G(X, V ), such that G(X, 0) = 0
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where X = (S,R) ∈ R2 denotes compartments of the number of uninfected individuals,
V = (E(t), IA(t), IS(t)) ∈ R4 is the number of infected individuals compartments, and
E0(

(Λl)
1−p(Λu)p

(µl)1−p(µu)p
, 0, 0, 0, 0) is the DFE of the system (2.5). The global stability of the DFE

is guaranteed if satisfying the following two conditions:

(i) For dX
dt

= F (X, 0), X∗ is globally asymptotically stable,
(ii) G(X, V ) = BV − Ĝ(X, V ), Ĝ(X, V ) ≥ 0 for (X, V ) ∈ Ω

where B = DVG(X∗, 0) is a Metzler matrix and Ω is the positively invariant set of
the system(2.5). Following Castillo-Chavez et al. [48], we investigate the aforementioned
conditions for pandemic system (2.5),

F (X, 0) =

[
(Λl)

1−p(Λu)
p − (µl)

1−p(µu)
pS

0

]

B =

 −A (Λl)
1−p(Λu)pα

(µl)1−p(µu)p
(Λl)

1−p(Λu)pβ
(µl)1−p(µu)p

σ(ρl)
1−p(ρu)

p −B 0
(1− σ)(ρl)

1−p(ρu)
p (1− k)(rl)

1−p(ru)
p −C


and

Ĝ(X, V ) =

[
0
0
0

]
As the off-diagonal elements of B are non negative, and Ĝ(X, V ) ≥ 0, hence the disease-free
equilibrium E0(

(Λl)
1−p(Λu)p

(µl)1−p(µu)p
, 0, 0, 0, 0) is globally asymptotically stable if R0 < 1 and became

unstable if R0 > 1.

Theorem 3.6:
The endemic equilibrium point E1(S

∗, E∗, I∗A, I
∗
S, R

∗) of the system (2.5) is locally
asymptotically stable if R0 > 1, B1B2 −B3 > 0 and B1B2B3 −B2

1B4 −B2
3 > 0

Proof
Detailed proof of this theorem is given in Appendix B.

4. OPTIMAL CONTROL FOR COVID-19 MODEL

The most important motive of studying infectious diseases is to control the transmission of
the disease and finally stop the infection from the population. transmission of the disease
and finally stop the infection from the population. In the present scenario, many developed
countries are working hard to discover the medicine or vaccine of COVID-19. As vaccine
of COVID-19 has not yet been discovered, we have to control this pandemic by suitable
controlling strategies like the use of proper drugs, etc.

This section presents an optimal control problem relative to the COVID-19 epidemic
model (2.5) with two control variables u1(t) and u2(t), as it is essential to construct an
optimal control problem in such a way that the total amount of drugs can be minimized. The
first control u1(t) represents the recovery rate of the infectious asymptomatic individuals with
treatment. The second control u2(t) represents the recovery rate of the infectious symptomatic
individuals with treatment. Therefore, the proposed COVID-19 epidemic model with two
controls becomes:
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dS

dt
= Λ−

(
(αl)

1−p(αu)
pIA + (βl)

1−p(βu)
pIS
)
S − (µl)

1−p(µu)
pS

dE

dt
=

(
(αl)

1−p(αu)
pIA + (βl)

1−p(βu)
pIS
)
S − ((ρl)

1−p(ρu)
p + (µl)

1−p(µu)
p)E

dIA
dt

= σ(ρl)
1−p(ρu)

pE − (µ+ (µl)
1−p(µu)

p + u1)IA (4.8)

dIS
dt

= (1− σ)(ρl)
1−p(ρu)

pE + µIA − (u2 + (µl)
1−p(µu)

p + (dl)
1−p(du)

p)IS

dR

dt
= u1IA + u2IS − (µl)

1−p(µu)
pR

satisfying,

S(0) = S0, E(0) = E0, IA(0) = IA0 , IS(0) = IS0 , R(0) = R0 (4.9)

Here µ stands for the rate of transfer from the asymptomatic phase to the symptomatic
phase of the infective individual, and all other system parameters remain unchanged as
described earlier. Let µ̂ be the interval counterparts of µ, where µ̂ ∈ [µl, µu]. Parametric form
of interval valued parameter µ̂ is (µl)

1−p(µu)
p for p ∈ [0,1].

The objective functional [50] is defined as

J(u1(t), u2(t)) =

tf∫
0

[G1E + IAE +G3IS +
K1

2
u2
1 +

K2

2
u2
2]dt (4.10)

where G1,G2,G3,K1

2
and K2

2
are positive constants. The square of the control variable reflects

the severity of the side effects of the treatment. We have to minimize the objective functional
J(u1(t), u2(t)) given in (4.8) so that the COVID infected individuals and the cost of treatment
can be minimized. Therefore, we look for an optimal control (u∗

1, u
∗
2) such that

J(u∗
1, u

∗
2) = min {J(u1, u2) : (u1, u2) ∈ U} (4.11)

where admissible control set U = {(u1, u2) : uiis measurable, 0 ≤ ui ≤ 1, t ∈ [0, tf ], fori = 1, 2}.

4.1. Existence of an optimal control
Theorem 4.1:
An optimal control (u∗

1, u
∗
2) exists for J(u∗

1, u
∗
2) = min {J(u1, u2) : (u1, u2) ∈ U} for the

control system (4.8) with initial conditions (4.9).

Proof
This theorem can be proved by using the results of the existence of an optimal control pair
from Ref. [51]. The system of equation (4.8) is bounded from above by a linear system.
The boundedness of solutions of system (4.8) for a finite time interval is used to prove the
existence of an optimal control. We first check the following properties before using of the
theorem from Ref. [51]:
(i) Set of state variables and their control is non-empty,
(ii) U is convex and closed,
(iii) The right-hand side of (4.8) is bounded by a linear function in the state control,
(iv) The integrand of the objective functional is convex on U ,
(v) There exist constants c1, c2 > 0 and q > 1 such that the integrand of (4.10) satisfies
G1E +G2IA +G3IS + K1

2
u2
1 +

K2

2
u2
2 ≥ c1(u

2
1 + u2

2)
q
2 − c2.
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We use a result by Lukes ( [52] Theorem 9.2.1) to verify the condition (i) for the system
(4.8) with bounded coefficients. The control set U is convex and closed by definition, which
gives the condition (ii). The right-hand side of the state system (4.8) satisfies condition
(iii) as the state solutions are a priori bounded. The integrand in the objective functional,
G1E +G2IA +G3IS + K1

2
u2
1 +

K2

2
u2
2, is clearly convex on U , which gives condition (iv).

Finally, because the state variables are bounded, then there are c1, c2 > 0 and q > 1 satisfying

G1E +G2IA +G3IS +
K1

2
u2
1 +

K2

2
u2
2 ≥ c1(u

2
1 + u2

2)
q
2 − c2

Based on the above conditions, there exists an optimal control (u∗
1, u

∗
2) such that

J(u∗
1, u

∗
2) = min {J(u1, u2) : (u1, u2) ∈ U}

4.2. Characterization of the optimal control
The Pontryagin’s Maximum Principle [53] is used to derive the necessary conditions for the
optimal control pair. The necessary conditions for optimum control are obtained by means of
Pontryagin’s Maximum Principle.
Theorem 4.2:
There exists an optimal control (u∗

1, u
∗
2) and corresponding solutions S

∗
, E

∗
, IA

∗
, IS

∗
, R

∗
that

minimizes J of (4.10) over U . The explicit optimal controls are connected to the existence of
continuous specific functions λi(t), for i = 1, 2, 3, 4, 5, the solutions of the following adjoint
system:

dλ1

dt
= (λ1 − λ2)

(
(αl)

1−p(αu)
pIA + (βl)

1−p(βu)
pIS
)
+ λ1(µl)

1−p(µu)
p

dλ2

dt
= −G1 + λ2((ρl)

1−p(ρu)
p + (µl)

1−p(µu)
p)− (λ3 − λ4)σ(ρl)

1−p(ρu)
p − λ4(ρl)

1−p(ρu)
p

dλ3

dt
= −G2 + (λ1 − λ2)α

1−p
l αp

uS + (λ3 − λ5)u1(t) + (λ3 − λ4)(µl)
1−p(µu)

p − λ3(µl)
1−p(µu)

p

dλ4

dt
= −G3 + (λ1 − λ2)(βl)

1−p(βu)
pS + (λ4 − λ5)u2(t) + λ4(µl)

1−p(µu)
p

dλ5

dt
= λ5(µl)

1−p(µu)
p

On the conditions of transversality: λi(tf ) = 0, for i = 1, 2, 3, 4, 5.
In addition, the following property holds:

u∗
1 = min{max{0, (λ3 − λ5)IA

∗

K1

}, 1}, and u∗
2 = min{max{0, (λ4 − λ5)IS

∗

K2

}, 1}.

Proof
The Hamiltonian is defined as follows:

Ĥ = G1E +G2IA +G3IS +
K1

2
u2
1 +

K2

2
u2
2 + λ1[Λ

1−p
l Λp

u − (α1−p
l αp

uIA + β1−p
l βp

uIS)S(4.12)

−µ1−p
l µp

uS] + λ2[(α
1−p
l αp

uIA + β1−p
l βp

uIS)S − (ρ1−p
l ρpu + µ1−p

l µp
u)E]

+λ3[σρ
1−p
l ρpuE − (µ1−p

l µp
u + µ1−p

l µp
u + u1)IA] + λ4[(1− σ)ρ1−p

l ρpuE + µ1−p
l µp

uIA

−(u2 + µ1−p
l µp

u + d1−p
l dpu)IS] + λ5[u1IA + u2IS − (µl)

1−p(µu)
pR]
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where λi (i = 1, 2, 3, 4, 5, 6) are the adjoint functions to be determined suitably.
The form of the equations of adjoint and transversality conditions are the standard

consequences from Pontryagin’s Maximum Principle [53]. The adjoint system for the
proposed COVID-19 system can be obtained as follows:

dλ1

dt
= −∂Ĥ

∂S
= (λ1 − λ2) ((αl)

1−p(αu)
pIA + (βl)

1−p(βu)
pIS) + λ1(µl)

1−p(µu)
p

dλ2

dt
= −∂Ĥ

∂E
= −G1 + λ2

(
ρ1−p
l ρpu + µ1−p

l µp
u

)
− (λ3 − λ4)σ(ρl)

1−p(ρu)
p − λ4(ρl)

1−p(ρu)
p

dλ3

dt
= − ∂Ĥ

∂IA
= −G2 + (λ1 − λ2)α

1−p
l αp

uS + (λ3 − λ5)u1(t) + (λ3 − λ4)µ
1−p
l µp

u + λ3µ
1−p
l µp

u
dλ4

dt
= − ∂Ĥ

∂IS
= −G3 + (λ1 − λ2)β

1−p
l βp

uS + (λ4 − λ5)u2(t) + λ4((µl)
1−p(µu)

p + (dl)
1−p(du)

p)
dλ5

dt
= −∂Ĥ

∂R
= λ5(µl)

1−p(µu)
p

(4.13)
The transversality conditions (or boundary conditions) are

λi(tf ) = 0, i = 1, 2, 3, 4, 5 (4.14)

Using the optimality condition, we have

∂Ĥ
∂u1

= K1u
∗
1 − (λ3 − λ5)I

∗
A = 0 at u1 = u∗

1(t)

⇒ u∗
1(t) =

(λ3−λ5)I
∗
A

K1

∂Ĥ
∂u2

= K2u
∗
2 − (λ4 − λ5)I

∗
S = 0 at u2 = u∗

2(t)

⇒ u∗
2(t) =

(λ4−λ5)I
∗
S

K2

(4.15)

Again, from the bounds for the control u1(t), we get

u∗
1 =


(λ3−λ5)I

∗
A

K1
, if 0 ≤ (λ3−λ5)I

∗
A

K1
≤ 1

0, if (λ3−λ5)I
∗
A

K1
≤ 0

1, if (λ3−λ5)I
∗
A

K1
≥ 1

In compact form:

u∗
1 = min{max{0, (λ3 − λ5)I

∗
A

K1

}, 1} (4.16)

From the bounds for the control u2(t), we get

u∗
2 =


(λ4−λ5)I

∗
S

K2
, if 0 ≤ (λ4−λ5)I

∗
S

K2
≤ 1

0, if (λ4−λ5)I
∗
S

K2
≤ 0

1, if (λ4−λ5)I
∗
S

K2
≥ 1

The above can be written in dense form:

u∗
2 = min{max{0, (λ4 − λ5)I

∗
S

K2

}, 1} (4.17)
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Using (4.16), we obtain the following optimality system:

dS

dt
= (Λl)

1−p(Λu)
p −

(
(αl)

1−p(αu)
pIA + (βl)

1−p(βu)
pIS
)
S − (µl)

1−p(µu)
pS (4.18)

dE

dt
=

(
(αl)

1−p(αu)
pIA + (βl)

1−p(βu)
pIS
)
S −

(
(ρl)

1−p(ρu)
p + (µl)

1−p(µu)
p
)
E

dIA
dt

= σ(ρl)
1−p(ρu)

pE − ((µl)
1−p(µu)

p + (µl)
1−p(µu)

p)IA −min{max{0, (λ3 − λ5)I
∗
A

K1
}, 1}IA

dIS
dt

= (1− σ)ρ1−p
l ρpuE + µ1−p

l µp
uIA −min{max{0, (λ4 − λ5)I

∗
S

K2
}, 1}IS − (µ1−p

l µp
u + d1−p

l dpu)IS

dR

dt
= min{max{0, (λ3 − λ5)I

∗
A

K1
}, 1}IA +min{max{0, (λ4 − λ5)I

∗
S

K2
}, 1}IS − (µl)

1−p(µu)
pR

dλ1

dt
= (λ1 − λ2)

(
(αl)

1−p(αu)
pIA + (βl)

1−p(βu)
pIS
)
+ λ1(µl)

1−p(µu)
p

dλ2

dt
= −G1 + λ2

(
(ρl)

1−p(ρu)
p + (µl)

1−p(µu)
p
)
− (λ3 − λ4)σ(ρl)

1−p(ρu)
p − λ4(ρl)

1−p(ρu)
p

dλ3

dt
= −G2 + (λ1 − λ2)α

1−p
l αp

uS + (λ3 − λ5)min{max{0, (λ3 − λ5)I
∗
A

K1
}, 1}+ (λ3 − λ4)µ

1−p
l µp

u + λ3µ
1−p
l µp

u

dλ4

dt
= −G3 + (λ1 − λ2)β

1−p
l βp

uS + (λ4 − λ5)min{max{0, (λ4 − λ5)I
∗
S

K2
}, 1}+ λ4(µ

1−p
l µp

u + d1−p
l dpu)

dλ5

dt
= λ5(µl)

1−p(µu)
p

subject to the following conditions:

S(0) = S0, E(0) = E0, IA(0) = IA0, IS(0) = IS0, R(0) = R0

and
λ1(tf ) = 0, λ2(tf ) = 0, λ3(tf ) = 0, λ4(tf ) = 0, λ5(tf ) = 0

This completes the proof.

5. NUMERICAL SIMULATIONS

In this section, we analyze our mathematical model in different environment through some
simulation works. The simulation works are done by using MATLAB R2008a software
package with the use of the most versatile ordinary differential equation solver ODE45.

Simulations of Crips COVID-19 Model:
To understand the system dynamics of our proposed crisp model more clearly, we present

the following graphical presentation based on Table 5.1 and Table 5.2.

Table 5.1. Model parameters for COVID-19 system

Parameters Values References
Λ 60000 Assumed
α 0.0000000001 Fitted
β 0.0000000001 Fitted
µ 0.00002 Assumed
ρ 0.2 Fitted
r 0.1 Fitted
m 0.07 Fitted
d 0.0018 Fitted
σ 0.64 Fitted
k 0.7 Fitted
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Table 5.2. Preliminary population density for COVID-19 mode

S(0) 1200000000
E(0) 200000
IA(0) 200000
IS(0) 220114
R(0) 347979

Using the parameter values given in Table 5.1, the endemic equilibrium point is given
by (713600234.09, 228324.60, 291846.24, 350560.38, 2251062473.25) and correspoinding
values of R0 is given by 4.1999 > 1. Therefore, all population of our system is all persist,
i.e., the population of our model system converges to the corresponding endemic equilibrium
point (713600234.09, 228324.60, 291846.24, 350560.38, 2251062473.25). Also, since R0 >
1, indicates the presence of infection in the system. Using the parameter values given in Table
5.1 for different initial conditions given in Table 5.2, the dynamics of the model is presented
in Fig. 5.2 and Fig. 5.3.
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Fig. 5.2. Time series plot of the active infected population (IS) for the parameter values given in Table 1 and the
initial conditions given in Table 2.
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Fig. 5.3. Time series plot of (i) susceptible population, (ii) exposed population, (iii) infective population
asymptomatic phase, (iv) recovered population based on parameter values given in Table 1 and initial conditions

given in Table 2.

From Fig. 5.2, it is observed that the pick of height is nearly equal to 4.7× 107. Moreover,
after reaching the height pick of the infection, the active infective curve is gradually decreased
as the time progress. Furthermore, the curve of exposed population (E), the infective
population in asymptomatic phase (IA) shows the similar behavior as infective (IS) curve
for different with respect to time t (see Fig. 5.3). On the contrary, Susceptible (S) population
curve gradually decreases and gradually increases as the time progress.

Imprecise Model
To verify our analytical findings, we set the values of the parameters as interval numbers

given in Table 5.1, and the initial population density is given in Table 5.2, respectively. Based
on Table 5.1, we calculate the Disease-free equilibrium, Endemic equilibrium, and R0 for
different values of p ∈ [0, 1] which are given in Table 5.3.

From Table 5.3, we observe that E0 and E1 exist for all values of p. It is also interesting
to observe that the value of R0 is continuously increases with the increasing value of p. It
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Table 5.3. Disease-free equilibrium (E0), Endemic equilibrium (E1) and R0

p Disease-free equilibrium Endemic equilibrium R0

0.0 (2947368421.05, 0, 0, 0, 0) (778798079.86, 216835.35, 266284.03, 321556.78, 2138994795.46) 3.7845
0.1 (2957243264.96, 0, 0, 0, 0) (765297598.12, 219172.65, 271318.04, 327289.35, 2161811456.07) 3.8642
0.2 (2967151193.49, 0, 0, 0, 0) (752031614.29, 221489.81, 276390.65, 333055.41, 2184422467.99) 3.9455
0.3 (2977092317.47, 0, 0, 0, 0) (738996051.42, 223787.25, 281502.46, 338855.54, 2206831952.79) 4.0286
0.4 (2987066748.13, 0, 0, 0, 0) (726186903.48, 226065.38, 286654.12, 344690.33, 2229043960.98) 4.1134
0.5 (2997074597.06, 0, 0, 0, 0) (713600234.09, 228324.60, 291846.24, 350560.38, 2251062473.25) 4.1999
0.6 (3007115976.22, 0, 0, 0, 0) (701232175.32, 230565.32, 297079.47, 356466.27, 2272891401.66) 4.2883
0.7 (3017190997.95, 0, 0, 0, 0) (689078926.54, 232787.93, 302354.44, 362408.60, 2294534590.87) 4.3786
0.8 (3027299774.97, 0, 0, 0, 0) (677136753.17, 234992.80, 307671.80, 368387.99, 2315995819.22) 4.4707
0.9 (3037442420.37, 0, 0, 0, 0) (665401985.62, 237180.32, 313032.22, 374405.02, 2337278799.96) 4.5648
1.0 (3047619047.62, 0, 0, 0, 0) (653871018.08, 239350.87, 318436.33, 380460.31, 2358387182.31) 4.6609

is also interesting to see that BRN of our proposed number is gradually increasing with the
increasing value of p. Table 5.3 also indicates that BRN R0 is always much greater than 1
for any values of p. Hence, the infection spread very quickly. Therefore, Government should
take proper policy to reduce the value of R0 below or near to 1.

Again, we see from Table 5.3 that our model system’s population converges to the
corresponding endemic equilibrium points E1 for all values of p (by our analytical results
stated in Theorem 6). Graphical presentation of BRN R0 with respect to is presented through
Fig. 5.4.
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Fig. 5.4. Reproduction number R0 with respect to p

This figure shows that as the parameter p increases (0 to 1) BRN is also increases i.e.,
speeding rate of infection are increased as the parameter p increases. Therefore, from Table
5.3 and Fig. 5.4, we observe that parametric model is essential to study the behavior of the
COVID model.

The dynamical behavior of our proposed COVID-19 model with respect time for different
values of p is represented by Fig. 5.5 and Fig. 5.6, respectively.
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Fig. 5.5. Dynamical behavior with time for different values of p for the active infected population

From Fig. 5.5, we observe that the pick of height occurs when p = 1 and which is nearly
equal to 6× 107. It is also noticed that when p is gradually decreases form 1 then the number
of height active individual is also decreases. For p = 0 the infective curve attains its pick level
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Fig. 5.6. Dynamical behavior with time for exposed (E), susceptible (S), asymptomatic infected (IA), recovered
(R) population curve for different values of p

at nearly equal to 3× 107. Therefore, for our COVID-19 parametric model the total active
number of infected individuals lies in the interval [3× 107, 6× 107]. Again, after reaching
the height pick of the infection the active infective curve is gradually decreases with time for
any values of p. Moreover, the curve of population E and IA shows the similar behavior
as infective (IS) curve for different values of p with respect to time t. On the contrary,
Susceptible (S) population curve shows an opposite behavior for different values of p. In
this figure, we observe that as p decreases from 1 the susceptible curve gradually increases.
Finally, we observed that as p increases from 0 the recovered population curve (R) is also
increases, i.e., the number of recovered population gradually increased.

Now, we solve the imprecise optimality system numerically and the obtained results are
plotted graphically. The proposed optimality system is a two point boundary value system
with divided boundary conditions at times t = 0 and t = tf . Here, we have solved this two-
point boundary value optimality problem for tf = 25 in the time unit day at which the
treatment is stopped. As in the objective functional (4.10), the different populations and
control functions are different scales, we are balancing the objective functional (4.10) by
opting the weight constants G1, G2 , G3, K1 and K2 given in Table 5.4.

Table 5.4. Values of the weight constants

weight constant Value
G1 0.1
G2 0.2
G3 0.2
K1 300000
K2 300000

The numerical simulation of the control problem is performed using the parameter values
and weight constants specified in Table 5.1 and Table 5.4, respectively. Here, we search for
two optimal control functions u1 and u2, minimize the objective functional (J) provided by
(4.10). The graph of optimal control for u1 and u2 is presented in Fig. 7 for different p.
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Fig. 5.7. Optimal control of two controls, i.e., treatment control (u
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and u
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) using the parameter values given in

Table 3 with G1 = 0.1, G2 = 0.2, G3 = 0.2, K1 = 300000, K2 = 300000 for different values of p.
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From the optimal control diagrams (Fig. 5.7), one could conclude that the total effort
should be given in both controls at the start of the disease. The system’s dynamical behavior
under control and without control is presented in Fig. 5.8 for different p.
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Fig. 5.8. Time series plots of (i) susceptible population, (ii) exposed population, (iii) infective population in
asymptomatic phase, (iv) infective population in symptomatic phase with two controls and without control

using the parameter values given in Table 5.1 and the values of the weight constants given in Table 5.4.

The solid lines of Fig. 5.8 are presented as the population with control, and the dotted lines
are presented as the population without control. Fig. 5.8 shows that using control, exposed
class (E), asymptomatic class (IA) and symptomatic class (IS) are decreasing. This study
indicates that the two controls can control the disease successfully.

In Fig. 5.9 and Fig. 5.10, we have presented the comparative study without control (u1

= u2 = 0) through the time series diagrams of every population class, also for only first
treatment control (u1 ̸= 0, u2 = 0) and only second treatment control (u1 = 0, u2 ̸= 0) for
different values of p.
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Fig. 5.9. Time series plots of (i) susceptible, (ii) exposed, (iii) infected in asymptomatic phase, (iv) infected in
symptomatic phase populations with u1 control and without control using input values given in Table 5.1 and

Table 5.4.
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Fig. 5.10. Time series plots of (i) susceptible, (ii) exposed, (iii) asymptomatic phase of infected, (iv)
symptomatic phase of infected populations with u2 control and without control using the parameter values

given in Table 5.1 and the values of the weight constants given in Table 5.4.

The solid lines of Fig. 5.9 are presented as the population with u1 control and the dotted
lines are presented as the population without control. In Fig. 5.10, the solid lines are presented
as the population with u2 control and dotted lines are presented as the population without
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control. These figures clearly show that using both controls together is more effective to
control the disease compared to without any control and single controls. From the above
observations, it can conclude that both the treatment controls together yield a relatively
noticed result on the controlling of the disease.

6. CONCLUSIONS

This paper considered a pandemic disease in recent years, the so-called COVID-19 infection.
This study developed a five-compartmental epidemic model and investigated the dynamical
behavior of this model. Most of the COVID-19 infection models are generally based on
the assumption that the model’s parameters are precisely known. However, the scenario is
different since it is impossible to know all the parameter values specifically. In this paper, we
developed a method to discuss the dynamical behavior of COVID-19 epidemic model with
imprecise parameters by considering that the model’s coefficients are ambiguous for the lack
of precise numerical information.

By using the concept of the next-generation matrix method, we have found

R0 =
Λ1−p

l Λp
u

µ1−p
l µp

u

[α1−p
l αp

uσρ
1−p
l ρpuC + β1−p

l βp
uρ

1−p
l ρpu{σ(1− k)r1−p

l rpu +B(1− σ)}]
ABC

as BRN of the system, which helps us to determine the dynamical behavior of the system for
all p ∈ [0, 1]. The system (2.5) is locally asymptotically stable in the DFE E0 when R0 < 1 for
all p ∈ [0, 1]. The endemic equilibrium E1 exists when R0 > 1 and p ∈ [0, 1] and the system
becomes unstable at E0 but under some conditions locally asymptotically stable at E1.

The most important part of this study is to establish an optimal control for the pandemic
model to minimize the asymptomatic and symptomatic populations and also to minimize the
cost of treatment under impreciseness. We have considered two types of treatment as two
controls to reduce the spread of the disease. The first treatment control u1, and the second
treatment control u2 are designed in such a way that they minimize the objective functional
as given in equation (4.10).

The main mathematical findings for the dynamical behavior of the COVID-19 pandemic
are also numerically verified using MATLAB. A comparison between the dynamical behavior
of every population with three different control options is presented graphically for different
values of p in Fig. 5.7 to Fig. 5.10, which clearly shows the effectiveness of the treatment
control. In addition, it is precisely shown that optimal control is much more effective in
reducing the number of asymptomatic and symptomatic individuals, implying that treatment
can successfully control the spread of the disease. Furthermore, it was noticed that both
treatments are essential at the beginning of the outbreak to prevent the spread of the disease.
Thus, our analytical and numerical studies show that the optimal control policy is a beneficial
technique to reduce the spread of COVID-19 infection.

The proposed pandemic model is based on the effects of COVID-19 infection in a
population. In most of the COVID-19 mathematical models, the model parameters are taken
as constants. However, in reality, it is not true, as the parameters depend on the environmental
conditions; therefore, they are not constant. To avoid these difficulties, in our present model
we consider that the parameters of the models are imprecise and present them by interval
number. Then, using the parametric functional form of the interval number, we study the
dynamical behavior of the imprecise model. It is also true that a time lag between susceptible
individuals may be infected, hence, the present model can be extended by incorporating the
time lag into the system, which is kept for future work consideration.

Controlling COVID-19 spread is now a challenging and significant issue. Therefore,
predicting and identifying appropriate strategies and minimum cost prevention programs to
stop the spread of the virus are the government’s primary goals. This study is a step toward
identifying the parameters of interest for future studies. However, a tremendous amount of
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contribution is needed to inform and assist researchers and policy makers in focusing on
prevention and available treatment resources for maximum effectiveness.
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Appendix A:
The proof of theorem-6
The variational matrix of system (2.5) at DFE E0 is given by

ME0 =


−µ1−p

l µp
u 0 −α1−p

l αp
uΛ

1−p
l Λp

u

µ1−p
l µu)p

−β1−p
l βp

uΛ
1−p
l Λp

u

µ1−p
l µp

u
0

0 −A
α1−p
l αp

uΛ
1−p
l Λp

u

µ1−p
l µp

u

β1−p
l βp

uΛ
1−p
l Λp

u

µ1−p
l µp

u
0

0 σρ1−p
l ρpu −B 0 0

0 (1− σ)ρ1−p
l ρpu (1− k)r1−p

l rpu −C 0
0 0 kr1−p

l rpu m1−p
l mp

u −µ1−p
l µp

u


Therefore, eigenvalues of the characteristic equation of ME0 are −µ1−p

l µp
u, −µ1−p

l µp
u and the

solution of the cubic equation,

P (λ) ≡ λ3 + A1λ
2 + A2λ+ A3 = 0 (A.1)

where
A1 = A+B + C,

A2 = AB(1−R0) + AC(1−R0) +BC +
Λ1−p

l Λp
u

µ1−p
l µp

u[
ρ1−p
l ρpuβ

1−p
l βp

u

(1− σ)B + (1− k)σr1−p
l rpu

C
+ σρ1−p

l ρpu
α1−p
l αp

uC + (1− k)β1−p
l βp

ur
1−p
l rpu

B

]
and

A3 = ABC(1−R0)

Now, it is easily noted that A1 > 0, A2 > 0, A3 > 0 if R0 < 1.
After some simplifications, we get

A1A2 −A3 = (A2B +AB2 +A2C +AC2 +ABC)(1−R0) + (A+B + C)(
BC +

Λ1−p
l Λp

uρ
1−p
l ρpu

µ1−p
l µp

u

[
β1−p
l βp

u

(1− σ)B + σ(1− k)r1−p
l rpu

C
+ σ

α1−p
l αp

uC + (1− k)β1−p
l βp

ur
1−p
l rpu

B

])

Here, we can notice that, if R0 < 1 then A1A2 − A3 > 0. Therefore, by the Routh–Hurwitz
Routh–Hurwitz criterion [49] it follows that P (λ) = 0 has negative real roots if R0 < 1.This
completes the proof.

Appendix B:
The proof of theorem-8
The variational matrix of system (2.5) at E1(S

∗, E∗, I∗A, I
∗
S, R

∗) is given by,

ME1 =


b11 0 b13 b14 0
b21 b22 b23 b24 0
0 b32 b33 0 0
0 b42 b43 b44 0
0 0 b53 b54 b55


where, b11 = −

(
α1−p
l αp

uI
∗
A + β1−p

l βp
uI

∗
S

)
− µ1−p

l µp
u, b13 = −α1−p

l αp
uS

∗, b14 = −β1−p
l βp

uS
∗,

b21 =
(
α1−p
l αp

uI
∗
A + β1−p

l βp
uI

∗
S

)
, b22 = −A, b23 = α1−p

l αp
uS

∗, b24 = β1−p
l βp

uS
∗, b32 =
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σρ1−p
l ρpu, b33 = −B, b42 = (1− σ)ρ1−p

l ρpu, b43 = (1− k)r1−p
l rpu, b44 = −C, b53 = kr1−p

l rpu,
b54 = m1−p

l mp
u, b55 = −µ1−p

l µp
u.

Therefore, the eigenvalues of the characteristic equation of ME1 are −µ1−p
l µp

u and the
solution of the equation,

Q (λ) ≡ λ4 +B1λ
3 +B2λ

2 +B3λ+B4 = 0 (B.1)

where B1 = −(b11 + b22 + b33 + b44), B2 = b11b22 + b11b33 + b11b44 + b22b44 +
b33b44 + b22b33 − b23b32 − b24b42, B3 = −b11b22b44 − b11b33b44 − b11b22b33 − b22b33b44 −
b24b32b43 − b21b13b32 − b21b14b42 + b11b23b32 + b11b24b42 + b23b32b44 + b24b42b33, and B4 =
b11b22b33b44 + b11b24b32b43 + b21b13b32b44 + b21b14b33b42 − b11b23b32b44 − b11b24b33b42 −
b14b21b32b43.

By the Routh–Hurwitz criterion [49] it follows that Q (λ) = 0 has negative real roots if

Bi > 0 (i = 1, 2, 3, 4), D1 = B1 > 0, D2 =

∣∣∣∣B1 B3

1 B2

∣∣∣∣ = B1B2 −B3 > 0, D3 =∣∣∣∣∣B1 B3 0
1 B2 B4

0 B1 B3

∣∣∣∣∣ = B1B2B3 −B2
1B4 −B2

3 > 0.

Therefore, the system (2.5) shows local asymptotic stability at E1 when R0 > 1,
Bi > 0(i = 1, 2, 3, 4), B1B2 −B3 > 0 and B1B2B3 −B2

1B4 −B2
3 > 0. This completes the

proof.

Appendix C:

Arithmetic operations on interval numbers using the concept of interval-valued
functions [45] between A = [a, a] and B =

[
b, b
]

for p ∈ [0, 1] are as follows:

Addition: A+B = [a, a] +
[
b, b
]
=
[
a+ b, a+ b

]
, then the interval-valued function

for A+B is h (p) = c
(1−p)
L cpU where cL = a+ b > 0 and cU = a+ b.

Subtraction: A−B = [a, a]−
[
b, b
]
=
[
a− b, a− b

]
, then the interval-valued function

for A−B is h (p) = c
(1−p)
L cpU where cL = a− b > 0 and cU = a− b.

Scalar Multiplication: εA = ε [a, a] =

{
[εa, εa] if ε ≥ 0
[αa, εa] if ε < 0 , provided a > 0 , then the

interval-valued function of εA is h (p) = c
(1−p)
L cpU if ε ≥ 0 and h (p) = −d

(1−p)
L dpU if ε < 0,

where c
L
= εa, c

U
= εa, dL = |ε|a and dU = |ε|a.

Copyright © 2023 ASSA. Adv Syst Sci Appl (2023)


	Introduction
	Materials & Methods
	Variables and parameters involved in the Model
	Some Useful Definitions
	COVID-19 pandemic model formulation
	Crisp model
	Imprecise model with interval coefficient

	Theoretical study of the model
	Positivity of the solutions
	Invariant region
	Existence of Equilibria and Basic reproduction number
	Stability Behavior

	Optimal control for COVID-19 model
	Existence of an optimal control
	Characterization of the optimal control

	Numerical Simulations
	Conclusions

