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Abstract: In this paper, we present a mathematical model of the interaction between the
human population and the vector (mosquito) population to study the stability of a malaria
model in the presence of prophylactic treatment. This study is aimed at investigating the
effect of the prophylactic treatment and the long-term dynamics of the solutions of the
model. The graph-theoretic method was used to obtain the basic reproduction number
(R0). We obtained the disease-free equilibrium for the model which is locally and globally
asymptotically stable when the basic reproduction number is less than unity. Moreover, we
showed that there exists a unique endemic equilibrium whenever R0 > 1, and the Lyapunov
function was used to establish that the endemic equilibrium is globally asymptotically
stable whenever R0 > 1. The simulations show the impact of prophylactic treatment on the
population of infectious individuals and the findings of this study suggest that prophylactic
treatment is an effective approach to reduce the transmission of malaria as prophylactic
treatment reduces the population of infectious individuals. Further numerical simulations
carried out conformed with the analytic results.
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1. INTRODUCTION

Malaria is one of the most serious public health problems in the world. In many developing
countries, it is one of the main causes of death and disease [6]. Globally, 247 million cases
of malaria were recorded in 2021 and malaria claimed the lives of 619,000 people [46].
In 2020, malaria cases stood at 241 million cases globally, and an estimate of 627,000
deaths was also recorded with the WHO Africa region having the larger share of the
global malaria burden [44].

Malaria is a fatal disease and one of the main causes of death for children under five
years of age. It is caused by a parasite called Plasmodium which is transmitted through
the bite of an infected female Anopheles mosquito. The parasite requires two hosts for
the completion of its life cycle: namely, a female Anopheles mosquito and a human [29].

The presence of malaria depends on the climatic factors of an area, such as rainfall,
humidity, and temperature, and this can be linked to the prevalence of malaria in tropical
and subtropical areas where the conditions allow mosquitoes to survive, multiply, and
complete their life cycle [7]. When parasites enter the human body through the bites
of infected mosquitoes, the symptoms manifest themselves after about 10 to 15 days,
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and children under the age of five, pregnant women, non-immune travellers, HIV/AIDS
patients and people with low immune systems are more likely to develop the disease [45].
If one is exposed to the disease, it can cause morbidity and fatality if not treated in
time.

In recent times, the modelling of the transmission of infectious diseases is now
influencing the theory and practice of disease management and control. Mathematical
modelling now plays an important role in policy decision-making regarding the
epidemiology of disease in many countries [21]. Mathematical models have become
useful tools for analysing and controlling the transmission of infectious diseases, and
they are used to compare, plan, implement, evaluate and optimize different detection,
prevention, and control programs [16]. Several models have been formulated to explain
and show the interaction between the host and vector, its transmission and control
(see [1, 3, 4, 8–10,17,19,26,37,38,40,42]).

Massad et al. [30] studied the malaria infection risk for travellers visiting the
Amazonian region of Brazil using a mathematical modelling approach. The study
reveals that the risk is high, heterogeneous and depends on the length of stay, arrival
time to a locality, entomological potential, and force of infection for the population of
the local vector. Mohammed-Awel and Gumel [31] worked on the mathematics of an
epidemiology-genetic model to assess the effect of insecticide resistance on the dynamics
of malaria transmission. The epidemiology model of the disease is coupled with the
genetics of the vector population and incorporates various fitness costs associated with
the insecticide resistance for the malaria model. The results of their simulations show
that the Insecticides Treated Nets and Indoors Residual Spraying (ITNs & IRS) control
strategies reduce the disease effectively in both moderate and high malaria transmission
communities if the ITNs coverage level is high enough, but fail to manage insecticide
resistance effectively in the community. Woldegerima et al. [43] studied the mathematical
analysis of transmission-blocking drugs’ impact on the population dynamics of malaria.
Rehman et al. [35] proposed and analysed a mathematical model of malaria with multiple
compartments with an associated learning mechanism between the vector-to-host and
vice-versa incorporating memory, reinfection, and relapse. Traoré et al. [39] presented a
mathematical model of malaria transmission with four different metamorphic stages of
mosquitoes and the model also features seasonality.

Collins and Duffy [11] studied the mathematical model for the dynamics of malaria
and its control in Nigeria. Epidemiological features such as drug resistance, mosquito
nets use and malaria treatment were introduced into the model. The results show that
the disease will remain in the country if good control measures are not geared toward
dominant resistant strains, mosquito net use, and treatment. Kuddus and Rahman [22]
developed a human-mosquito model for the dynamical transmission of malaria. The
sensitivity analysis was carried out and the contact rates for the human and the mosquito
were found to have the greatest influence on the prevalence of malaria. Moreover, the
impacts of other features of the model like progression rate, disease-related death rate,
recovery rate, and the rate of losing immunity were also examined. Olaniyi et al. [34]
worked on the mathematical analysis of a social hierarchy-structured model for the
transmission dynamics of malaria. The human population of the model was classified
based on two social classes namely: low and high, and the optimal control analysis was
also carried out. Beretta et al. [5] proposed a mathematical model for the transmission
of malaria which features two-age and asymptomatic classes, and it was found that
decreasing the biting rate and increasing the mortality rate of the mosquito can cause
the endemic situation to fade off.

One of the important aspects of modelling in epidemiology is to examine the global
property of the equilibrium, and the Lyapunov function, which serves as a basic and
potent tool, has been widely used to study and establish the global stability of the
equilibrium. Korobeinikov and Wake [20] presented the Lyapunov functions for the SIR,
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SIRS, and SIS models to establish the global stability of the endemic states of the model.
Vargas-De-Leon [41] studied the global stability of infectious disease models with relapse
by constructing Lyapunov functions in providing the conditions for the stability of the
models with relapse. Li et al. [25] presented an approach that is algebraic in nature to
prove the global stability of a class of epidemic models and showed how the coefficients
ai can be chosen for the classical Lyapunov function ∑n

i=1 ai(xi − x∗
i − xi ln xi/x∗

i ) so
that the derivative of the Lyapunov function is negative definite or semidefinite. Khan
et al. [18] examined the global stability of vector-host disease with variable population
sizes, and numerical simulations were carried out to justify the theoretical results.
Gebremestal [15] studied the global stability of the transmission of a malaria model with
logistic growth, and the simulations examined how changes in the sustainable level of
the vectors affect the population of humans. The study of endemic global stability is not
only of importance to Mathematics but also helps in forecasting the long-term dynamics
of the disease to design effective prevention and intervention strategies to combat the
disease [36].

Most of the studies in the literature failed to consider the prophylactic treatment in
malaria models. Hence, the novelty of this work is the focus on the exploration, using the
Lyapunov function, of the global stability properties of a malaria model incorporating
prophylactic treatment. Furthermore, it is assumed that a fraction of newly infected
individuals with low immunity progress to the exposed class while the remaining fraction
moves to the infectious class.

The paper is organized as follows: section 2 has the method of model
design/formulation and model analysis, sections 3 and 4 contain the results and discussion
of results, respectively, while the conclusion follows in section 5.

2. METHODS

2.1. Model design
In this subsection, we describe how the model is designed and formulated. The malaria
model has two populations, namely the human population and the vector (mosquito)
population. The overall human population (denoted by Nh) is subdivided into susceptible
individuals (Sh), exposed individuals (EM), infectious individuals (IM), and those that
recovered (RM). Also, the total mosquito population (denoted by Nv) consists of three
subpopulations, namely susceptible mosquitoes (Sv), exposed mosquitoes (Ev) and
infectious mosquitoes (Iv). The susceptible humans are assumed to be recruited into the
population at the rate π and get infected with malaria after being bitten by infected
mosquitoes at the rate λM , which is given by λM = βMaIv, where βM is the probability
of transmission from mosquitos to humans provided that there is significant contact
between the mosquito and the human, and a is the number of mosquito bites that one
person has per unit time. The susceptible population has those who lost their immunity
at the rate ϕ in the recovered class, and the population decreases due to natural death
which does occur in all human subpopulations at the rate µh. It is assumed that a
fraction ϵ of newly infected individuals with low immunity moves to the exposed class of
humans EM , while the remaining fraction moves to the infectious compartment IM , the
exposed humans progress into the infectious class at the rate κ, and the prophylactic
treatment is given at the rate τ1 to the exposed humans making them move to the
recovered class. Those that are treated in the infectious class at the rate τ2 progress to
the recovered class and death due to the disease causes a reduction in the population
of the infectious compartment. The recovered population diminishes as a result of loss
of immunity at the rate ϕ and natural death at the rate µh which occurs in all human
subpopulations.
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The susceptible mosquitoes Sv come into the population at a constant rate
(recruitment rate πv), and they become infected after effective contact with people
infected with malaria at the rate λv, where λv = βvb(EM + ηIM) and η ≥ 1 is the
amplification parameter which accounts for the relative infectiousness of infectious
individuals when compared to the exposed individuals, b is the number of humans
bitten by mosquito per unit time and βv is the transmission probability from humans to
mosquitoes. The newly infected mosquitoes move to the exposed class of mosquitoes,
and there is a progression from the exposed class to the infectious class of mosquitoes at
the rate σ. The death of mosquitoes does occur in all compartments of mosquitoes at
the rate µv. The schematic diagram of the model showing the interaction among the
classes is depicted in figure 2.1 and table 2.1 shows the definitions of the parameters.
Then, the system of equations of the model is as follows:

Fig. 2.1. Flow chart of the malaria model
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dSh

dt
= πh − λMSh − µhSh + ϕRM ,

dEM

dt
= ϵλMSh − (κ + τ1 + µh)EM ,

dIM

dt
= (1 − ϵ)λMSh + κEM − (τ2 + δ + µh)IM ,

dRM

dt
= τ1EM + τ2IM − (ϕ + µh)RM ,

dSv

dt
= πv − λvSv − µvSv,

dEv

dt
= λvSv − (σ + µv)Ev,

dIv

dt
= σEv − µvIv,

(2.1)

where λM = βMaIv, and λv = βvb(EM + ηIM).
For convenience, we can rewrite the equations above as below:

dSh

dt
= πh − λMSh − µhSh + ϕRM ,

dEM

dt
= ϵλMSh − T1EM ,

dIM

dt
= (1 − ϵ)λMSh + κEM − T2IM ,

dRM

dt
= τ1EM + τ2IM − T3RM ,

dSv

dt
= πv − λvSv − µvSv,

dEv

dt
= λvSv − T4Ev,

dIv

dt
= σEv − µvIv,

(2.2)

where T1 = κ + τ1 + µh, T2 = τ2 + δ + µh, T3 = ϕ + µh, and T4 = σ + µv.

2.2. Model Analysis
The analysis of the model is carried out here, and the threshold for the eradication and
persistence of malaria is determined and explored.

2.2.1. The invariant region
Theorem 2.1:
The closed set

D =
{

(Sh, EM , IM , RM , Sv, Ev, Iv) ∈ R7
+ : Nh ≤ πh

µh

, Nv ≤ πv

µv

}
,

is positively invariant with non-negative initial values in R7
+.
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Table 2.1. Description of parameters used in the model (2.1)

Parameter Description Value Source
πh Recruitment rate of humans 0.3913 [3]
βM Probability of transmission

from mosquitoes to humans 0.001 [24]
µh Natural death rate of humans 0.00003913 [3]
a Number of mosquito bites

per unit time 0.29 [17]
ϕ Rate of loss of immunity 0.25 [3]
ϵ Fraction of newly infected

people with low immunity 0.6 Assumed
τ1 Prophylactic treatment

for the exposed class 0.002 Assumed
κ Progression rate of humans

from exposed to infectious class 0.0714 [32]
b Number of humans bitten by

mosquitos per unit time 0.2980 [4]
η Amplification factor 2.5 Assumed
δ Death due to the disease 0.00009 [8]
τ2 Treatment rate for the infectious 0.0092 [33]
µv Natural death rate of mosquitoes 0.0476 [3]
πv Recruitment rate of mosquitoes 0.7 Assumed
σ Progression rate of exposed

mosquitoes 0.0555 [24]
βv Probability of transmission

from humans to mosquitos 0.0001 [24]

Proof
Consider the feasible region D = Dh × Dv ⊂ R7

+ with

Dh =
{

(Sh, EM , IM , RM) ∈ R4
+ : Nh ≤ πh

µh

}
,

and
Dv =

{
(Sv, Ev, Iv) ∈ R3

+ : Nv ≤ πv

µv

}
,

and by adding the human and mosquito compartments of (2.1) separately with δ = 0
we have

dNh

dt
= πh − µhNh and dNv

dt
= πv − µvNv.

It follows that
dNh

dt
≤ πh − µhNh and dNv

dt
≤ πv − µvNv.

Then
Nh(t) ≤ Nh(0)e−µht + πh

µh

(1 − e−µht)

and
Nv(t) ≤ Nv(0)e−µvt + πv

µv

(1 − e−µvt).
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If Nh(0) ≤ πh

µh

, then Nh(t) ≤ πh

µh

. Also, Nv(0) ≤ πv

µv

, then Nv(t) ≤ πv

µv

. Hence, all solutions
of the model with initial values in D stay there for t > 0. This means that D is
positively invariant and in this region, and the model is considered to be epidemiologically
meaningful and mathematically well-posed.

2.2.2. Disease-free equilibrium
The disease-free equilibrium of equation (2.2) is obtained by setting all the rates of
change to zero. Hence, the disease-free equilibrium is given by

E1 = (Sh, EM , IM , RM , Sv, Ev, Iv) =
(

πh

µh

, 0, 0, 0,
πv

µv

, 0, 0
)

. (2.3)

2.2.3. Basic reproduction number
We use the graph-theoretic method as given by de-Camino-Beck et al. [13] to obtain
the basic reproduction number of the model. The digraph reduction procedure of the
digraph Fλ−1 − V for the model at disease-free is shown in figure 2.2.

Fig. 2.2. Digraph reduction procedure of the model

From Figure 2d,

− 1 + βvbπvσβMaπh(η − ϵη)λ−2

µ2
vµhT2T4

+ ϵβMaπhβvbπvσ(κη + T2)λ−2

µ2
vµhT1T2T4

= 0,

∴ R0 = λ =

√√√√βvbπvσβMaπh(T1η − T1ϵη + ϵκη + ϵT2)
µ2

vµhT1T2T4
. (2.4)

The threshold R0 is the basic reproduction number, which is the average number of new
infection cases emanating from a single infection source when introduced in a population
consisting of only susceptibles [14]. This threshold determines whether malaria will die
out or persist. In the next subsection, we try to show that a small influx of infected
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mosquitoes/infectious individuals into the community/environment will not generate a
substantial malaria outbreak when R0 < 1.

2.2.4. Local stability of the disease-free equilibrium
Theorem 2.2:
The disease-free equilibrium of the system (2.2) given by (2.3) is locally asymptotically
stable if R0 < 1 and unstable when R0 > 1.
Proof
The Jacobian matrix J(E1) of the system (2.2) evaluated at disease-free equilibrium (2.3)
is as given below:

J(E1) =



−µh 0 0 ϕ 0 0 −βMaπh

µh

0 −T1 0 0 0 0 ϵβMaπh

µh

0 κ −T2 0 0 0 (1 − ϵ)βMaπh

µh
0 τ1 τ2 −T3 0 0 0
0 −βvbπv

µv

−βvbηπv

µv

0 −µv 0 0

0 βvbπv

µv

βvbηπv

µv

0 0 −T4 0
0 0 0 0 0 ϕ −µv



. (2.5)

The first three eigenvalues of (2.5) are −µh, −T3, and −µv. The remaining submatrix
is given by

J(E1) =



−T1 0 0 ϵβMaπh

µh

κ −T2 0 (1 − ϵ)βMaπh

µh
βvbπv

µv

βvbηπv

µv

−T4 0
0 0 σ −µv


. (2.6)

The characteristic polynomial of the matrix (2.6) is given by

X4λ
4 + X3λ

3 + X2λ
2 + X1λ + X0 = 0. (2.7)

Where X4 = 1, X3 = µv + T4 + T2 + T1,

X2 = T1T2 + T1T4 + T1µv + T2T4 + T2µv + T4µv,

X1 = T2T4µv + T1T4µv + T1T2µv + T1T2T4

[
1 − R2

0µv (η(1 − ϵ) + ϵ)
[ϵ(ηκ + T2) + T1η(1 − ϵ)]

]
,

and X0 = T1T2T4µv(1 − R2
0).

The characteristic equation (2.7) has negative roots if it satisfies Routh-Hurwitz
criteria, such that Xi > 0 for i = 0, 1, 2, 3, 4 and X1(X2X3 − X1) > X0X

2
3 . Clearly, X4,

X3 and X2 > 0, X1 > 0 if ϵ(ηκ + T2) + T1η(1 − ϵ) > µv(η(1 − ϵ) + η) and X0 > 0 for
R0 < 1. Hence, the disease-free equilibrium is locally asymptotically stable whenever
R0 < 1.
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This theorem 2.2 implies that there is possibility of malaria eradication (when
R0 < 1) if the initial subpopulation sizes are in the basin of attraction of the disease-free
equilibrium E1. To ensure that malaria eradication is not dependent on the initial
subpopulations sizes, it is vital to show that the disease-free equilibrium of malaria is
globally asymptotically stable.

2.2.5. Global stability of disease-free equilibrium
Theorem 2.3:
The disease-free equilibrium given by (2.3) is globally asymptotically stable when R0 < 1.
Proof
We construct the Lyapunov function to prove the global stability of the disease-free as
thus:

L = (κη + T2)EM + T1ηIM + T2T1R0

βvbSv

Ev + T4T2T1R0

σβvbSv

Iv. (2.8)

Differentiating equation (2.8) gives

L̇ = (κη + T2) ˙EM + T1η ˙IM + T2T1R0

βvbSv

Ėv + T4T2T1R0

σβvbSv

İv. (2.9)

L̇ = (κη + T2)[ϵβMaIvSv − T1EM ] + T1η[(1 − ϵ)βMaIvSh + κEM − T2IM ]

+ T2T1R0

βvbSv

[βvb(EM + ηIM)Sv − T4Ev] + T4T2T1R0

σβvbSv

[σEv − µvIv].

L̇ = κηϵβMaIvπh

µh

+ T2ϵβMaIvπh

µh

− T1T2EM + T1η(1 − ϵ)βMaIvπh

µh

− T1ηT2IM + T2T1R0EM + T2T1ηR0IM − T4T2T1R0Ivµ2
v

σβvbπv

.

L̇ =
[√

T1T2T4βMaπhµ2
v

σβvbπvµh

Iv + T1T2EM + T1T2ηIM

]
R0 − 1. (2.10)

Therefore, L̇ < 0 if R0 < 1 with L̇ = 0 if and only if EM = IM = Iv = 0. Also, the
largest invariant set in {(Sh, EM , IM , RM , Sv, Ev, Iv) ∈ D : L̇ = 0} is the singleton E1.
By the LaSalle Invariance Principle [23], every solution that starts in D approaches
E1 as t → ∞. Therefore, the disease-free equilibrium is globally asymptotically stable
whenever R0 < 1.

The implication of theorem 2.3 epidemiologically is that malaria can be eradicated
regardless of the initial sizes of the subpopulations of the model whenever the basic
reproduction number is less than unity.

2.2.6. Existence of endemic equilibrium
The condition for which the endemic equilibrium exists is investigated here. Let

E∗
2 = (S∗

h, E∗
M , I∗

M , R∗
M , S∗

v , E∗
v , I∗

v ),
represents an arbitrary endemic equilibrium of the system of equations (2.2). Also, let
λM and λv at endemic steady state be denoted by λ∗

M and λ∗
v and given by

λ∗
M = βMaI∗

v , (2.11)
λ∗

v = βvb(E∗
M + ηI∗

M). (2.12)
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When we solve the equations of model (2.2) at steady state in terms of the forces of
infection λ∗

M and λ∗
v , we will have

S∗
h = πh

µh + λ∗
M(1 − ϕP3)

, E∗
M = P1λ

∗
MS∗

h, I∗
M = P2λ

∗
MS∗

h, R∗
M = P3λ

∗
MS∗

h, (2.13)

S∗
v = πv

λ∗
v + µv

, E∗
v = P4λ

∗
vS∗

v , I∗
v = P5λ

∗
vS∗

v . (2.14)

where

P1 = ϵ

T1
, P2 = (1 − ϵ)T1 + κϵ

T1T2
, P3 = T2τ1ϵ + τ2((1 − ϵ)T1 + κϵ)

T1T2T3
,

P4 = 1
T4

, P5 = σ

µvT4
.

and T1, T2, T3, T4, and T5 are defined in (2.2) above. By substitution of (2.13) and (2.14)
into (2.11) and (2.12), we have

λ∗
M = βMaP5λ

∗
vS∗

v , (2.15)

λ∗
v = βvb(P1λ

∗
MS∗

h + ηP2λ
∗
MS∗

h). (2.16)
Further substitution leads to

cλ∗
M − d = 0,

where d = µvµh(R0
2 − 1) and c = βvbπh(P1 + ηP2) + µv(1 − ϕP3). Then

λ∗
M = d

c
. (2.17)

From (2.17), it shows clearly that c > 0 and d > 0 if R0 > 1. Then, λM is positive
(greater than zero) whenever R0 > 1. Hence, the following result is established:
Lemma 2.1:
There exists a unique endemic equilibrium for the model if the basic reproduction number
R0 > 1.

2.2.7. Global stability of endemic equilibrium
The global stability of the endemic equilibrium of the model is considered here for the
case when ϕ = 0, and we take ϵ = 1.
Theorem 2.4:
The unique endemic equilibrium of the model with ϕ = 0 and ϵ = 1 is globally
asymptotically stable whenever R0|ϕ=0,ϵ=1 > 1.

Proof
The Volterra type of Lyapunov function stated in 2.18 is used to prove the global stability
of the endemic equilibrium.

L =
(

Sh − S∗
hln

Sh

S∗
h

)
+
(

EM − E∗
M ln

EM

E∗
M

)
+ T1

κ

(
IM − I∗

M ln
IM

I∗
M

)

+
(

Sv − S∗
v ln

Sv

S∗
v

)
+
(

Ev − E∗
v ln

Ev

E∗
v

)
+ T4

σ

(
Iv − I∗

v ln
Iv

I∗
v

)
. (2.18)
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Taking the derivative of (2.18), we have

L̇ = Ṡh − S∗
h

Sh

Ṡh + ˙EM − E∗
M

EM

˙EM + T1

κ

(
˙IM − I∗

M

IM

˙IM

)
+ Ṡv − S∗

v

Sv

Ṡv

+ Ėv − E∗
v

Ev

Ėv + T4

σ

(
˙IM − I∗

M

IM

˙IM

)
. (2.19)

L̇ = 2λMS∗
h + 2µhS∗

h − µhSh − λMS∗2
h

Sh

− µhS∗2
h

Sh

− λMShE∗
M

EM

+ T1E
∗
M

− T1E
∗
MIM

IM

− T1EMI∗
M

IM

+ T1EM + 2λvS∗
v + 2µvS∗

v − µvSv − λvS∗2
v

Sv

− µvS∗2
v

Sv

− λvSvE∗
M

Ev

+ T4E
∗
v − T4E

∗
MIv

I∗
v

− T4EvI∗
v

Iv

+ T4E
∗
v .

L̇ = T1E
∗
M

(
2 − S∗

h

Sh

)
+ µhS∗

h

(
2 − S∗

h

Sh

)
− µhSh − T1E

∗2
M Sh

S∗
hEM

+ T1E
∗
M

− T1E
∗
MIM

I∗
M

− T1EMI∗
M

IM

+ T1E
∗
M + T4S

∗
v

(
2 − S∗

v

Sv

)
+ µvS∗

v

(
2 − S∗

v

Sv

)

− µvSv − T4E
∗2
v Sv

SvEv

+ T4E
∗
v − T4E

∗
vIv

I∗
v

− T4EvI∗
v

Iv

+ T4E
∗
v . (2.20)

By simplification, (2.20) becomes

L̇ = µhS∗
h

(
2 − S∗

h

Sh

− Sh

S∗
h

)
+ T1E

∗
M

(
4 − S∗

h

Sh

− E∗
MS∗

h

EMS∗
h
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. (2.21)

Since the arithmetic mean is greater than the geometric mean, then

2 − S∗
h

Sh

− Sh

S∗
h

≤ 0, 4 − S∗
h

Sh

− E∗
MS∗

h

EMS∗
h

− EMI∗
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E∗
MIM

− IM

I∗
M

≤ 0,

2 − S∗
v

Sv

− Sv

S∗
v

≤ 0, 4 − S∗
v

Sv

− E∗
vSv

EvS∗
v

− Iv

I∗
v

− EvI∗
v

E∗
vIv

≤ 0.

With all the parameters of the model being positive, therefore, L̇ ≤ 0 for R0|ϕ=0,ϵ=1 > 1.
Hence, by the LaSalle Invariance Principle [23], every solution to the model equations
approaches the endemic equilibrium E2 as t → ∞ whenever R0|ϕ=0,ϵ=1 > 1.

The epidemiological implication of theorem 2.4 is that malaria will persist in the
community irrespective of the initial sizes of the populations of the model whenever
R0 > 1.

3. RESULTS

The results of the numerical simulations of the model are obtained using the ODE45
solver of MatLab and the values of the parameters used for the simulations are given in
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table 2.1. We investigate the influence of prophylaxis on the dynamics of malaria and
the long-term dynamics of the model. The results of the simulations are depicted in
figures 3.3 - 3.6.
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Fig. 3.3. Graph of the effect of the prophylactic treatment on the infectious population
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Fig. 3.4. Graph of the infectious population at different values of prophylactic treatment rate (τ1)
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Fig. 3.5. Plot of the infectious individuals at different initial conditions
when R0 = 0.65 and the parameters used are given in Table 2.1
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Fig. 3.6. Plot of the infectious individuals at different initial conditions
when R0 = 12.4, with ϵ = 1, ϕ = δ = 0, βM = 0.004, βv = 0.0004,

τ1 = 0.001, τ2 = 0.004, µv = 0.0175 and other parameters used are given in Table 2.1

4. DISCUSSION OF THE RESULTS

A mathematical model of malaria with prophylactic treatment is presented, and its
global asymptotic stability properties are studied. The threshold which determines
whether malaria will fade out or persist is established. The qualitative analysis of the
stability carried out showed that the disease-free equilibrium is locally asymptotically
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stable whenever R0 < 1. Also, there exists an endemic equilibrium whenever the basic
reproduction number goes beyond unity. The Lyapunov functions were used to establish
that the disease-free equilibrium and endemic equilibrium are globally asymptotically
stable whenever R0 < 1 and R0 > 1, respectively. The graph of figure 3.3 illustrates the
population of infectious individuals when prophylactic treatment is present and when
there is no prophylactic treatment. The population of infectious individuals is at minimum
when there is prophylaxis as compared to when there is none. Hence, the presence of
prophylactic treatment lowers the number of infectious individuals as it prevents exposed
individuals to progress to the infectious class/state. The increasing effect of prophylactic
treatment rate on the infectious population is depicted in figure 3.4. The population
of infectious individuals diminishes as the prophylactic treatment rate increases and
thereby reducing the burden of the disease. Therefore, prophylactic treatment plays an
important role in reducing the population of the infectious individuals. The practical
situation of the study is the recent implementation of seasonal malaria chemoprophylaxis
in Nigeria by the Malaria Consortium [27,28] to reduce the disease burden. Some states
in Nigeria were selected for the pilot phase and every child in the community under five
years old is given prophylactic treatment every month. A study by de Cola et al. [12]
reported that the treatment programme reduces the prevalence of malaria in the country,
which is in line with the result of this current study. The work of Ambe et al. [2] also
supports the result we obtained. We carried out numerical simulations on global stability
to validate the analytic results. The plot in Fig. 3.5 shows the long-term dynamics of
the population of infectious individuals at different initial conditions when R0 < 1. The
infectious population converges to disease-free equilibrium and vanishes, which means
that the disease dies out of the community irrespective of the different initial sizes of
the infectious class. Also, Fig. 3.6 shows a scenario of the population of the infectious
class with different initial conditions when the basic reproduction number R0 > 1. In
this case, the disease does clear out from the population, but persists, and this is in line
with the analytic result.

5. CONCLUSION

We formulated a mathematical model for the dynamics of malaria with prophylaxis to
study the global stability properties of the model. The basic reproduction number was
obtained using the graph-theoretic method. The disease-free equilibrium is proved to be
locally and globally asymptotically stable whenever the basic reproduction number is
less than unity. We showed that there exists a unique endemic equilibrium whenever
the basic reproduction number surpasses unity, and by the Lyapunov function, the
endemic equilibrium is globally asymptotically stable whenever R0 > 1. The presence of
prophylaxis plays a vital role as it minimizes the population of infectious individuals
and mitigates the burden of malaria. Hence, there is a need to intensify efforts in the
provision of good and appropriate prophylaxis to reduce the burden of the disease.
Further numerical simulations carried out justified the analytic results.
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38. Thanh An, L.T., Jäger, W. & Neuss-Radu, M. (2022). Modeling and analysis of
structured population in malaria, Journal of Mathematical Analysis and Applications,
507(2), https://doi.org/10.1016/j.jmaa.2021.125816.

39. Traoré, B., Koutou, O. & Sangaré, B. (2020). A global mathematical model
of malaria transmission dynamics with structured mosquito population and

Copyright © 2023 ASSA. Adv Syst Sci Appl (2023)

https://doi.org/10.1016/j.matcom.2021.09.021
https://doi.org/10.1155/2012/946504
https://www.malariaconsortium.org/pages/our-responses/smc.htm
https://www.malariaconsortium.org/resources/publications/197/seasonal-malaria-chemoprevention-smc-in-nigeria
https://www.malariaconsortium.org/resources/publications/197/seasonal-malaria-chemoprevention-smc-in-nigeria
https://doi.org/10.1016/j.tmaid.2020.101792
https://doi.org/10.1016/j.mbs.2019.02.008
https://doi.org/10.1016/j.mbs.2019.02.008
https://doi.org/10.1016/j.rinp.2021.104991
https://doi.org/10.1016/j.chaos.2022.112527
https://doi.org/10.1016/j.imu.2022.100897
https://doi.org/10.1016/j.jmaa.2021.125816


GLOBAL STABILITY ANALYSIS OF MALARIA MODEL 107

temperature variations, Nonlinear Analysis: Real World Applications, 53, https:
//doi.org/10.1016/j.nonrwa.2019.103081.

40. Tunwiine, J., Mugisha, J.Y.T. & Luboobi, L. (2007). A mathematical model for
the dynamics of malaria in a human host and mosquito vector with temporary
immunity, Applied Mathematics and Computation, 189, 1953–1965.

41. Vargas-De-Leon, C. (2013). On the global stability of infectious diseases models
with relapse, Abstraction & amp;Application, 9, 50–61 .

42. Wan, H. & Cui, J. (2009). A model for the transmission of malaria, Discrete and
Continuous Dynamical System B, 11(2), 479–496.

43. Woldegerima, A., Ouifki, R. & Banasiak, J. (2021). Mathematical analysis of the
impact of transmission-blocking drugs on the population dynamics of malaria,
Applied Mathematics and Computation, 400. https://doi.org/10.1016/j.amc.2021.
126005.

44. World Health Organization (WHO) (2022, March 21). Malaria: Key facts. [Online].
Available http://www.who.int/news-room/fact-sheets/detail/malaria.

45. World Health Organization (WHO) (2022, March 21). Malaria: Overview. [Online].
Available http://www.who.int/news-room/fact-sheets/detail/malaria.

46. World Health Organization (WHO). (2023, February 19). Malaria: Key facts.
[Online]. Available http://www.who.int/news-room/fact-sheets/detail/malaria.

Copyright © 2023 ASSA. Adv Syst Sci Appl (2023)

https://doi.org/10.1016/j.nonrwa.2019.103081
https://doi.org/10.1016/j.nonrwa.2019.103081
https://doi.org/10.1016/j.amc.2021.126005
https://doi.org/10.1016/j.amc.2021.126005
http://www.who.int/news-room/fact-sheets/detail/malaria
 http://www.who.int/news-room/fact-sheets/detail/malaria
http://www.who.int/news-room/fact-sheets/detail/malaria

	Introduction
	Methods
	Model design
	Model Analysis
	The invariant region
	Disease-free equilibrium
	Basic reproduction number
	Local stability of the disease-free equilibrium
	Global stability of disease-free equilibrium
	Existence of endemic equilibrium
	Global stability of endemic equilibrium


	Results
	Discussion of the Results
	Conclusion

