
Adv Syst Sci Appl 2023; 01:35–49
Published online at https://ijassa.ipu.ru.

Piecewise Constant Functions in Dynamic Optimization
Problems

Olga E. Orel1*, Evgeny N. Orel2

1Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Russia
2Financial University under the Government of the Russian Federation, Moscow, Russia

Abstract: We consider a direct method of dynamic optimization to approximate the global
extremum. This method is based on splitting the state space into classes (cells) and constructing
piecewise constant functions on the partition. Such an approach leads to a generalization of the
Euler polygonal method and makes it possible to use shortest path algorithms on graphs. In the
suggested algorithm, for each class we construct a path from an initial point to this class. Note
that the program remembers only the terminal point of the path, functional value along the path
and number of the preceding class. If one found another path with the same boundary conditions
but less functional value (for the minimization problem), this path would become the current
approximation. We prove that if the partition is sufficiently small, then, by using our method, we
obtain the optimal polygon. The suggested approach can also be applied to problems of dynamic
optimization with incomplete information (differential games, control of systems with unknown
dynamics). In addition, some results of numerical solutions of optimal control problems and
differential games are given.
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1. INTRODUCTION

In [11], [12], [9] to solve optimal control problems we used an approach based on construction
of piecewise constant functions that are approximations of a Bellman function B(x) or a dual
function A(x) (i.e., a Bellman function with time reversal). In the paper, we show that such
an approach is universal and can be applied to various problems of dynamic optimization
when we face different types of uncertainty. Most general consideration of optimal control
problems is given in [18]. To solve a particular problem, we must split the state space into a
finite number of subsets, which are called classes, or cells. The space of functions that take
constant values on classes is finite dimensional. Thus the values of the functions could be
computed and stored in computer memory.

Splitting the space into classes does not mean that we impose the restriction to get into
points of the predetermined lattice. Our approach is a direct method and is not related to
necessary and / or sufficient conditions of extremum. Sometimes, the process of search
and construction of piecewise constant functions resembles imitation modelling when the
scenario of future behavior of the system is played repeatedly. During this process, the
behavior of the system is being improved step-by-step and eventually we get a trajectory
that approximates the global extremum.

To show the relationship between the global extremum and its approximation, we consider
some well-known problems, which were investigated earlier (see, for example, [3]). For these
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problems, the detailed study of various characteristic of switching surfaces, universal and
equivocal surfaces, barriers, etc. was carried out. However, sometimes the solution was not
complete. In what follows, we will compare the results achieved by analytic and numerical
methods and establish the approximate boundaries of their applications.

The suggested approach enables to avoid use of Moiseev “elementary operation” due to
moving from cell to cell rather than from point to point (for example, vertices of a lattice).

The method of piecewise constant functions originates from the Euler polygonal method,
with which we start. The Euler polygonal method plays an important role not only in the
applied but also in the pure mathematics [2]: it is used to solve differential equations as well
as to derive Euler–Lagrange equation and to prove the existence theorem in the calculus of
variations.

In the paper, we consider the application of the Euler polygonal method to numerical
solution of a variational problem. As a result we can see that the algorithm constructs not
only a unique polygonal line, but also a family of such lines that form a discrete central field
of curves. Each curve consists of segments with constant slopes.

In the optimal control problems, by a polygonal line we mean a trajectory with a piecewise
constant control.

We also consider differential games and survival problems with unknown dynamics. To
construct piecewise defined functions, we can choose various approaches, which depend on a
particular problem. The initial points at the self-learning stage could be chosen systematically
or at random, the process could start with a minorant [14] or with a majorant of the Bellman
function. One can proceed with the breadth-first or depth-first backtracking search [10], [15].
Finally, in the problems with incomplete information on phase limitations, one can use a
heuristic function to speed up the process.

The algorithms and programs are demonstrated on the base of a pseudocode that is not
completely formalized PDL (program design language), where we use elements of Pascal.

2. EULER FIELD OF OPTIMAL POLYGONAL LINES

Consider the variational problem

J(x(.)) =

∫ t1

t0

L(t, x(t), ẋ(t)dt → min, t0 < t1, x(t0) = x0, x(t1) = x1

(for simplicity, we consider one-dimensional case, however all the results can easily be
generalized to the case x ∈ Rn). To construct polygonal lines, we divide the time the segment
[t0, t1] into m equal parts and pick n points with a fixed step on the Ox-axis. Thus a regular
lattice (τi, xj) appears in the plane. After that we join the nodes of the lattice located at the
neighboring verticals by segments and look for the least-cost path on this graph, which has
about mn nodes. Computation of labels of nodes goes from left to right, so it takes mn2

macro operations to solve the problem. At the same time we construct the function A (τi, xj)
that is defined on the nodes of the lattice and is equal to the minimum cost of a polygonal line
passing from the initial point to the current node.

Actually, the algorithm provides not only one trajectory, but rather a discrete central field
of Euler optimal polygonal lines, starting at (t0, x0) and terminating at all other nodes of the
lattice, i.e., the optimal motion is imitated repeatedly. The last circumstance is very important
because before we find one globally optimal trajectory, we must pass through all nodes to
make sure that there are no regions, at which the cost of steps is too low or even negative. By
using Euler polygonal lines we significantly simplify the problem and restrict the domain
of search. However, as we know, any sufficiently smooth curve can be approximated by
such polygonal lines. Therefore, if we want to obtain more accurate approximation, we must
consider a more fine lattice.
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Fig. 2.1. Optimal polygonal lines on the standard and distorted Euclidean planes

The Euler polygonal method was verified by the authors on the familiar variational
problems, such as the shortest curves on the Euclidean and Lobachevsky planes, the
brachistochrone curve, and the minimal surfaces of revolution [16], [17]. In all cases, visually
it would be difficult to distinguish between the fields of curves constructed analytically and
numerically.

Figure 2.1 represents the results of the algorithm for two related problems of searching the
shortest paths on the standard and “distorted” Euclidean planes. The program has constructed
optimal polygonal lines connecting the origin O to the points of the line AC. On the
“distorted” plane, the Lagrangian function is given by

L =

{ √
1 + ẋ2, x ≥ 0,√

1 + ẋ2
(
1−

(
x
a

)2)
, −a ≤ x < 0,

where a > 0 is some constant. Notice that on the half-plane x ≥ 0 the Lagrangian is the
same for both problems. Thus the segments OM to the points M lying above the Ot-axis
are extremals for the “distorted” plane as well. However, if M is located below the point B,
the optimal extremal will not be the standard extremal represented by the segment OM , but
rather a polygonal line that moves down to a point K, next goes in a horizontal direction, and
finally goes up rather than.

Turning back to the general case, note that picking points xj on the Ox-axis, we divide
the axis into n+ 1 sets: single-element sets {xj} and all other points of the axis. With this
point of view, A (τi, xj) can be considered as a trivial piecewise constant function if we let it
be equal to +∞ at the points that are not the nodes of the lattice. Nontrivial functions A (t, x)
will be considered later.

3. FIXED TIME OPTIMAL CONTROL PROBLEMS

3.1. Generalized Polygonal Lines
Now consider an optimal control problem

J ([t0, t1], x(.), u(.)) =

∫ t1

t0

L(t, x(t), u(t))dt → min,

dx(t)

dt
= f(t, x(t), u(t)), (3.1)
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x(t0) = x0, x(t1) = x1, t0 < t1, x(t) ∈ X, u(t) ∈ U.

To solve it numerically, as in calculus of variations, we divide the time segment [t0, t1] into
m equal parts by the points

t0 = τ0, τ1, τ2, . . . , τi, . . . , τm = t1, τi − τi−1 = ∆τ =
t1 − t0
m

.

When solving variational problems, we have considered piecewise constant velocities.
Now we will consider controls that are constant on the intervals [τi−1, τi). For convenience,
we restrict ourselves to the simple case when the control actions belong to the given finite set

V ⊂ U, V = {vj}, j = 1, 2, . . . l.

In general, the number l and the set of controls V might vary from point to point. To specify
the trajectory γ, emanating from (t0, x0), it suffices to choose a finite sequence of controls
ui ∈ V on the intervals [τi−1, τi). We write

γ = (ξ0;u1, ξ1; . . . ;uµ−1, ξµ−1;uµ, ξµ) , ui ∈ V, ξi ∈ X, 1 ≤ µ ≤ m, (3.2)

where ξ0 = x0 and ξi is a state, at which the system appears at time τi. We will also refer to
such trajectories as polygonal lines and to the regions with constant controls as segments. Let
Γ be the set of polygonal lines. The value of the functional J assigned to the polygonal line
γ will be called cost and denoted by c(γ).

All the polygonal lines, which are constructed by the algorithm, are emanated from a
common point (t0, x0). Here, just as in the calculus of variations, by considering polygonal
lines, we give up the idea to obtain the exact solution, but the finer the step ∆τ and the wider
the set V , the closer we get (by functional) to the global extremum.

A particular segment is a function x(t) defined over the time interval [τi−1, τi] , 1 ≤ i ≤ m
and satisfying the differential equation

dx(t)

dt
= f(t, x(t), vk), vk ∈ V, 1 ≤ k ≤ l (3.3)

with constant control vk. The interval has an initial point (τi−1, x (τi−1)), a terminal point
(τi, x (τi)), and a cost

J ([τi−1, τi], x(.), vj) =

∫ τi

τi−1

L(t, x(t), vj)dt.

According to the Cauchy uniqueness theorem, we can conclude that all these objects are
uniquely defined by the number i of the time segment, the number k of the control, and the
initial point a = x (τi−1). So for the segment (3.3) we set

b (i, k, a) = x (τi) , c (i, k, a) =

∫ τi

τi−1

L(t, x(t), vk)dt. (3.4)

The complexity of the problem is the following. For µ = m there are lm sequences of
the form (3.2). It is important that each polygonal line passes through its own nodes, that
is, generally speaking, the polygonal lines have no break points in common, except for the
initial one. Note that the number of intermediate nodes grows exponentially depending on
m in contrast to the linear dependence in variational calculus, where the number of nodes
is mn. On the graph with, for example, 3100 ≈ 5 · 1047 vertices, it is almost impossible to
find the optimal path. If we try, just as in calculus of variations, to move through the nodes
(τi, xj) of the given regular lattice, we will face some difficulties in choosing controls u ∈ V ,
passing from points (τi−1, xj) to neighboring points (τi, xk), and the Moiseev “elementary
operation” [7] will sometimes not succeed.
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3.2. Splitting into Cells
We suggest the following algorithm to solve the problem. We should split the set X into a
finite number n of subsets

X =
n⋃

j=1

Xj, Xj

⋂
Xk = ∅,

which we refer to as classes, or cells. We recommend that the diameters of the sets Xj should
be as small as possible. During processing of the algorithm, if there are two points in the
same cell at time τi, we must remove less promising one, so that not more than mn nodes
are stored in the memory, just as in calculus of variations. If x ∈ Xj , we will write x̄ = j.
The points x, y ∈ Xj of one cell Xj will be regarded as equivalent: x ∼ y. As was already
mentioned, we can achieve that each cell except for one consists of only one point, and all
other points are contained in a common cell. Then, just as in variational calculus, there will
appear a regular lattice in plane.

Let
(ξ0, ξ1, . . . , ξµ) (3.5)

be y-coordinates of break points of a polygonal line (3.2). Setting ξ̄i = νi, we get a sequence
of integers

(ν0, ν1, . . . , νµ) , (3.6)
representing the numbers of cells, through which the polygonal line passes. The program
is supposed to include procedures to find (exact or approximate) values of the functions
b (i, j, a) and c (i, j, a) for arbitrary integers i = 0, 1, . . . ,m, j = 1, . . . , l and a real number
a ∈ X (3.4).

3.3. Optimization Algorithm
While processing, the program forms the arrays

s[i, j], φ[i, j], w[i, j], A[i, j], i = 1, . . . ,m, j = 1, . . . , n

which could be interpreted as follows: σ = s[i, j] is a number of the preceding cell Xσ;
x = φ[i, j] ∈ Xj – is a “best” point of the cell Xj , into which the system is got at the
moment τi; u = w[i, j] ∈ V is a control bringing the system to the point (τi, φ[i, j]); A[i, j]
is a Hamilton function of action (the analogue of a Bellman function with time reversal). The
function A(i, j) represents the estimation of the cost of an optimal polygonal line starting at
(t0, x0) and terminating at Xj at instant τi. Generally, the program consists of four subsequent
procedures. The comments are enclosed in braces.

Program
“Solution of a fixed time optimal control problem in the class of polygonal lines”

{Set initial values of action:}
A [0, x̄0] := 0;
A [i, j] := ∞ for all i, j > 0;

Fill in the left vertical column t = τ1;
Fill in the other columns t = τi, i > 1, from left to right;
Construct the polygonal line by moving backward;

End of program

Now we describe procedures constituting the program.
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Procedure “Fill in the left vertical column”
for k := 1 to l do begin {sorting all the controls of V }
y := b (1, k, x0) ; ν := ȳ; r := c (1, k, x0) ; {next node (τ1, y) and action r =

A(1, ȳ)}
if r < A [1, ν]
then begin {value A [1, ν] is decreased}

s [1, ν] := x̄0; {initial class} A [1, ν] := r; {action}
φ[1, ν] := y; w[1, ν] := k; {control x̄0 → ν}

end;
end;

End of procedure

Procedure “Fill in the other columns”
for i := 2 to m do {processing vertical columns i > 1 from left to right}
for j := 1 to n do begin {passing through cells for t = τi−1}
x := φ[i− 1, j]; p := A [i− 1, j] ;
for k := 1 to l do begin {sorting all the controls of V }
y := b (i, k, x) ; ν := ȳ; r := p+ c (i, k, x) ; {next node

(τi, y) and action r = A(i, ȳ)}
if r < A [i, ν]
then begin {value A [i, ν] is decreased}

s [i, ν] := j; {preceding class} A [i, ν] := r; {action}
φ[i, ν] := y; w[i, ν] := k; {control j → ν}

end;
end;

end;
End of procedure

Procedure “Construct γ, starting at (t0, x0) and bringing
the system to x1 at t1 = t0 +m ·∆τ”

j := x̄1; y := φ[i, j];
if x1 ̸= y then STOP; {polygonal line does not exist}
u := w[m, j]; j := s [y, u] ;
γ := (y, u); {construction starts from the end; now a polygonal line

consists of the pair (y, u)}
for i := m− 1 by −1 to 1 do begin {backward motion}
y := φ[i, j]; u := w[i, j]; j := s [x, u] ;
γ := (y, u) ∨ γ; {concatenation: the pair (y, u) is attached

to the obtained trajectory γ on the left}
end;
γ := x0 ∨ γ;

End of procedure

As a result, we get the sequence of coordinates and controls

γ = (ξ0;u1, ξ1; . . . ;um−1, ξm−1;um, ξm) , (3.7)
where ξ0 = x0, ξm = x1.

3.4. Justification of the Algorithm
We will show that for a sufficiently fine partition X into cells, the algorithm constructs
optimal polygonal lines.

Fix an arbitrary natural number µ ≤ m and consider a set of polygonal lines (6), consisting
of µ segments. There are finitely many such polygonal lines, so the set Yµ = {xµ} of their
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right-most nodes (points) is also finite. Let ρµ be the minimum distance between pairs of
points of the set Yµ, and let r = min [rµ|1 ≤ µ ≤ m]. It is clear that r > 0.
Theorem 3.1:
If the diameters of all the sets Xj are less than r, then the program constructs the optimal
polygonal line from (t0, x0) to (t1, x1), and the cost of this polygonal line is equal to

A [m, j] , m =
t1 − t0
∆τ

, j = x̄1.

Proof
Consider arbitrary natural numbers µ ≤ m and j ≤ n. Since the distances between the points
of the set Yµ are greater than the diameter of the set Xj , then the set Yµ ∩Xj consists of
at most one element. Denote this element by zµj if it exists. Therefore, the polygonal line
γ, terminating at or passing through the cell Xj at instant τµ, has a node zµj at this set. If
Yµ ∩Xj = ∅, then there are no polygonal line passing through the cell Xj at instant τµ. Then
for this cell we will have A [µ, j] = ∞.

Now we prove the statement by induction on the time step m. For m = 0 it is trivial
because the polygonal line consisting on 0 steps degenerates into the point (t0, x0) and, by
construction, A [0, x̄0] := 0.

Assume the statement is true for µ = m− 1 steps and prove it for the next step m. Let
(3.7) be an optimal polygonal line. Then

γ1 = (x0;u1, ξ1; . . . ;um−1, ξm−1)

is also an optimal polygonal line, going to (τm−1, ξm−1). By inductive hypothesis, this line
or the polygonal line of equal cost would have already been constructed by the algorithm
if the point (τm−1, ξm−1) were finite. We have c(γ1) = A [m− 1, j], where j = ξ̄m−1. Let
x = zm−1,j . Analyse what happens when we fill in the vertical column m as the program
processes segments emanating from (τm−1, ξm−1). Under control um = vk ∈ V the system
gets to (τm, ξm). The cost of this step is equal to c (m, k, x).

Therefore, by inductive hypothesis, we have

r = c(γ1) + c (i, k, x) = c(γ).

The last equality is valid by virtue of the additivity of a cost functional. As a result, we will
definitely get A

[
m, ξ̄m

]
≤ c(γ). From the other hand, the strict inequality A

[
m, ξ̄m

]
< c(γ)

is impossible since otherwise the trajectory γ would not be optimal.

3.5. Economic Example
Consider the following dynamic optimization problem arisen in economics [19]. The
conceptual meaning of the problem is as follows. A firm has received an order for H units
of product to be delivered by time T . It seeks a production schedule for filling this order at
the specified delivery date at minimum cost, bearing in mind that unit production cost rises
linearly with the production rate and that the unit cost of holding inventory per unit time
is constant. Let x(t) denote the inventory accumulated by time t. Then we have x(0) = 0
and must achieve x(T ) = H . The inventory level, at any moment, is the cumulated past
production; the rate of change of inventory is the production rate x′(t). Thus the firm’s total
cost at any moment t is

C1

(
x′(t)

)2
+ C2x(t),

where the first term is the total production cost, the product of the unit cost of production
and the level of production; the second term is the total cost of holding inventory; and C1

and C2 are positive constants. For simplicity, in what follows we set C1 = C2 = 1. The firm’s
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Fig. 3.2. Optimal field of extremals and quasi-optimal field of polygonal lines in the economic problem

objective is to determine a production rate u(t) = x′(t) and inventory accumulation x(t) for
0 < t < T such that

J =

∫ T

0

[
u2(t) + x(t)

]
dt → min,

dx(t)

dt
= u(t), x(0) = 0, x(T ) = H ≥ 0, 0 ≤ u ≤ V, x(t) ≥ 0.

To solve this problem, in [19] we have constructed an optimal central field of Pontryagin
extremals. Moreover, the problem was solved numerically with the help of the partition into
cells considered above. The results of both investigations is represented in Figure 3.2. The
demarcation line to the maximum production rate V is shown on the left part of the figure by
the dashed line.

4. AUTONOMOUS PROBLEMS OF OPTIMAL CONTROL

The method of partition into classes for autonomous optimal control problems∫ T

0

L(t, x(t), u(t))dt → min,

dx(t)

dt
= f(x(t), u(t)),

x(0) = x0, x(T ) = x1, x(t) ∈ X, u(t) ∈ U,

(termination time T > 0 of the process is not fixed) has been considered in [9]- [11] in details.
Generally speaking, the state x(t) and the control u(t) are vectors.

In frames of a simple version, to solve the problem numerically, we should take a finite set
V ⊂ U and a time step ∆τ . Thus, the polygonal lines are defined. They consist of segments,
i.e., solutions of the differential equation ẋ = f(x, u) on the interval [0,∆τ ] with constant
control u ∈ V . Now we need to divide X into finite number of classes Xi and run the program
representing a generalization of any algorithm of finding the shortest path on a graph [9], [11].

Copyright © 2023 ASSA. Adv Syst Sci Appl (2023)



PIECEWISE CONSTANT FUNCTIONS IN DYNAMIC OPTIMIZATION PROBLEMS 43

Fig. 4.3. Central field of extremals and polygonal lines in the Bushaw problem

This can be a breadth-first search, such as the Dijkstra algorithm (equal price algorithm)
or the Nillson algorithm (A∗ search algorithm). However, it can be a backtracking depth-
first search [10], [15] or a combination of these algorithms. That machinery could be very
important to solve more complicated optimization problems with any lack of information.

Consider few examples on the subject.

4.1. Fel’dbaum-Bushaw Problem
This time-optimal control problem (it is also called an optimal stopping problem) could be
stated as follows [20]– [21]:

dx

dt
= ẋ,

dẋ

dt
= u, |u| ≤ 1, x(0) = x0, x(T ) = x1, T → min .

Figure 4.3 shows the central extremal fields and polygonal lines for the fixed initial
point [17].

4.2. Car Motion to the Parking Place
The detailed consideration of this problem can be found in [3]. At first glance, it seems that
at each particular case the problem could be solved by ruler-and-compass constructions.
Nevertheless, the authors are not aware of the exact analytic solution of this problem.
Assuming the speed of a material point (x, y) is constant and the curvature is limited, we
can describe the problem as follows:

dx

dt
= cosφ,

dy

dt
= sinφ,

dφ

dt
= u, |u| ≤ 1,

x(0) = x0, x(T ) ∈ G, T → min .

Here by a parking place we mean a point or its neighborhood. Note that the state space is
three-dimensional, so a point (x, y) in plane corresponds to an entire state set (x, y, φ), where
φ is an arbitrary angle.

Figure 4.4 illustrates the results of numerical solution of the problem for various initial
and terminal conditions. In all the cases, we must eventually reach a small square. On the
left-hand part of the figure, we are allowed to get to the square at any slope. On the right, we
must get to the square in the direction specified by an arrow, precisely, at an angle that is very
close to the arrow. Thus, in the first case the target set is a two-dimensional neighborhood of
a point (x, y), in the second case the target set is a three-dimensional neighborhood of a point
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Fig. 4.4. Car motion to the parking place

Fig. 4.5. Finding a way out of the labyrinth

(x, y, φ). Obviously, on the left-hand part of the figure the task is a little simpler than on the
right-hand side. This can be seen also from the form of the “polygonal lines”.

Figure 4.5 shows the solution of the problem on finding a way out of the labyrinth. The
car must get out bypassing all the obstacles. Here the region of motion, which is a rectangle of
size 8× 16, is partitioned into squares with side 8

10
, and the set of directions — into intervals

of length 2π
15

. So we get 10× 20× 30 = 3000 cells. This problem and its solution can be used
in robotics and artificial intelligence. Therefore, in [9], [11] there was suggested to use the
model for testing methods of solving dynamic optimization problems. However, since then
no method to solve the problem on finding a way out of the labyrinth has appeared.
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5. DIFFERENTIAL GAMES

Now we consider three differential games with two players (see [3]). In all three games,
speeds of player P (pursuer) and of player E (evader) are constant. In addition, pursuer P is
to be faster than evader E.

5.1. Simplest Pursuit Game
In frames of this game, the players make a simple motion. Each of them moves with its own
constant speed, changing the direction at his own discretion. The game terminates when P
captures E (i.e., the distance PE becomes less than a certain prescribed positive quantity).
Write kinematic equations:

ẋ1 = v1 cosφ1, ẏ1 = v1 sinφ1, ẋ2 = v2 cosφ2, ẏ2 = v2 sinφ2, v1 > v2 > 0,

where φ1(t) and φ2(t) are controls of the players. For each player, motion along the straight
line PE would be optimal, where P moves toward E and E moves away from P . The authors
wrote a program, but the game figure is not very informative: one would see only the segments
of the straight line PE. The state space is one-dimensional, because the state is completely
defined by the distance between the players. In the program, we used the largest distance R
(i.e., the distance at which the game terminates with the win for player P ), and the segment
[0, R] was, as usual, divided into finite number of cells.

5.2. Homicidal Chauffeur Game
A driver attempts to run down a pedestrian at minimum time; the motion is described by the
following kinematic equations:

ẋ1 = v1 cosφ1, ẏ1 = v1 sinφ1, φ̇1 =
v1
r
u,

ẋ2 = v2 cosφ2, ẏ2 = v2 sinφ2, v1 > v2 > 0.

This game was studied by several authors [1], [3], however an exact analytic solution has
not been found as yet. Figure 5.6 represents some parties constructed by computer. After
self-learning, each player acts optimally himself.

In this game, the state space is two-dimensional, since it is completely determined by the
distance between the players and the angle between the sight line PE and the velocity of P .

Figure 5.6 shows 8 parties, each terminates with the victory of pursuer P . The trajectory of
P is depicted by an ordinary line, whereas the trajectory of E — by a bold line. In addition,
along the path of each player, we put markers at equal intervals of time. The markers of
pursuer P are depicted by deleted circles, whereas the markers of evader E are represented
by solid squares. Therefore, at each party, the numbers of circles and squares are the same
(sometimes, the last and the first markers are not printed well). The initial location of P is
always the origin, but the initial direction of P and the initial coordinates of E are specified
at random. In parties 2, 3, 5, 6, and 7 player P captured the opponent easily, since he didn’t
need to perform a sharp turn as the initial velocity of P was directed approximately toward E.
Notice that in parties 1 and 4, player P made a turn maneuver immediately. In the beginning
of party 8, evader E caught the tail of P to prohibit him from turning. However P , who has
a larger speed, broke away from the pursuit and, having made a loop, aimed for E. To extend
the time of the game, evader E has changed the direction, but this has only delayed his defeat.
The situation just described is represented in 5.7.

5.3. Game of Two Cars
The kinematic equations of players are similar: if speeds satisfy the inequality v1 > v2 > 0,
then the following equations are valid:

ẋ1 = v1 cosφ1, ẏ1 = v1 sinφ1, φ̇1 =
v1
r1
u1,

ẋ2 = v2 cosφ2, ẏ2 = v2 sinφ2, φ̇2 =
v2
r2
u2.
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Fig. 5.6. Several parties of the homicidal chauffeur game

Fig. 5.7. Homicidal chauffeur game. Evader E is catching the tail of P

Fig. 5.8. Two parties of the game of two cars

The state space is three-dimensional. The coordinates are completely determined by
distances between players and angles between the sight line PE and the velocities of players.
Optimal behaviours of players found by the program in two parties are shown in Figure 5.8.
Limitations of turning radii are the same for both players. In the first party, the motion is to
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Fig. 6.9. Inverted pendulum on the cart

some extent toward each other. In the second game, player E appeared in the back of P and
caught his tail, but then he had to change direction.

In all three parties, the program involves two steps. At the first step (imitation modelling),
for one-step scenarios we used Monte–Carlo method, whereas at the second step testing was
conducted. Each player didn’t know actual strategy of the other and produced its own payoff.
It was a payoff when both players act optimally. At the initial instant, player P took the payoff
to be identical zero, whereas for player E the payoff was infinite. In what follows, the payoff
for P was increasing, and for E it was decreasing. As the self-learning progressed, pursuer
P was working out his own strategy by minimax principle, whereas evader E — by maximin
one.

6. OPTIMIZATION IN LACK OF INFORMATION

Dynamic optimization problems are not limited to optimal control models when decisions are
made in conditions of complete information, or dynamic games when we have no information
about the behavior of the opponent. Some other kinds of lack of information are possible. For
example, the behavior of the environment could be described by random laws. We will focus
on a model, in which the control block has no information about kinematic equations of an
object. This is the case for the biological systems. Consider a well-known example of holding
a pole in an unstable vertical equilibrium [6], [8].

6.1. Problem on Plane Inverted Pendulum
The system in this example consists of an inverted pendulum mounted to a motorized cart.
The pendulum will simply fall over if the cart isn’t moved to balance it. The objective of
the control system is to balance the inverted pendulum by applying a force to the cart that
the pendulum is attached to. One wants to maximize the time during which the pendulum is
balanced. Regarding the cart as a massive body, we get the system of Lagrange’s equations
of second kind:

ẍ = u, l0θ̈ + u cos θ − g sin θ = 0, (6.8)

where x is a cart position coordinate; u is an acceleration of the cart, which is a control; θ is a
pendulum angle from vertical Oy; l0 is a reduced length to pendulum center of mass; g is the
acceleration of gravity. In frames of numerical experiments, we choose the following values
of parameters and ranges of phase coordinates: g = 980 cm/s2, u = ±1000 cm/s2, l0 = 100
cm, |θ| ≤ 0.2 rad., |x| ≤ 240 cm, ∆τ = 0.02 s.

The state space is four-dimensional, the state coordinates are position (x) and velocity
(ẋ) of the cart, pendulum angle from vertical (θ) and its angular velocity (θ̇). Following
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Michie [6], we divide the state space into 162 classes according to threshold values: in angle
±0.1; ±0.017; 0, in angular velocity ±0.87; in position of the cart ±80, in the velocity of the
cart ±50.

At each instant of processing, the control block knows only the ordinal number of class,
in which the object is located. On the basis of only this consistent information, the block must
make a decision: u = 1000 or u = −1000. The cost for the lack of knowledge of dynamics is
a doubling of the random access memory: action now depends not only on the state classes,
but also on the control ±1000. The algorithms of decision making and self-learning could be
different. In the Michie program, self-learning is based on the empiric approach. After some
learning period, the pendulum eventually fell down though it has been balanced for a long
time. The authors used another program that is based on the idea of a priori optimism and the
method of forward error correction [13]. As a result, at the end of self-learning, the pendulum
was balanced about vertical position forever.

7. CONCLUSION

Direct methods of dynamic optimization considered in the paper are efficient in the problem
on global extremum rather than on local extremum. Moreover, this method can be used in
the case when searching analytic solution involves enormous time costs. Partition of the state
set into classes must be such that the corresponding data set could be stored in the computer
memory. Diameters of classes must be as small as possible.

Creating piecewise constant functions most of all resembles imitation modelling. As is
known, piecewise constant functions are used when it is difficult to obtain the solution in the
form of mathematical equations. If assumptions of theorem, which was proved in the paper,
are satisfied, the algorithm constructs the optimal curve in the class of polygonal lines. If the
assumptions are not satisfied, it is still possible to speak about optimization if we recognize
it as a process, at which extra resources of time and memory appear.

Note that in the simpler problem on searching global extremum of functions of several
variables, it is enough to equate the gradient to zero and after that to test critical points. At
that case, direct methods are not required. It is shown in textbooks on mathematical analysis.
The picture changes drastically and direct methods have become very actual, when we pass to
problems of dynamic optimization, since otherwise we have to construct and analyse central
field of extremals, and common approaches have not been worked out yet.

In the paper, we showed not only relevance and efficiency of direct methods in the
dynamic optimization problems of various types, but also demonstrated internal and external
similarity of analytic and direct methods. This suggests the idea that in particular cases,
combination of both methods would be fruitful. The presented algorithms and programs can
be applied to various engineering problems connected with optimal control; see, for instance,
the recent papers [4, 5].
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