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Abstract: In this article, we have provided initial results of evaluating the influence of training
data morphology on convolutional neural networks segmentation quality. To do this, we selected
four different porous media 3D images obtained with the help of X-ray microtomography (XCT)
and segmented them using a local thresholding ”converging active contours” algorithm. With
the help of synthetic tomography algorithm, we created synthetic XCT image based on these
segmentations. As a result, we obtained true XCT – ground-truth pairs for considered porous
media samples. Then with the help of stochastic reconstructions, we created a set of samples with
varying degrees of morphological similarity to the original porous media samples. In order to
check the effect of morphological properties on the quality of segmentation, we trained a U-Net
model with ResNet50 encoder on pairs of synthetic XCT – ground-truth data, and assessed the
segmentation quality of synthetic XCT images as obtained based on stochastically reconstructed
images. Based on the metrics, we concluded that the quality of segmentation is more influenced
by the morphological differences of the original porous media samples than by difference from
the generated stochastic reconstructions. We discussed possible ways to improve the future
experiments design in order to finally resolve the issue of training for XCT image segmentation
with neural networks.

Keywords: porous medium, image processing, convolutional neural network, image
segmentation, synthetic tomography, correlation functions

1. INTRODUCTION

It is not a secret that porous media structure, i.e., spatial distribution of forming materials (or
phases), defines its major physical properties [2, 11, 58, 64]. In case structure information is
known up to a relevant spatial resolution, a great number of such properties, including flow
and transport characteristics, can be effectively obtained using so-called pore-scale modeling
techniques that include direct voxel based [29,43,55], meshing-based [10] or computationally
efficient pore-network modeling approaches [22,50,54]. Computed or/and upscaled from the
first principles, flow properties are of primary importance to parameterize Darcian scale and
to explain or design flow mechanics relevant for petroleum engineering [12, 30], hydrology
[6, 27], food engineering [21] and numerous other applications. With recent progress in 3D
imaging [19,68], stochastic reconstructions based on limited input data [3,17,35,39,63,71], or
their combination [47,48], obtaining detailed structural information for a given porous media
sample is not an issue. Moreover, recently proposed multiscale image fusion techniques [24]
provide a solution for complex/hierarchical porous media samples such as complex rocks
[19, 25] and soils [40]. Regardless of the methodology employed, some input experimentally
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obtained structural information is necessary, and is mainly obtained by scanning electron
microscopy (SEM), focused ion beam-SEM imaging, or X-ray computed tomography (XCT)
[25]. This information comes in the form of grayscale images where pixels/voxels have the
intensity proportional to some local physical property, e.g., for XCT it depends on local X-ray
absorption [68]. Yet, as we previously defined structure as spatial distribution of constituting
phases, the crucial step necessary to perform pore-scale simulations is the transition from
local attenuation coefficients to local material(s) distribution. In the simplest case that is
needed, for instance, to solve Stokes equation to simulate single phase flow and compute
permeability [29,43,55], we need to distinguish two porous media components — pores and
solids. Such a transition from local physical properties to phases (or materials) is called image
segmentation, and, in case of two phases (e.g., pores and solids), segmentation is also referred
to as binarization.

The biggest problem of any segmentation procedure is that it is never strictly rigorous
and always contain some degree of uncertainty. Apart from numerous experimental and
numerical problems associated with image acquisition, the main reason for this issue to
appear is due to the limited imaging resolution – partial volume effects [19, 20, 28, 68], i.e.,
precise segmentation would be possible only for images with nearly infinite resolution. In
other words, each pixel/voxel usually contain a mixture of different phases, but segmentation
requires it to be affiliated with a relevant phase, ideally with the material which dominates
the volume under study. Utilization of grayscale values to evaluate local abundance of a given
material within each pixel/voxel is possible only for mono-component (consisting of a single
material, which is rarely the case in relevant applications) or requires complex dual energy
scanning with subsequent inverse modelling [70]. The primary target of the segmentation
procedure in this context is to provide as accurate as possible approximation of the spatial
distribution of phases under given image resolution conditions.

Numerous segmentation techniques are available for this task and can be roughly divided
into four categories:

1. manual segmentation;
2. global thresholding;
3. local thresholding methods;
4. other approaches including machine learning and unsupervised learning algorithms.

Manual approach implies the choice of a single threshold grayscale value between two
phases to be segmented by an operator and still a popular way to go.

Global segmentation approach is basically the same as manual one, but the threshold
is chosen with the help of some automatic computational technique based on grayscale
histogram (e.g., by minimizing intra-class variance in the method by Otsu [53]).

Local thresholding methods identify two thresholds for each two phases to be segmented
out. These thresholds represent trustworthy boundaries which define, for example, 100%
certainty that all voxels below the lower threshold are pores, while all voxels above the
upper threshold are pores. The pixels/voxels in between these two bounds are treated and
classified according to some algorithms: statistically kriged in the popular indicator kriging
method [52], grown from seeds (100% certain areas) using region growth [31] or converging
active contours [61]. These thresholds are chosen either manually or automatically [60]. Here
we mentioned only some popular methods, more detailed list of techniques applied in porous
media research can be found in the review of Schlüter et al. [59].

Machine learning methods fall into supervised and unsupervised bins, in the former case
some input training information is provided to the algorithm, whilst in the latter case the
algorithm makes all decisions by itself.

Despite the abundance of segmentation techniques and some auxiliary image processing
methods such as filtering, none of the existing methodologies can pretend to provide
universal and adequately accurate results. It is widely acknowledged that manual and
global thresholding techniques are inferior to the local thresholding methods [34], which,
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in turn, suffer from necessity to choose confidence bound threshold values. Automatic choice
of thresholds [59, 60] does not necessarily provide adequate results, as was observed in
numerous studies [40].

An interesting study by Baveye et al. [7] concluded that human operator performs
much better than any automatic thresholding algorithm. Whether it is true or not is still
an open question, as the majority of segmentation techniques tested by Baveye et al. [7]
are not necessarily suitable for porous media applications. The results of the unsupervised
segmentation techniques are not robust in the sense of the number of phases [33] and accuracy
[15, 16, 42].

Supervised segmentation methodologies are very limited in XCT porous media
applications [38, 46, 65], but their recent usage in numerous other fields such as medical
imaging [9], neuroscience [18], and satellite image segmentation for urban structures [4] and
flood identification [51] motivated this study. Moreover, testing and verification of all existing
methodologies in the area of porous media research is seriously hampered by the absence of
the true data — precise segmentation results for different samples. Artificial (synthetic) XCT
images produced by rescaling, noise and artifact addition (e.g., Wang et al. [67] or Schlüter et
al. [59]) do not possess all necessary complexity and represent real XCT only to some extent.

At this point we can pose a relevant question — what the ideal segmentation methodology
would look like? Any expert working with 3D XCT images or porous media would generally
agree with the following definition: with the help of the ideal segmentation technique one
should be able to take any XCT image and obtain accurate segmentation by using only a stack
of images as input data, i.e., without any operator input or (fitting) parameters. From our
above-mentioned analysis of current segmentation technology, we can confidently conclude
that none of existing methods provide a solid performance according to that definition.
Supervised machine learning algorithms seem to provide a basis for an ideal technique, but
require ground-truth (precise segmentation results) data to train neural networks.

We believe that the holy grail of the ideal training data lies with synthetic XCT datasets.
Such datasets can be created from any structure consisting of any number of materials or
phases [8, 14, 69].

Now, we come to the problem of obtaining these original true structures or spatial phase
distributions, especially considering that real porous media are infinite resolution structures,
at least up to molecular scale. We argue that the original should be no more than an order
of magnitude finer (better resolution) than the optimal resolution for the images we shall
segment. For example, typical XCT images for sandstones has resolution of 2.5-5 µm and in
some instances it is enough to see all details relevant for structure characterization and pore-
scale modelling. For carbonates and soils this may be different due to a wide range of pore
sizes, some of them well below 1 µm which is an approximate limit for resolution with current
desktop scanners such as Bruker-SkyScan-1172. In short, if the images we want to segment
will have the resolution up to 1 µm, the true phase distributions of 100 nm will suffice to create
accurate projections assuming the receiver matrix (CCD camera in real scanners) to end up
with 1 µm pixel size. Such ”magnified” images can be obtained easily using a number of
techniques: discretization of a predefined grain packings for sandstones (e.g., [45]), stochastic
constructions of a synthetic porous media [36,41], multiscale stochastic reconstruction/image
fusion [24, 62], or super-resolution stochastic technique [49]. The proxies for magnification
can be obtained from real porous media images by segmenting them using current state-of-
the-art techniques (online reference) enhanced by mineralogical composition overlay from
2D analysis [13, 32].

In the above analysis we arrive to a universal framework to create an ideal
segmentation technology based on convolutional neural networks (CNN) or possibly other
(better/emerging) type of machine learning methodology. The general scheme of this
framework is shown in Fig. 1.1.

But in this case, some data on the spatial materials’ distribution in the porous media is
required. Then the question arises about the size and diversity of the sample that will be
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Fig. 1.1. Universal workflow to train machine learning based segmentation models.

used in training: is it necessary to use patterns of spatial distribution from different types
of porous media, or how accurately is it necessary to reproduce the original (and unknown)
morphological structure?

The objective of this paper is to understand how accurate the morphological structure of
the samples used to construct a synthetic XCT should be – or in other words, how similar
to the images we want to segment. We also want to elucidate how morphological structure
errors of various sizes will affect the quality of the trained segmentation model. For this,
we construct stochastic samples with different levels of likelihood relative to the original
structures. For all these samples we create synthetic XCT images and train segmentation CNN
model on original sample-synthetic XCT pairs. The segmentation quality of these samples
analyzed depending on their likelihood, as well as on the morphological properties of the
original structure.

2. METHODOLOGY

2.1. Convolutional Neural Networks (CNNs) for image segmentation
CNN for segmentation are tuned to segment entire input image into sub-regions of particular
origin, e.g., in landscape images CNN can distinguish between grass, woods, sky, etc.
Therefore, the task is to identify which object a given pixel of the image belongs to. Thus, in
segmentation CNNs classifiers are applied to each pixel independently.

Furthermore, to reduce noise, segmentation CNNs use two procedures:

1. down-sampling (encoder), when original image is compressed in size;
2. up-sampling (decoder), when compressed image is restored to the size of the original

image.

Then each pixel of the up-sampled image is a subject for it own classifier, which is
independent from the classifiers of other pixels.

A general structure of the segmentation CNN‘s is presented in Fig. (2.2)
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Fig. 2.2. General structure of the encoder-decoder CNNs architecture for segmentation.

The most prominent networks in image segmentations CNNs are U-net [56] and SegNet
[5].

In this paper, we are solving a task of dissociating between porous and non-porous space
within XCT images. Furthermore, there can be only either porous or non-porous space in
the image, i.e., no background pixels. Therefore, we need to assign each pixel to be either
of porous or non-porous type. Segmentation CNNs are natural solutions to this 2-class
segmentation problem.

In this study, we used a specific version of the U-net architecture: a U-net with a Res-Net
50 [37] encoder that was pretrained on the ImageNet dataset [44]. We expect this combination
provides a balance between the speed of the architecture and the quality of the segmentation
result.

2.2. Porous media acquisition and specs
We gathered a library of XCT images containing 4 natural porous media samples of different
genesis.

All 3D XCT images were obtained using SkyScan-Bruker 1172 desktop scanner with
different resolutions, which depended on the size of the cylindrical samples subdrilled (in
case of rocks) from core material.

All resolutions were carefully chosen to capture major pore sizes. Some amount of
porosity could be below resolution and, thus, not represented on the images.

All these samples were chosen to be very different in pore structure. Moreover, one of the
samples contains cracks and fissures, that provide additional complexity to the segmentation
procedure.

After acquisition, we have cropped regions of interest with volumes of 10003 voxels from
each full size scan. Subcropping is useful is useful for a number of reasons:

1. To remove all border effects due to cylindrical sample shape;
2. To make subvolume cubic, such shape is convenient for further processing, as it basically

represents a 3D matrix of the same dimension;
3. To reduce input size, the size of 10003 voxels provides a good compromise between

image representability and computational efforts needed for its processing.

Next, the original porous media sample was segmented into two phases using the
conventional local thresholding approach – converging active contours method [61]. Obtained
morphological binary structures were used as a basis for constructing synthetic XCT image.
The pore space of these structures was filled with air, the solid phase was considered to be
made of kaolinite (Al2Si2O5OH4).

While creating synthetic XCT (see details in the next subsection), we compressed the
resulting images (as well as the corresponding markup images) in 5 times to 2003 in order to
obtain and study the partial volume effect – this made segmentation task on synthetic images
closer to real XCT conditions.
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Sample 1 Sample 2 Sample 3 Sample 4

Fig. 2.3. Examples of 2D slices through 3D synthetic XCT images.

The example 2D slices from all synthetic XCT images are shown in Fig. 2.3. This figure
also identifies sample references used throughout this study: Sample 1, Sample 2, Sample 3,
and Sample 4.

2.3. Synthetic XCT algorithm
The synthetic tomography algorithm consists of three stages:

1. Construction a sample model based on physical and morphological information;
2. Calculation of shadow projections;
3. Reconstruction of XCT image.

The first step is required to calculate absorption for each phase independently (2.1) using
the numerical direct Radon transform:

Al
m = σm

∫
l

ρm(l)dl, (2.1)

where:
m - phase number;
l - direction to calculate absorption;
σm - attenuation coefficient of phase m material;
ρm - linear density of phase m material.

The total absorption (2.2) is calculated as the sum of the absorption of all materials (2.1):

Al =
∑
m

Al
m. (2.2)

Directional transmittance (2.3) is calculated using total absorption (2.1) according to:

T l = eA
l

. (2.3)
Further, to complete second step, the shadow projection for each detector pixel and each

rotation angle of the sample (which are set by the direction l) can be calculated as the number
of photons that reached the detector through the sample. The number of photons (2.4) is a
random variable with a Poisson distribution, and with an average proportional to the number
of photons N0 released by source, and the transmittance in a given direction:

N l ∼ Pois(N0T
l). (2.4)

Next step is to mathematically reconstruct the image from projections. This can be
done using the numerical inverse Radon transform. Synthetic tomography was implemented
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Sample 1 Sample 2 Sample 3 Sample 4

Fig. 2.4. Example 2D slices from obtained 3D stochastic reconstructions.

in python with the help of Astra toolbox [1], that includes forward and backward Radon
transform.

At this point we have the ground-truth original phase distribution and its synthetic XCT
3D grayscale image. Moreover, during projections simulation and reconstruction procedures
we can apply any software/hardware setups and parameters, including noise addition and
specified scanning resolution.

2.4. Stochastic reconstruction algorithm
Stochastic reconstruction is an algorithm that iteratively performs permutations of voxels
within an image, trying to match its statistical properties to the original (or training) image.

As input data, the stochastic reconstruction algorithm receives the calculated values of a
set of two-point correlation functions (here: S2, L2, Fss) in orthogonal and diagonal directions
for a range of correlation lengths r. Each correlation function measures a probability of some
event for a given correlation length r. Specifically, S2 measures the probability that both ends
of the r line segment lie within the pore phase, L2 – the probability that the whole segment lies
within the pore space, and Fss – that both ends fall into a pore-solid interface. Comprehensive
information about correlation functions can be found in [64].

The reconstruction algorithm starts with mono-disperse sphere packing with similar
porosity and close S2 correlation function. The porosity is known from S2(0) or L2(0) value.
With each iteration, the algorithm swaps two voxels of an image to minimizes a special energy
function (2.5), which is calculated from the difference between the current values of the
image’s correlation functions f and the specified correlation functions values f̂ summed over
all correlation lengths r:

E(I) =
∑
f

∑
r

(
f(r)− f̂(r)

)2 −→ min . (2.5)

The energy function is minimized using the simulation annealing algorithm. The
algorithm stops after minimizing the error close to zero, or after a large number of
consecutive unsuccessful attempts. During annealing we saved the structure dynamics after
some particular number of permutations attempts – after 1, 4, 16 and 64 ×104 iterations. A
more detailed description of this algorithm can be found in [23, 26]. Stochastic replicas were
also used as input for synthetic XCT 3D images generation, see examples on Fig.2.4.

2.5. Image preparation for CNN
Segmentation CNN has a supervised learning architecture. This means that to train the
network we need a pair of samples, i.e., the input examples and desired segmentation for
each such image. Here we describe the way the images to be fed into the network have been
prepared for the segmentation experiments.
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We refer to each 3D volume of synthetic XCT as a stack. There are 200 images with
resolution 200× 200 pixels within each such stack. We consider each image of resolution
200× 200 taken in parallel to the same plane as a single independent image, i.e., no 3D
spatial information about image location in the stack is provided to CNN.

Fig. 2.5. Preparation of the network inputs: convert stack image into image samples.

Next, we collect a pool of n = 32 samples of 128× 128 pixels from each image
with minimal overlapping. This procedure is explained in detail on Fig. 2.5. The pixel
intensity within each sample is standardized by scaling with mean and standard deviation
from ImageNet (due to the use of an ImageNet-pretrained encoder). This pool of samples
constitutes the input samples to be fed into the segmentation CNN.

2.6. Implementation
The stochastic reconstructions algorithm is implemented on the Julia programming language.

The synthetic tomography algorithm is implemented on the python programming
language using the Astra framework for calculating linear projections and the Numpy and
PyTorch libraries for matrix calculations parallelization.

All neural networks models were trained on the Python programming language using the
PyTorch library.

We used a computer with Ubuntu 18.04 operation system, 128GB RAM and a NVIDIA
Geforce rtx 2090 graphics card as a working station for computational experiments.

3. EXPERIMENTS

3.1. Model description
For the purpose of this study, we have selected the U-net segmentation CNN architecture [56],
as shown in Fig.3.6. The U-net is a fully-convolutional encoder-decoder architecture with
skip-connections, which are feedforward connections from encoder to decoder layers. U-net
uses convolution and max-pooling layers for compression (down-sampling) in the encoder
part. Transposed convolutional layers and concatenation with skip-connected encoder feature
map for decompression (up-sampling) in the decoder part. Convolutional layers use only with
3x3 filters.

In this study we used a U-net architecture with a ImageNet-pretrained Res-Net 50 encoder.

3.2. Training process
As input to the network we use 128× 128 from the pool of samples with corresponding
binarized 128× 128 desired output samples. These input samples are arranged into batches
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Fig. 3.6. U-net’s architecture.

of size 32 for model training. Therefore, the output of the model constitutes tensor with pore
and non-pore probabilities within each pixel.

We use combination of cross-entropy (3.6) and smoothed Intersection Jaccard Index (3.7)
as loss function:

CE(x, y) = −
(
y log p(x) + (1− y) log

(
1− p(x)

))
, (3.6)

Jaccard(x, y) = − log
( p(x)y + ε

p(x) + y − p(x)y + ε

)
, (3.7)

L(I,M) =
1

N

N∑
i=1

∑
x,y∈Ii,Mi

1

WH

(
CE(x, y) + αJaccard(x, y)

)
, (3.8)

where:

N - total number of images;
Ii - i-th image to segment;
Mi - i-th true segmentation mask;
W - width of the output image;
H - height of the output image;
x, y - image/mask pixels with corresponding spatial positions;
p(x) - neural network prediction for pixel x;
ε = 10−6;
α = 1.

We used Adam optimizer [57] with following parameters:

lr = 10−2 - initial learning rate;
wd = 10−2 - weight decay;
β1 = 0.95 - coefficient used for computing running averages of gradient;
β2 = 0.999 - coefficient used for computing running averages of gradient square;
lrd = 0.5 - multiplicative learning rate decay on validation loss plateau;

lrmin = 10−6 - minimal learning rate.

3.3. Experimental setup
After the preparation of binarized and synthetic XCT images as was described in the previous
sections, we split each stack into 4–1–1 proportion – training, validation and testing datasets.
We trained the model on the training samples (Fig. 3.7) and tuned the hyperparameters to
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Fig. 3.7. U-Net training process.

minimize the loss function on the validation samples. As a result, we obtained the model
trained on samples with real porous media morphological properties.

We used this model for segmentation of the images from the test dataset, as well as for the
segmentation of four sequences of synthetic XCT images, that were created from stochastic
reconstructions (Fig. 3.8).

Finally, we measured the segmentation quality metric by the initial morphological
properties and by the number of annealing iterations (iterations numbers 1, 4, 16, 64) against
the morphological properties original porous media ground-truth images.

3.4. Segmentation accuracy metrics
To measure model performance in our experiments we employed intersection over union, or
IoU metric – the Jaccard index. It describes the ratio between the size of the intersection of
true and predicted labels sets, and the size of the union of these sets. This metric is widely
used to assess quality in segmentation studies. We calculate it for the positive class (i.e., pore
phase) for greater sensitivity. In order to get the class labels from the probabilities that are
returned by the model, we used the probability threshold of 0.5.

The IoU metric was measured for each synthetic XCT – ground-truth pair.

4. RESULTS

We obtained an average IoU = 0.81 for the pore phase, which is a relatively good result. It
should also be noted that measurements are carried out against true ground-truth labels (which
were used to produce synthetic XCT images). Most segmentation errors are located around
the phase separation boundaries and can be explained by the influence of partial volume
effect.
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Iteration 1 Iteration 4 Iteration 16 Iteration 64

Fig. 3.8. Examples of 2D slices from 3D sequences of samples produced by stochastic reconstruction algorithm.

4.1. Visual segmentation results
In this section we show visual results of the CNN-based segmentation (Fig. 4.9, 4.10, 4.11,
4.12).

Fig. 4.9. Examples of 2D slices through 3D segmented images for Sample 1.

Also we can see (Fig. 4.13) the visualization of false-positive (shown in red) and false-
negative (shown in blue) segmentation errors.
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Fig. 4.10. Examples of 2D slices through 3D segmented images for Sample 2.

Fig. 4.11. Examples of 2D slices through 3D segmented images for Sample 3.

Fig. 4.12. Examples of 2D slices through 3D segmented images for Sample 4.

As we can see, our model is uncertain only about interface pixels, the amount of false-
negative and false-positive errors is almost equal.

4.2. Quantitative segmentation results
To quantitatively describe the observed results, we built a bar charts to compare the following
options:
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Sample 1 Sample 2 Sample 3 Sample 4

Fig. 4.13. Visualization of false-positive and false-negative segmentation errors.

1. Segmentation quality depending on the number of the annealing iterations for each
sample separately (Fig. 4.14);

2. Segmentation quality of the original porous media stacks (Fig. 4.15);
3. Segmentation quality depending on the number of the annealing iterations in average

over all stacks (Fig. 4.16).

Sample 1 Sample 2 Sample 3 Sample 4

Fig. 4.14. Metrics for each stack.

Fig. 4.15. Separate IoU metrics for original (real porous media) Samples.
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Fig. 4.16. Averaged IoU metrics over all Samples

5. DISCUSSION

First of all, we tried to understand why the segmentation quality for Sample 2 was much better
than for the rest of samples. We believe that this is due to the fact that this sample differs from
others in its morphological properties (in terms of correlation functions). Samples 1, 3, 4 are
similar to each other in correlation functions L2 (Sample 3 slightly differ from Samples 1, 4)
and FSS (all Samples are close in all directions), all Samples are pretty close to each other in
S2, the Sample 2 is not similar to the others in any correlation function, except S2 (see Fig.
5.17).

Next, we analyzed why metrics dynamics (changes in segmentation accuracy with each
annealing iteration) for stochastic reconstructions is multidirectional for different samples. In
particular Sample 2 is different to other samples. In this regard, we established that Sample
2 has the simplest structure (Fig. 2.3), and therefore showed the best segmentation metrics.
Moreover, stochastic ”deconstruction” (structural dynamics in reversed direction on Fig.3.8)
further simplifies its structure (Fig. 3.8) by increasing the IoU metric.

The presence of the peak in metrics at 16 and 64 iterations raised some questions. After
reviewing the corresponding stochastic reconstructions (Fig. 3.8), we can conclude that they
are visually much more similar to the original samples than the reconstructions at the final
iterations. This means that the limited information content of the correlation functions does
not fully convey the morphological properties of the original stacks.

The above-mentioned considerations allow to suspect that the deconstruction of the initial
samples’ structure has less effect on the segmentation metrics than the initial difference in
the morphological properties between replicas and original porous media images. To test
this hypothesis, it is necessary to carry out a similar experiment with a large number of
different original samples. Porosity of the sample can be of great importance on the results,
therefore, it is necessary to neutralize its influence. This can be achieved by collecting a a
library of original samples with the same initial porosity (stochastic reconstructions preserve
the porosity of the original).

6. CONCLUSION

In this paper we presented the initial results of measuring the influence of samples
morphology on CNN-based segmentation quality. To do this, we segmented four different
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Fig. 5.17. Plot of the used correlation functions set along all directions.

porous media samples using an unsupervised converging active contours algorithm. Next,
we obtained the XCT – ground-truth pairs for these samples with the help of synthetic
tomography algorithm. We acquired a set of samples with varying degrees of morphological
properties similar to the original stacks with the help of stochastic reconstructions. We
trained U-Net model with ResNet50 encoder on pairs for the original porous media
samples. Next, we assessed the segmentation quality of synthetic XCT obtained from
stochastically reconstructed samples, and checked the effect of morphological properties on
the segmentation quality.

Based on the metrics, we concluded that the quality of segmentation is influenced more
by the morphological differences between the original soil samples than by difference from
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the generated stochastic reconstructions. We discussed possible ways to improve the future
model experiment design in order to finally uncover the relationship between morphology
variations ans segmentation accuracies.

The results as presented here can help in simplifying the construction of a general
segmentation pipelines. We showed that it is not necessary to segment the original images
perfectly. To build a universal pipeline, it is necessary to continue this research direction with
a much larger library of images with various morphological properties.
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