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Abstract: The paper presents the analysis of the SCARDO model in the case of the
binary opinion space. The model itself and the conditions under which the analysis is
performed are described and discussed in details. Analytical solutions are found for the mean
field approximation. The fixed points as well as their stability properties are characterized.
Furthermore, we precisely describe the hyperplane in the parameter space that defines which
opinion will gather more supporters. Extensive computational experiments are performed to
demonstrate the applicability of our theoretical results. Experiments suggest that the mean-field
approximation can fairly accurately predict the behavior of the model provided there is a nonzero
probability of anticonformity-type opinion changes. At the end of the paper, we outline the
possible direction for future studies.
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1. INTRODUCTION

To mitigate the spread of fake news, stop opinion polarization, and convince citizens to wear
face masks and vaccinate during the Covid-19 pandemic [19], it is essential to understand
key mechanisms that underlie the processes of opinion formation [4, 7, 11]. However, as
was pointed out in Ref. [18],”... understanding human behavior remains a grand challenge
across disciplines.” In recent decades, the way information flows between individuals has
dramatically changed from one-directional messages that come from the mass media and
political elites upon citizens (one-step information paths) to complex communications
whereby even ordinary people can play a crucial role and affect the macroscopic properties
of the social system. This issue has become possible due to proliferation of online social
networks that provide a low-cost way of communication without social, geographical, and
economic borders. In online networks, complex information paths can be established, with
one or more users serving as intermediaries between mass media and other people.

A promising way to analyze these social dynamics is to use agent-based opinion formation
models (aka social influence models) [22]. Stipulating how agents (artificial entities that
model real people or mass media) communicate with each other and how their opinions
evolve following these interactions, scholars can analyze the outcomes that this or that
opinion formation mechanism will lead to [2].

In this paper, we advance the recently introduced opinion formation model [13]. In the
following we will refer to it as the Stochastic Conditional ARranged Discrete Opinions
model, abbreviated as the SCARDO model. In the SCARDO model, the agents update their
opinions within a probabilistic sequential process whereby two randomly chosen neighboring
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agents (the influence recipient and the influence source) communicate at each iteration. In
these local consecutive interactions, the agents’ new opinions are determined stochastically,
according to a probability distribution, which is a function of the recipient’s and the source’s
opinions (opinions are encoded by discrete variables). Assuming that there are m possible
opinion values, one can exhaustively describe opinion dynamics processes in the model via
m3 probabilities standing for all possible pairwise interactions and outcomes. Together, these
quantities form what the author of [13] calls the transition matrix. However, strictly speaking,
this mathematical 3-D construction is not a matrix. For this reason, in the current paper, we
adopt a different terminology and call it by “transition table”.

By tuning the values of the transition table, one can use the SCARDO model to
approximate a broad range of opinion formation models, including those with discrete
opinions [3, 9, 16] and those with continuous ones [5, 8, 17] (to achieve the latter purpose,
one should assume that m is large enough). On this occasion, the SCARDO model can be
used to compare opinion formation models against each other in terms of the transition table.
Further, the SCARDO model can be relatively easily calibrated on real data upon which it
puts forward only a few requirements. Thus, the SCARDO model can act as a link between
theoretical opinion formation model and empirical studies of social dynamics processes [13].

In Ref. [13], for the SCARDO model, a mean-field approximation was derived. This
approximation describes successfully the dynamics of the populations of m opinion camps
with the system of ordinary differential equations. The system was thoroughly investigated
under empirically-calibrated settings (with the transition table calibrated on the data from
Refs. [12, 14]) for different configurations of the opinion spectrum m = 2,m = 3, and
m = 10. In this paper, we apply a different strategy and focus on a low-dimensional case
of this model (m = 2), for which analytical derivations are feasible and a general description
of the mean-field approximation system of equations can be obtained for any values of the
models’ parameters. For this low-dimensional case, we find exact solutions of the mean-field
equations, characterize fixed points, and investigate their stability properties. We exemplify
our analytical analysis with computational simulations.

The rest of the paper is organized as follows. Section 2 provides the description of the
SCARDO model. In Section 3, we present the mean-field approximation derived for this
model. Section 4 presents the main results of the paper. Subsection 4.2 obtains and analyzes
the solutions of the mean-field equations in the case of the binary opinion space while
Subsection 4.3 complemente these results with illustrative examples that compare theoretical
predictions against simulation data. Section 5 ends the paper with concluding remarks.

2. OPINION DYNAMICS MODEL

In this section, We present the SCARDO model that was first introduced in Ref. [13].
In the model, N agents communicate via a (by default, static) connected (undirected and
unweighted) social network G and discuss a socially important topic [21]. The time in the
model is discrete. At each iteration, one chooses a random agent i (by default, all agents have
the equal probability 1/N to be chosen). Then, one selects at random one of their friends
j in the network G (again, according to the uniform probability distribution). Then, the
agent j (influence source) influences the agent i (recipient) during a one-directional influence
procedure. As a result, the recipient’s opinion changes, depending on the current opinions of
the agents i and j.

Agent opinions (denoted by o) belong to a discrete opinion space with m elements:

X = {x1, . . . , xm}.

The elements x1, . . . , xm represent an opinion alphabet of the model and may encode a
broad spectrum of opinion systems, such as competing alternatives (as in the Voter model
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[16]) or arranged attitudes that may approximate continuous opinion spaces for large m—see
Ref. [1]:

x1 ≺ ... ≺ xm.

After receiving influence from j’s opinion oj(t) = xl, the agent i’s opinion oi(t) = xs

may change or may remain the same. The outcome of the communication is determined
stochastically, according to the following probability distribution:

{ps,l,1, . . . , ps,l,m},

with the element ps,l,k standing for the probability of selecting the opinion xk. One can think
of this quantity as the conditional probability that is defined as follows:

ps,l,k = Pr {oi(t+ 1) = xk | oi(t) = xs, oj(t) = xl}. (2.1)
Stuck together, these conditional probabilities are the elements of a 3-D object P =

[ps,l,k]
m
s,l,k=1 , which is called the transition table [13]. Note that this table can be safely

expressed as a list of matrices:

P1 =

[
p1,1,1 . . . p1,1,m
. . . . . . . . .

p1,m,1 . . . p1,m,m

]
, . . . , Pm =

[
pm,1,1 . . . pm,1,m

. . . . . . . . .
pm,m,1 . . . pm,m,m

]
(2.2)

Within these shorthands, P1, . . . , Pm are 2-D matrices with m rows and m columns
that encode opinion change strategies of individuals espousing opinions x1, . . . , xm

correspondingly. Note that all these m matrices are row-stochastic because ps,l,1 + . . .+
ps,l,m = 1 for each s and l.

3. MEAN-FIELD APPROXIMATION

For the model presented in the previous section, the following mean-field approximation was
obtained in Ref. [13]. First, let us denote the population of agents espousing the opinion xs at
a time moment t by Ys(t) :

Ys(t) = {j | oj(t) = xs}.

Correspondingly, the fraction of such individuals among the whole population is
symbolized by ys(t) = Ys(t)/N. Using the scaled time τ, which is defined as τ = t/N, δτ =
1/N, one can ends up with the following system of differential equations (see Ref. [13] for
details): 

dy1(τ)
dτ

=
∑m

s,l=1 ys(τ)yl(τ)ps,l,1 − y1(τ),

. . .
dyi(τ)
dτ

=
∑m

s,l=1 ys(τ)yl(τ)ps,l,i − yi(τ),

. . .
dym(τ)

dτ
=

∑m
s,l=1 ys(τ)yl(τ)ps,l,m − ym(τ),

(3.3)

That is, from the micro-level description of the model we come to the macro-level [20].
One can equip system (3.3) with the initial condition
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y1(0) = q1, . . . , ym(0) = qm (3.4)
whereby q1 + . . .+ qm = 1 and all initial values are no less than zero. The Cauchy problem
(3.3), (3.4) features the following property (see [13]).
Corollary 3.1:
The function u = y1(τ) + . . .+ ym(τ) is the first integral of the autonomous system (3.3).

Remember that the quantities y1, . . . , ym stand for the populations of all the opinion camps
x1, . . . , xm and thus these variables should be nonnegative and sum up to one. The following
theorem ensures that solutions of (3.3) meet this property (see [15] for proofs).
Theorem 3.1:
Assume that q1 ≥ 0, . . . , qm ≥ 0 and q1 + . . .+ qm = 1. Then the Cauchy problem (3.3), (3.4)
has a unique solution y⃗(τ), which can be extended on the whole τ -axis (in fact, we are
interested only in τ ≥ 0). The components of y⃗(τ) are nonnegative and sum up to one for
each τ.

Theorem 3.1 indicates that the mean-field approximation is a reliable mathematical
construction which gives the outputs consistent with the physical definitions of the models’
parameters.

4. BINARY OPINION SPACE

4.1. Problem formulation
Let us now concentrate on the case of the binary opinion space m = 2. In this situation, the
table matrix can be safely presented by only two row-stochastic matrices:

P1 =

[
p1,1,1 p1,1,2
p1,2,1 p1,2,2

]
, P2 =

[
p2,1,1 p2,1,2
p2,2,1 p2,2,2

]
.

For now, the mean-field predictions (3.3) will have the following form:

{
dy1
dτ

= p1,1,1y
2
1 + (p1,2,1 + p2,1,1)y1y2 + p2,2,1y

2
2 − y1,

dy2
dτ

= p1,1,2y
2
1 + (p1,2,2 + p2,1,2)y1y2 + p2,2,2y

2
2 − y2

or {
dy1
dτ

= −p1,1,2y
2
1 + (p2,1,1 − p1,2,2)y1y2 + p2,2,1y

2
2,

dy2
dτ

= p1,1,2y
2
1 − (p2,1,1 − p1,2,2)y1y2 − p2,2,1y

2
2

(4.5)

For the sake of simplicity, let us introduce notations α = p1,1,2, β = p1,2,2, γ = p2,1,1, and
δ = p2,2,1. Within this notation strategy, α and β represent the probabilities of anticonformity-
type opinion changes for both the opinion camps (note that anticonformity refers to the
situation when individuals change opinions after interacting with those holding similar
positions [16]). In turn, β and γ represent the probabilties of the conformity-type opinion
shuffles. These four variables represent the transition table exhaustively:

P1 =

[
1− α α
1− β β

]
, P2 =

[
γ 1− γ
δ 1− δ

]
. (4.6)

One of the equations in (4.5) is redundant. After making use of y2 = 1− y1 and applying
encoding strategy (4.6), one can end up with the following differential equation:
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dy1
dτ

= (δ − α− θ)y21 + (θ − 2δ)y1 + δ,

where θ = γ − β. For simplicity, we denote y = y1 and focus on the analysis of the following
differential equation:

dy

dτ
= (δ − α− θ)y2 + (θ − 2δ)y + δ, (4.7)

4.2. Equation (4.7): fixed points, solutions, and stability
Let us now concentrate on solving equation (4.7). For this equation, the fixed points can be
found from the following quadratic trinomial:

(δ − α− θ)y2 + (θ − 2δ)y + δ = 0.

The discriminant of this equation is D = θ2 + 4δα ≥ 0, and one can easily obtain the
following expression for fixed points:

y∗−,+ =
2δ − θ ±

√
θ2 + 4δα

2(δ − α− θ)
. (4.8)

Depending on how θ, δ, and α, the denominator in (4.8) may be positive, negative, or may
be equal to zero. Let us consider these three situations separately.

Case 1. Let θ = δ − α.
In this case, equation (4.7) simplifies to

y′ = −(δ + α) · y + δ. (4.9)

Thus, we end up with the following equation on the fixed points :

−(δ + α) · y∗ + δ = 0. (4.10)

Taking into account the non-negativity of the parameters δ and α we obtain that for
α = δ = 0 equation (4.10) has infinitely many solutions: any y∗ that lies in the interval [0; 1]
is a fixed point. For other values of α and δ, we have one fixed point given by the expression

y∗ =
δ

δ + α
.

If α = δ = 0, equation (4.9) turns out to be y′ = 0, i.e. the solution of the Cauchy problem
is y = y(0). If (α, δ) ̸= (0, 0), then we obtain

dy

−(δ + α) · y + δ
= dτ.

After integrating this equality, we obtain the solution of the Cauchy problem

y =
δ − C · exp−(α + δ)τ

δ + α
,

where C is determined from the initial condition y(0) = δ−C
δ+α

, whence C = δ − (δ + α) ·
y(0).

Copyright © 2022 ASSA. Adv Syst Sci Appl (2022)



108 V.N. GEZHA, I.V. KOZITSIN

Case 2. Let θ ∈ [−1; δ − α). In this case, equation (4.7) has the form

y′ = (δ − α− θ)(y − y∗−)(y − y∗+), (4.11)

where y− and y+ are defined in (4.8). For fixed points, we have the following equation:

(δ − α− θ)(y∗ − y∗−)(y
∗ − y∗+) = 0. (4.12)

Let’s see in which cases the solutions of (4.12) satisfy the condition of staying within
[0; 1]. The denominator of (4.8) is positive, and we can rewrite the condition 0 ≤ y∗−,+ ≤ 1 as

0 ≤ 2δ − θ ±
√
θ2 + 4δα ≤ 2(δ − α− θ) (4.13)

Consider the inequality on the left in (4.13). For the sign ”+” it is true because the root is
positive and the inequality

2δ − θ > δ + α ≥ 0,

where θ is estimated using the initial condition, is true. We proceed to the inequality

2δ − θ ≥
√
θ2 + 4δα. (4.14)

for the sign ”−” .
Since its left side is always positive, we square both sides and come to

4δ · (δ − θ − α) ≥ 0.

Applying the initial condition to θ we obtain that the inequality is true.
Consider the right inequality in (4.13): For the sign ”−” we pass to the inequality

2α + θ ≤
√
θ2 + 4δα. (4.15)

Note that the right side is positive, and therefore, squaring both sides, we arrive at a more
strict inequality:

4α · (α + θ − δ) ≤ 0.

Nevertheless, it is still satisfied, because α ≥ 0, and θ ≤ δ − α from the initial condition.
And since the more strict condition is satisfied, the original condition is also true.

For the sign ” + ” we get

2α + θ +
√
θ2 + 4δα ≤ 0,

which is only possible for θ ≤ −2α. Let’s take this fact into account and move 2α + θ to
the right. After that, we square the inequality. The resulting inequality is satisfied only if
α = 0, θ ≤ 0. Thus, there is a unique fixed point in the zone θ ∈ [−1; δ − α) given by the
following expression:

y∗ =
2δ − θ −

√
θ2 + 4δα

2(δ − α− θ)
. (4.16)
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Further, if the condition α = 0, θ ≤ 0 is satisfied, then the second fixed point arises –
y∗ = 1.

Let us now focus on solving equation (4.11). We rewrite it as

dy

(δ − α− θ)(y − y∗−)(y − y∗+)
= dτ.

We need to mention the case when y∗− = y∗+ which happens when θ2 + 4αδ = 0. Due to
parameter conditions, it occurs only if θ = 0, α = 0, δ > 0.

In that case, the equation has the following form

y′ = δ · (y − 1)2

with a solution

y = 1− 1

δτ + C
,

whence C = 1
1−y(0)

. It is worth pointing out that this notation is correct only in case of
y(0) < 1. In case of y(0) = 1 the solution simply stays for y(0) = 1.

After that, we end up with

− 1√
θ2 + 4δα · (y − y∗−)

+
1√

θ2 + 4δα · (y − y∗+)
= dτ

After integrating both parts and simplifying them, we get

ln |
y − y∗+
y − y∗−

| =
√
θ2 + 4δα · (τ + C),

whence, after conversion, we get

y =
y∗+ − C · exp (

√
θ2 + 4δα · τ) · y∗−

1− C · exp (
√
θ2 + 4δα · τ)

, (4.17)

In turn, C can be easily found from the initial condition: y(0) =
y∗+−C·y∗−

1−C
, whence

C =
y∗+−y(0)

y∗−−y(0)
. It is worth pointing out that this notation is correct only in case of y(0) ̸= y∗−.

In case of y(0) = y∗− the solution simply stays for y(0) = y∗−.
Case 3. It is simple to demonstrate that the only fixed point in the zone θ ∈ (δ − α; 1] is

y∗ =
2δ − θ −

√
θ2 + 4δα

2(δ − α− θ)
.

In the case δ = 0, θ ≥ 0, the second fixed point y∗ = 0 appears.
It is also easy to show that the solution of the differential equation (4.7) in the zone

θ ∈ (δ − α; 1] is

y =
y∗+ − C · exp (

√
θ2 + 4δα · t) · y∗−

1− C · exp (
√
θ2 + 4δα · τ)

, (4.18)
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where C is determined from the initial conditions as C =
y∗+−y(0)

y∗−−y(0)
.

It is worth pointing out that this notation is correct only in case of y(0) ̸= y∗−. In case of
y(0) = y∗− the solution simply stays for y(0) = y∗−.

We also need to mention the case when y∗− = y∗+ which happens when θ2 + 4αδ = 0. Due
to parameters conditions it occurs only if θ = 0, α > 0, δ = 0.

In that case, the equation has the following form

y′ = −α · y2

with a solution

y =
1

ατ + C

whence C = 1
y(0)

from the initial solution. It is worth pointing out that this notation is correct
only in case of y(0) > 0. In case of y(0) = 0 the solution simply stays for y(0) = 0.

Table 4.1 summarizes our findings. Note that stability properties of the fixed points can
be easily obtained given we know how the solution of the Cauchy problem looks like in each
particular situation. As one can note from table 4.1, if there is only one fixed point, then it is
always a global attractor. If there are two of them, then one fixed point is always unstable and
the other one is a global attractor excluding the case the initial point is exactly the unstable
fixed point. If θ = δ = α = 0, then something unusual appears. In this case, we end up with
the following configuration of the transition table (note that β = γ because θ = β − γ):

P1 =

[
1 0

1− β β

]
, P2 =

[
β 1− β
0 1

]
.

In other words, we have symmetric opinion dynamics with no anticonformity. The mean-
field prediction says that in such settings, the opinion camps have no advantage over each
other, so the populations of the camps should not change.

From the fixed points depicted in table 4.1, one can easily compute the outcome of the
competition between opinions x1 and x2. We will focus on three scenarios: (i) opinion x1

obtains a total victory (y∗ = 1—recall that within our notations, the variable y depicts the
proportion of the opinion x1’s backers); (ii) a draw - when both the opinions have the same
number of supporters (y∗ = 1/2); (iii) opinion x2 obtains a total victory (y∗ = 0). In table
4.2, we depict how the outcomes of the competition depend on the transition table (we do
not consider the trivial case θ = δ = α = 0). Among other things, from table 4.2 one can
conclude that a draw between competing opinions is ensured by the equality of

θ = α− δ

or

γ − β = α− δ. (4.19)
Intuitively, equation (4.19) is quite clear because the quantity γ − β describes the

advantage of the opinion x1 over the opinion x2 with respect to how these opinions attract
the individuals via the conformity mechanism whereas α− δ in (4.19) demonstrates the
relative outcome of x1-backers caused by anticonformity. Therefore, if the right side of
(4.19) outweighs the left one, then we should expect that x2 wins. Correspondingly, if
γ − β > α− δ, then x1 will have more supporters at the equilibrium for nearly all initial
points.
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Table 4.1. Equilibrium points and exact solutions

Parameters Fixed points Exact solution

(θ = δ − α) & (α = δ = 0) – or,
simply, θ = δ = α = 0

y∗ is any number (in [0; 1]) –
Lyapunov stable

y = y(0)

(θ = δ − α) & ¬ (α = δ = 0) y∗ = δ
δ+α

– asymptotic stable
(global attractor)

y = δ−C·exp (−(α+δ)τ)
δ+α

, where C =

δ − (δ + α) · y(0)

(θ < δ − α) & (α = 0, θ = 0) y∗ = 1 – asymptotic stable
(global attractor)

If y(0) ̸= 1, then y = 1− 1
δτ+C

,
where C = 1

1−y(0)
. If y(0) = 1, then

y = 1

(θ < δ − α) & (α = 0, θ < 0) y∗ = 1 – unstable, y∗ = δ
(δ−θ)

– asymptotic stable (global
attractor excepting the initial
point y(0) = 1)

If y(0) ̸= y∗
−, then y =

y∗
+−C·exp (−θ·τ)·y∗

−
1−C·exp (−θ·τ) , where

C =
y∗
+−y(0)

y∗
−−y(0)

. If y(0) = y∗
− : y = y∗

−

(θ < δ − α) & ¬ (α = 0, θ ≤ 0) y∗ = y∗
− – asymptotic stable

(global attractor)
If y(0) ̸= y∗

−, then y =
y∗
+−C·exp (

√
θ2+4δα·τ)·y∗

−

1−C·exp (
√

θ2+4δα·τ)
, where

C =
y∗
+−y(0)

y∗
−−y(0)

. If y(0) = y∗
− : y = y∗

−

(θ > δ − α) & (δ = 0, θ = 0) y∗ = 0 – asymptotic stable
(global attractor)

If y(0) ̸= 0, then y = 1
ατ+C

, where
C = 1

y(0)
. If y(0) = 0 : y = 0

(θ > δ − α) & (δ = 0, θ > 0) y∗ = 0 – unstable, y∗ = θ
(α+θ)

– asymptotic stable (global
attractor excepting the initial
point y(0) = 0)

If y(0) ̸= y∗
− : y =

y∗
+−C·exp (θ·τ)·y∗

−
1−C·exp θ·τ) ,

where C =
y∗
+−y(0)

y∗
−−y(0)

. If y(0) = y∗
−,

then y = y∗
−

(θ > δ − α) & ¬ (δ = 0, θ ≥ 0) y∗ = y∗
− – asymptotic stable

(global attractor)
If y(0) ̸= y∗

−, then y =
y∗
+−C·exp (

√
θ2+4δα·τ)·y∗

−

1−C·exp (
√

θ2+4δα·τ)
, where

C =
y∗
+−y(0)

y∗
−−y(0)

. If y(0) = y∗
− : y = y∗

−

4.3. Experimental data compared with theoretical results
We complement our theoretical results with computational experiments with the SCARDO
model. In this section, we present some ideal-typical simulation runs, with a special focus on
those cases where theoretical results and experimental data can be very different from each
other (see Figure 4.1).
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Table 4.2. The outcome of the opinion competition as a function of transition table organization

Parameters Total victory of x1

(y∗ = 1)
Draw (y∗ = 1/2) Total victory of x2

(θ = δ − α) & ¬ (α = δ = 0) α = 0 θ = 0 δ = 0

(θ < δ − α) & (α = 0, θ = 0) Any transition table None None

(θ < δ − α) & (α = 0, θ < 0) y(0) = 1 (θ = −δ) & (y(0) ̸= 1) (δ = 0) & (y(0) ̸= 1)

(θ < δ − α) & ¬ (α = 0, θ ≤ 0) α = 0 θ = α− δ δ = 0

(θ > δ − α) & (δ = 0, θ = 0) None None Any transition table

(θ > δ − α) & (δ = 0, θ > 0) (α = 0) & (y(0) ̸= 0 ) (θ = α) & (y(0) ̸= 0 ) y(0) = 0

(θ > δ − α) & ¬ (δ = 0, θ ≥ 0) α = 0 θ = α− δ δ = 0

First, we should say that the equilibrium points obtained within the framework of mean-
field approximation are not necessarily of the same status from the perspective of the model’s
dynamics. To be more specific, only states y = 0 and y = 1 can be pure equilibriums, and
this occurs if and only if δ = 0 or α = 0 correspondingly. Otherwise, if δ ̸= 0 and α ̸= 0, the
system cannot reach an equilibrium.

We report that if the transition table has no anticonformity (α > 0 and δ > 0), then the
model behavior is nearly in agreement with the theoretical predictions (see Panels C, D,
and F) – the populations of opinion camps fluctuate around theoretical solutions, with the
oscillation magnitude disappearing if N → ∞. Note that in this case, the system cannot reach
a pure equilibrium state because there is always a nonzero probability that the populations
of the opposing opinion camps will change in the next few moments. Further, we report
that in this case the theoretical predictions are still valid even if considering structured
populations that are characterized by non-complete social graphs. Note that the mean-field
predictions were derived under assumption that the underlying network is a complete graph
whereby each two agents have the same probability of interaction. However, our numerical
simulations indicate that this assumption is redundant if considering transition tables with
non-zero anticonformity effects.

If, however, at least one of the anticonformity parameters is equal to zero, then the
model features deviations from the mean-field predictions (see Panels A, B, and E). In
some situations, these deviations can be understood as oscillations around the theoretically
predicted solutions again (Panel A). However, the same transition table configurations can
result in qualitively different behaviors – see Panels A and B. Instead of Panel A, on Panel
B we see that the system substantially deviates from the theoretical solution, with no sign
of fluctuations around it. Finally, on Panel E, for t ≤ 250, 000 the system oscillates around
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the fixed point y∗ = 5/6, which, according to the mean-field predictions, should be a global
attractor for all the trajectories that start from y ̸= 1. But because in the underlying simulation
run there were only N = 200 agents, the magnitude of the fluctuations was quite huge and
there is a high chance that the trajectory finds itself in the fixed point y∗ = 1, from which
there is no coming back (because the probability of anticonformity for individuals espousing
opinion x1 is equal to zero in this case). As a result, the system ends up in the unstable fixed
point, which is a pure equilibrium.

In a nutshell, if α > 0 and δ > 0, then the model behavior is well-predictable, with both
the opinions having nonzero populations of supporters. In this case, the balance between
populations is defined by the hyperplane (4.19) – if this equality is true, then both opinion
camps will have the same number of supporters (N/2 agents). If the left side dominates, then
the position x1 will have an advantage over x2. The reverse is also true.

Fig. 4.1. Here, we demonstrate six simulation runs carried out on the fully-connected social graph for N = 2000
agents (excepting for the experiment on panel E, where there were only N = 200) for different transition tables
(shown at the top of the Panels). The model’s dynamics are presented with orange curves. Mean-field solutions
are symbolized with dashed lines. On each plot, we depict what the fixed points look like for a given transition

table.
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5. CONCLUSION

This paper advances the recently published opinion formation model [13] by studying its
behavior in the case of the binary opinion space—the most simple situation whereby only
two opinions exist and compete in a society. In an attempt to get a comprehensive analytical
description of the model, we focused on the mean-field approximation that describes the
model’s dynamics in terms of the populations of two competing opinion camps via the
autonomous system of ordinary differential equations under the assumptions that the number
of agents is huge and the agents communicate on a complete graph.

For this system, we found exact solutions, characterized fixed points, and investigated
their stability properties across all possible configurations of the model parameters.
Furthermore, we obtained a hyperplane in the space of the model parameters that define
which opinion will win the competition.

We supported our theoretical results by computational experiments. These experiments
revealed that for most points in the parameter space (excepting the set of measure zero,
which represents absence of anticonformity effects in the model), the mean-field predictions
manage to forecast the real model behavior. This finding is quite important because it means
that for a wide range of transition tables (actually, this range does not include only specific
transition table configurations, which are unlikely encountered in real life [1]), we have
no need in searching for suitable network topologies and performing potentially expensive
computational experiments (especially in the case of large systems)—the outcome of opinion
dynamics (at the macroscopic level) does not depend on this factor and can be effectively
predicted analytically, via the mean-field differential equations.

Further analysis may be devoted to incorporating ranking algorithms into the model [6]
or to improving the mean-field predictions by accounting for local interactions [10].
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