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Abstract: In this paper, under the Type-II progressive censored scheme, we obtain the point
and interval estimates of stress-strength parameter (R), when stress and strength are two
independent Weibull-standard normal variables. We study the problem in three cases. First,
assuming that stress and strength have the different scale parameters and the common shape
parameter, we obtain maximum likelihood estimation, approximation maximum likelihood
estimation and two Bayesian approximation estimates due to the lack of explicit forms. Also,
we construct the asymptotic and highest posterior density intervals for R. Second, assuming that
common shape parameter is known, we derive the maximum likelihood estimation and Bayes
estimate and uniformly minimum variance unbiased estimate of R. Third, assuming that all
parameters are unknown and different, we achieve the statistical inference of R, namely maximum
likelihood estimation, approximation maximum likelihood estimation and Bayesian inference of
R. Furthermore, we use the Monte Carlo simulations to compare of the performance of different
methods.

Keywords: Stress-strength model, Type-II progressive censored sample, Weibull-standard
normal distribution, Bayesian inference, Monte Carlo simulation.

1. INTRODUCTION

One method of introducing distributions is to generalize previous distributions. In fact, the
new distribution includes the previous distributions for different values of the parameters.
Another method to introduce new distributions is to put a specific function of distribution
function of a random variable into the distribution function of another random variable. The
behavior of the distribution and hazard functions of these new random variables determine
the importance of studing them. Various techinges have been introduced, especially in recent
years, to produce continuous distributions with the second method. If the support of these
distributions is positive, they can be used in reliability analysis.

The Weibull distribution is one of the most widely used distributions in the reliability
and survival studies. Some works on the stress-strength model of Weibull distribution and
its related distribution under censored data can be found in [1, 10, 11] and some references
therein. Consider a continuous distribution G and the Weibull cumulative density function
(c.df) Fx(x) =1— e (z > 0) with positive parameters a and c. Based on this density,
by replacing x with G(x)/(1 — G(x)), we can define the c.d.f. family by

G(z;0) \°
_— DCR
1_G($;9)> ), reDCR,a,c>0,

where G(z;0) is a baseline c.d.f., which depends on a parameter vector §. Henceforth, let G
be a continuous baseline distribution. For each G distribution, the Weibull-G distribution with

Fx(zla,c,0) =1 —exp(—a(
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two extra parameters a and c is defined by the above c.d.f. [3]. For the normal distribution

n(u, %),
Glz;po) @<%>

1—G(zp,0) _q)<u)’

o

where ®(-) is the c.d.f. of the standard normal distribution n(0, 1). Then, the Weibull-normal
distribution (WND) is defined by

o <u> ‘
F(z)=1—exp{ —a | ———~4— )
1 o)
Thus, WND with scale parameter a and shape parameter c, respectively, which denoted by

WN(a, ¢, i1, 0%), has the probability density function (p.d.f.), and failure rate function as
follows:

x,a,c,0 >0, u € R.

o) (=) o)

oI expy —a | ———~ ,
T (e()” ()
1

z,a,c,0 >0, peR

fx) =

respectively.

In the stress-strength modelling, R = P(X < Y') is a measure of component reliability
when it is subjected to random stress X and has strength Y. Note that if X and Y are
two independent random variables from W N (a, ¢, i1, ) and W N (b, c, 1, 0®) distributions,
respectively, then with the change of variable

(=)

1 —@(%) ’
+oo

R=[ (@)1 - Be(a))ds = / " e @y —
0 0

u =

we have
a
a+b

Because the our purpose is to analysis of the strees-strength reliability we focus on the
standard normal distribution (SN) case. The reason for this is R is a function of a and b.
Thus, for the WSND,

Fywsn(z) =1~ exp{ - a(f(—q%)c}’

fwsn(z) = ac () o) 1 P { N a(lf(—;?:c)y}?

hwsn(z) = ac ¢(x)
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It has been used very effectively for analyzing lifetime data, particularly when the data
are censored. Among various censoring schemes, the Type II progressive censoring scheme
has become very popular one in the last decade. It can be described as follows: Consider N
units are placed under a study and only n(< N) units are completely observed until failure.
At the time of the first failure (the first stage), r; of the NV — 1 surviving units are randomly
withdrawn (censored intentionally) from the experiment. At the time of the second failure
(the second stage), 7o of the N — 2 — r; surviving units are withdrawn and so on. Finally,
at the time of the nth failure (the nth stage), all the remaining v, = N —n —r; — ... — 1,1
surviving units are withdrawn. We will refer to this as progressive Type-II right censoring
with scheme (1, 73, ..., 7,). It is clear that this scheme includes the conventional Type-II right
censoring scheme (whenr; =ry = ... = r,_y = 0 and r, = N — n) and complete sampling
scheme (when N =n and r =7y, = ... =1, =0). For further details on progressively
censoring and relevant references, the reader may refer to the book by Balakrishnan and
Aggarwala [2].

Although, in complete sample case, many authors have been studied the stress-strength
models, much attention has not been paid to censored sample case. Whereas in really
applicable situations, for many reasons such as financial plane or limited time, the researchers
confront censored data.

In this paper, based on Type-II progressive censoring, the reliability parameter R =
P(X <Y) is estimated, when X and Y are two independent random variables from the
WSN distribution (WSND).

The rest of this paper is arranged as follows. In Section 2, under the Type-II progressive
censoring, assuming X ~ WSN(a,c) andY ~ W SN (b, c), we obtain the point and interval
estimates of R = P(X <Y), from the frequentist and Bayesian viewpoints. Because the
maximum likelihood estimations (MLEs) of unknown parameters and R cannot be earned in
the closed forms, we obtain the approximation maximum likelihood estimations (AMLEs) of
parameters and R which have the explicit forms. Also, we develop the Bayes estimates of
R, using Lindley’s approximation and MCMC method due to the lack of explicit forms.
Moreover, different confidence intervals such as asymptotic and HPD intervals of R are
provided. In Section 3, assuming the common shape parameter is known, the MLE and
Bayes estimate and uniformly minimum variance unbiased estimate (UMVUE) of R are
earned. Because the assumption which we study in Section 2 is quite strong, we consider
the statistical inference of R in general case. So, in Section 4, under the Type-II progressive
censoring scheme, assuming W.SN (a, c) and WSN (b, d), we provide the MLE, AMLE and
Bayes estimate of 2. In Section 5, we give the simulation results and conclude the paper in
Section 6.

2. INFERENCE ON R WITH UNKNOWN COMMON c

2.1. Maximum likelihood estimation of R

Assume that X and Y are two independent random variables from WSN(a,c) =
WN(a,c,0,1) and WSN(b,c) = WN(b,¢,0,1) distributions, respectively. In this section,
under the Type-II progressive censoring, we derive the MLE of R. Because R is a function
of the unknown parameters, first we obtain the MLEs of a, b and c. Suppose X =
(X1.n5, Xo.ny ..., X ) 18 a progressively Type-II censored sample from W.SN (a,c) with
censored scheme r = (ry, 79, ...,7,) and Y = (Yi.ar, Yours, ., Yinoar) is @ progressively Type-
IT censored sample from W.SN (b, ¢) with censored scheme s = (s1, Sa, ..., S, ). For notation
simplicity, we will write (X1, Xo, ..., X,,) for (X1.n, Xon, ..., Xpov) and (Y7, Y2, ..., Yy,) for
(Yiar, Yauur, ooy Yonr ) Therefore, the likelihood function of the unknown parameters a, b and

Copyright © 2023 ASSA. Adv Syst Sci Appl (2023)



STRESS-STRENGTH RELIABILITY OF A WEIBULL-STANDARD NORMAL DISTRIBUTION 49

¢, can be written as

L(a,b,c) |:k51 H Swsn(2i)[1 — Fwsn(z:)]" } X [k’z H Jwsn(y;)[1 — FWSN(yj)]Sj:|>
i=1 j=1
where k?l:N(N—l—Tl)(N—Q—Tl—TQ)...(N—H+1—T1—...—Tn_l) and
kQIM(M—1—81>(M—2—81—82)...(M—m+1—81—...—Sm_l). Based on
the observed data, the likelihood function can be obtained as:

Litala. ) = ey | TT o) ; ‘DZ(>)> oo { o Xe e (5) |

<o (o2t | o {0 (285 )

Therefore, the log-likelihood function is:

{(a,b,c) = Constant + nlog(a) + mlog(b) + (n + m)log(c)

+ D log(®(r)) + (e = 1) D _log(®(ws)) = (c+1) D _log(1 — B(x

i=1 i=1
+Zlog((l> c—l)Zlog c+1 Zlog 1—
=t ‘ =1
o ;) ‘ . (v5) ‘
az ri+1) (1_ ) bz 55+ (—q)(yj)> . (2.1)

Set

w(z,t, e k) = (t+ 1)(13)(—%)61%‘? (%), x>0,k e NU{0}.

So, to earn the MLEs of a, b and ¢, namely, @, Z and ¢, respectively, we should solve the
following equations:

ol n -

— = — Zw(mi,ri,c, 0) =0, (2.2)

da a —

N m =

iy Zw(yj,sj,c, 0) =0, (2.3)

j=1

o mtn < (45)

de ¢ +l:110g(1— )—l—Zlog(l_ (v5)
—aZw(xi,ri,c,l) —wa(yj,sj,c,l) =0. (2.4)

i=1 j=1
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From the equations (2.2) and (2.3), we have

a(c) :n(2<+1>(%>> :"(

i=1 i=1

Be) = m(i@j 1) (%)) - m(éw(yj,sj,c, o>)1'

j=1 j=1

—1
w(w, i, 0)) ,

Also, to derive ¢, we apply one numerical method such as Newton-Raphson on the equation
(2.4). After obtaining the MLEs of a, b and ¢, by using the invariance property, the MLE of
R can be derived as

~

a+b

2.2. Approximation maximum likelihood estimation of R

From the Section 2.1, we see that the MLEs of unknown parameters and R cannot be earned
in the closed forms. So in this section, we obtain the AMLEs of the parameters which have the
explicit forms. Let Z’ and Z” be Weibull and Extreme value distributions, in symbols Z' ~
W{(a,0) and Z" ~ EV (£, 0), if they have the following cumulative distribution functions
respectively as:

FZ/(z)zl—e’%, z>0, a,0 >0,
z2=§

Fp(z)=1—¢°7, z€R, £€R,0>0.

The following simple theorem is critical to obtain the AMLESs of the parameters.
Theorem 2.1: (i) If Z ~ W SN(a,c), then

o(2)

7= 1"e(2)

~ Wi(c,1/a).
(i) If Z' ~ W (c,1/a) and Z" = log(Z"), then Z" ~ EV (&, 0), where
1

1
¢ =——log(a) and o= —.
c c

Proof
The proof is obvious. [J 0

Suppose that {X;,...,X,} and {Y,...,Y,,} be two Type-II progressive censoring
samples with the above censoring schemes and

P(z;)
X = - =] X!
4 1_(1)(1,1)7 UZ Og( 1)7
®(y;)
Y! = J V; = log(Y)).
J 1 — q)(yj)7 J Og( ])
Applying Theorem 2.1, we have U; ~ EV (&,0) and V; ~ EV (&2, 0), where
1 1 1
&1 = —Elog(a), §2 = —Elog(b), 0= o
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After earning &1, & and & , the values of @, b and ¢ can be evaluated by (see Appendix A):

e 1

|

So, the AMLE of R, namely f%, 18

(2.6)

2.3. Asymptotic confidence interval

In thls section, we earn the asymptotic confidence 1nterval of R by the asymptotic distribution

of R, which obtain from the asymptotic distribution of A= (a, b ¢). We denote the observed
ol

Fisher information matrix by /() = [[;;] = {—m] , 1,j = 1,2,3. By differentiating
]

twice from (2.1) with respect to a, b and ¢, the inlines of /() matrix can be obtained as:

n m

[11 = ?7 122 = ﬁa [12 = [21 = Oa

n

Ly =13 = Zw(l’z‘,%Q 1), Iy3=1I3 = Zw(ij $j ¢, 1),
i=1 J=1
+ad wwir,e2)+bY w(y;,s;,c2).

i=1 j=1

m—+n

]33 =

Theorem 2.2:
Leta,b and ¢ be the MLEs of a,b and c. Then

(@=a) (b—b) (@= )" — N3(0,1}(a,b,c),
where 1(a,b, ¢) and 17 (a, b, ¢) are symmetric matrices and

- I IO ?3 b 1 b1 212 213
(a,b,c) = 22 [zg ) (a, 70)—m 22 b23 ,

33
in Wthh ’I((J,, b, C)‘ = 111[22133 — 111]223 — 1123[22,
bll - 122[33 - 12237 612 - 1131237 b13 - _113122’
b22 = 111]33 - [123a b23 = _111[237 b33 = [11[22-

Proof
From the asymptotic normality of the MLE, the theorem resulted. [] [

Theorem 2.3:
Let RMEE pe the MLE of R. Then,

(RMYE — R) -5 N(0, B),

e (649 RN G PR CLOICLOPH B
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Proof
Using Theorem 2.2 and applying delta method, the asymptotic distribution of R = a%@ can
be obtained as follows:

(RMF — R) -5 N(0, B),

where B = b"T"!(a, b, c)b, with b = [2& 9B ORIT _ [OR " OR (T 'ip which

da’ Ob’ Oc da’ Ob?
OR b OR a
e G S 2.8
da _(arb? b (atby? 28)

Also, I7(a, b, c) is defined in Theorem 2.2. Therefore, B can be represented as (2.7) and the
theorem is resulted. [] ]

Using Theorem 2.3, the asymptotic confidence interval of 12 can be derived. It is notable
that B should be estimated by the MLEs of a,b and c¢. So, a 100(1 — )% asymptotic
confidence interval of R can be constructed as,

(RYF oy VB R 42 VD),
where z, is 100~y-th percentile of N (0, 1).

2.4. Bayes estimation

In this section, under the squared error loss function, we infer the Bayesian estimation
and corresponding credible interval of the stress-strength parameter, when a ~ I'(aq, by),
b ~ I'(ag,by) and ¢ ~ I'(as, b3) are independent random variables. Based on the observed
censoring samples, the joint posterior density function of a, b and c are given by:

L(datala, b, ¢)m(a)ma(b)ms(c)

m(a, b, cldata) = 17 [T L(datala, b, ¢)m (a)ma(b)ms(c)dadbde’ @)

where
mi(a) oc a®temhe, a>0, ay,b; >0,
o (D) o< b2 a0, b>0, as, by >0,
m3(c) o ¢ e, c¢>0, as,bz3>0.

As we see from (2.9), the Bayes estimates cannot be derived in the closed form. So, we
approximate them by applying two methods:

* Lindley’s approximation,
* MCMC method.

2.4.1. Lindley’s approximation One of the most numerical methods to approximate the
Bayes estimate has been introduced by Lindley in [8]. This method has explained in Appendix
B. Based on this approximation, the Bayes estimate of R is:

~r 1
RL”L =R+ [Uldl + usdy + dy + d5] + E[A(ulo-ll + U20'12)

+ B(ulagl + U20'22) -+ C(u1031 + U20'32)]. (210)

As we see, constructing the HPD credible interval is not possible, using the Lindley’s
approximation. So, we apply the Markov Chain Monte Carlo (MCMC) method to
approximate the Bayes estimate and construct the corresponding HPD credible intervals.
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2.4.2. MCMC method By (2.9), we get the posterior p.d.fs of a, b and c as:

alc, data ~ F<n +aq, Z w(ws, ri,¢,0) + bl),
=1

m

b|c, data ~ F(n + as, Zw(yj, s;j,¢,0) + bz>,

Jj=1

n P ; c—1 m P(y.)c1L
7(cla, b, data) oc ¢t rasTl H () (v;)

i=1 (1 — @(xi))CH j=1 (1 — CID(yj))CJrl
X exp{ — azn:w(a:i,ri,c, 0) — biw(yj, s;,¢,0) — b3C}

i—1 j=1

It is obvious that the posteriors p.d.f. of ¢ are not the well known distributions. So, we
utilize the Metropolis-Hastings method with normal proposal distribution to generate random
samples from it. Therefore, the Gibbs sampling algorithm can be proposed as follows:

Start with the begin value (a), b, (0))-
Sett = 1.
Generate c(;) from 7(c|a -1y, bu—1), data), using Metropolis-Hastings method.

Generate a(; from T’ (n +ay, Yy o w(zg,ri, e, 0) + bl>.

Generate by from F(n +ag, Y i w(yy, 85,¢,0) + b2>.

Calculate R; = aﬁlfbt'
Sett =1t+ 1.

Repeat steps 3-7, for T times.

A e

Applying this algorithm, the Bayes estimate of R, under the squared error loss function is
given by

T

~ 1

RMC — TZRt. (2.11)
t=1

Moreover, a 100(1 — v)% HPD credible interval of R can be constructed by utilizing the
method of Chen and Shao [4].

3. INFERENCE ON R WITH KNOWN COMMON ¢

3.1. Maximum likelihood estimation of R

Suppose X = (Xi.n5, Xo.n, ..., Xpowv) is a progressively Type-II censored sample from
WSN (a,c) with censored scheme r = (rq,79,...,7,) and Y = (Yi.ar, Yorr, ooy Yiuons) 1
a progressively Type-II censored sample from W.SN(b,c) with censored scheme s =
(81,82, .., Sm). Based on Section 2.1, when the common shape parameter c is known, the
MLE of R can be earned easily by

5 - EARET 70 -
RMLE _ (1+mz,}11w($ ik )) . (3.12)
an:1w<ijsjac70)
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In a similar manner as Section 2.3, (EMLE — R) 2 N(0,C), where C' = (2_5)2% +

(%)Qﬁ, and ‘g—f and %—f are given in (2.8). So, a 100(1 — 7)% asymptotic confidence interval
for R can be constructed as,

-~

(RMEP _ o N, RMYE 4 2 VO, (3.13)
2 2
where z., is 100~y-th percentile of N (0, 1).

3.2. Bayes estimation

In this section, we infer the Bayesian estimation and corresponding credible interval of
the stress-strength parameter, when a ~ I'(aq, b1) and b ~ T'(az, b2) are independent random
variables. Based on the observed censoring samples, the joint posterior density function of a
and b are given by:

(V + bl)n+a1 (U + b2)m+a2 an+a1flberag71€7a(V+b1)7b(U+bg)

blc, data) =
m(a, ble,data) = ST T a)

. (3.14)

where V' = 71" | w(zi,7i,¢,0) and U = 37" w(y;, 85, ¢, 0). Under the squared error loss
function, to obtain R Bayes estimate, we solve the following integral

ﬁB—/ / a x 7(a, b|c, data)dadb.
o Jo

a+b
Now, we use the idea of Kizilaslan and Nadar [5] and obtain the i Bayes estimate as

1 n+ay —+
(1-2) (n al)lf(w,n—i-al‘i‘l;w‘f’laz)? |2l < 1,
R w

RP = (3.15)

(n+a) -
w(l — z)m+a Frw,m+ayw+1,2(1 —2)71), z< -1,

V+b

d
Ut "

wherew =n+m+a;+ay, z=1—

1 1
Fi(a,b;c,2) = ) / 1 =) (1 =)t 2] < 1,
0

B(b,c—b

is the hypergeometric series, which is quickly evaluated and readily available in standard
software such as MATLAB. Moreover, we construct a 100(1 — )% Bayesian interval for
the stress-strength parameter by (L, U), where L and U are the lower and upper bounds,
respectively which satisfy

L U
/ fr(R)dR =2, / fr(R)dR=1-2, (3.16)
0 2 0 2

where fr(R) is the probability density function of R which obtained from (3.14) as

1
B(n+ al,m—i— (12)

fr(R) = (1 — z)rtarprtar—l(p — g)ymte—l(1 —R)™ 0<R<1.
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3.3. Uniformly minimum variance unbiased estimate of R

Suppose X = (X1.n, Xo.n, ..., Xponv) 18 a progressively Type-II censored sample from
WSN(a, c) with censored scheme r = (1,7, ....,7,) and Y = (Yi.ar, Your, ooy Yonoas) 18
a progressively Type-II censored sample from WSN(b,c¢) with censored scheme s =
(81, S2, .-, Sm). When the common shape parameter ¢ is known, based on the observed data,
the likelihood function is:

L(data, c|a, b) o (ac)" H o(z;) D)™ pm
i=1 (1 - @(xl))

< e | Tt —2 | expnvy.
j=1 (1—‘I>(yj))

From the above equation, we conclude that V' and U are complete sufficient statistics for

a and b, respectively. We can verify that X' = (fg&),)) ,t=1,...,n is one Type-II

exp{—aU}

progressive censoring samples from an exponential distribution with mean a~!. Now, using
the transformations

Z, = NXT,
Zy = (N —r —1)(X; - X]),

n—1

Zo=(N= Y ri—n+1)(X; - ;).
=1

From Balakrishnan and Aggarwala [2], we conclude that 7, ..., Z,, are independent and
identically distributed as an exponential distribution with mean a=!. So, V =5 Z; ~
i=1

['(n,a).

Lemma 3.1: . .
Let X = (fg&)i)) , i=1,...,n and Y] = (11(13(/]%)) , j=1,...,m. Then the
conditional p.d.fs of X{ given V and Y{* given U are, respebtively, as follows:

v— Nx)" 2 v
fxiv=o(z) :N(n—l)%7 0<ax< N’
(u— My)m—2 u
fo‘\U:u(y) :M(m—l)T, 0<y< e
Proof
The proof of the lemma is similar to the proof of Lemma 2 in [7]. [
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Theorem 3.1: )
For the complete sufficient statistics V and U, the UMVUE of R, say R, is as follows:

(3.17)

Proof
It is observable that X} and Y;* are exponential variables with mean (Na)~! and (Mb)~?
respectively. By this, we can easily show that

1, MY} > NX;,

¢<Xf7)/1*) -
0, MY < NX7,

1s an unbiased estimate for K. So,

R=E(X{. Y1)V =0.U = w)
= /Afo|V:v(iL')fYI*lU:u(y)dl,dy’

where A= {(z,y) : 0 <z <v/N,0 <y <u/M,My > Nx}. Moreover, fx:y—,(r) and
fy1*|U:u(y) are given in Lemma 3.1. Now, for u < v, we have

NM( 1)( i

A n — n— m—

R = e luml // — N2)"2(u — My)"™ *dxdy
0 0

1= 2D fl = wy - Mgy

By a similar method, for « > v, the result can be verified. O]
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4. ESTIMATION OF R IN GENERAL CASE

4.1. Maximum likelihood estimation of R

Assume that X and Y are two independent random variables from WSN(a,c) and
WSN (b, d) distributions, respectively. We have

R = a/ exp{—au — bu%}du.
0

So, the likelihood function, based on the observed data can be obtained as:

L(datala, b, ¢, d) = kiks(ac)” ﬁ g(%);@;))cc; exp{ - azn:(n +1) (—1 ?g(;))}

< (fo 0o o8 0 (205}

j=1 <1 — (y; j=1
Therefore, the log-likelihood function is as:

l(a, b, c,d) = Constant + n log(a) + mlog(b) + nlog(c) + mlog(d)

+ Zlog(@(xi)) +(c—1) Zlog(@(xi)) —(c+1) Zlog(l — ®(z
+ Z log(®(y;)) + (d — 1) Z log(®(y;)) — (d+1) Z log(1 — @
n Cb ; ; d
—aY (i +1) (1_—> _ bz ((Ty(;j)) . 4.18)

=1

~

So, to earn the MLEs of a, b, ¢ and d, namely, a, b, ¢ and d, respectively, we should solve the
following equations:

% - Z ~ > w(ai,riye,0) =0, (4.19)

ol m o

% = ? — Z’W(yj,Sj,d, 0) = 0, (420)
j=1

ol m (x;)
- = E 1 — 7 | — E 1 4.21
9e p + 2 0g (1 — ) a .731,7“1,0 O ( )

ol Yj)
8d:_+z og(l_ )—bzwyj,s],m (4.22)

After obtaining the MLEs of a, b, ¢ and d, by using the invariance property, the MLE of
R can be derived as

RMLE :a/ exp{—au —/b\ué}du (4.23)
0
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4.2. Approximation maximum likelihood estimation of R

Suppose that { X, ..., X, } and {Y7, ..., Y,,} be two Type-II progressive censoring samples
from W.SN (a,c) and WSN (b, d) distributions and

/ (ID(:L’Z) /

v 1— (I)(.CL’@)’ UZ Og( Z)’
D(y;)

I — —] ‘/» = f,

T 1=0y) o8(Y;):

Applying Theorem 2.1, we have U; ~ EV (&1, 01) and V; ~ EV (&, 04), where

1 1 1 1
& = —Elog(a), & = —Elog(b), o= and oy = 7

In a similar manner as Section 2.2, we derive the AMLEs of &1, &, 0y and o9, say 51, 52, 0y
and 05, respectively, by

& = A — 618,
€y = Ay — 528y,
- —D; + \/m
01 = 20, )
 p+/DITIGE
09 = 20, )

where A, Ay, By, By, C4, ~Cg, Dy, D,, Fy, Es are given in Appendix A. After earning él, 52,
01 and 09, the values of @, b and ¢ can be evaluated by

Then,

R= EL/ exp{—au — Bug}du (4.24)
0

4.3. Bayes estimation

In this section, under the squared error loss function, we infer the Bayesian estimation
and corresponding credible interval of the stress-strength parameter, when the unknown
parameters a ~ I'(ay,b1), b ~ ['(ag,by), ¢ ~ T'(as, b3) and d ~ I'(a4,bs) are independent
random variables. In a similar manner as Section 2.4, as the Bayesian estimation of R has
not a closed form, we approximate it by MCMC method. After simplify the joint posterior
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density function of the unknown parameters, we get the posterior p.d.fs of a, b, c and d as:

alc,data ~ F(n + aq, Z w(w;, i, 0,0) + bl>,
i=1

b|d, data ~ T <n+a2,2w v, 55, d, 0) +b2>
7=1
n @ ; c—1 n
7(c|a, data) oc "3 H (z:) =1 | xexp { — aZw(mi,ri, ¢,0) — b3C},
=1 <1 — q)(xl)) i=1

m d(1. d—1 m
m(d|b, data) oc d™ 7 | ] ) | xexp { —b> w(y;, s;,d,0) — b4d}.
=1 (1 - ‘M%’))

It is recognized that the posterior p.d.fs of ¢ and d are not well known distributions. So, we
utilize the Metropolis-Hastings method with normal proposal distribution to generate random
samples from them. Therefore, the Gibbs sampling algorithm can be proposed as follows:

Jj=1

1. Start with the begin value (a(o), b(o), C(0)» d(o)).
2. Sett=1.
3. Generate c() from 7(c|a 1), data), using Metropolis-Hastings method.
4. Generate d;) from 7 d|b t—1) data) using Metropolis-Hastings method.
5. Generate a; from F(n + a1, yop g w(w, T, Cu—1), 0) + bl).
6. Generate b from F(n +ag, Y. i1 L w(yy, s, dg—1),0) + bg).
7. Calculate
00 0]
Ry = a / exp { — amu — bpyu® }du.
0
8. Sett=t+1.

9. Repeat steps 3-8, for T times.

Using this algorithm, under the squared error loss function, the R Bayes estimate is given by
1 Z
pMC _ ~
RY™ = 7 E R;. (4.25)

Moreover, a 100(1 — v)% HPD credible interval of R can be constructed by utilizing the
method of Chen and Shao [4].

5. SIMULATION STUDY

Using Monte Carlo simulations, we compare the behavior of different methods, in this
section. To compare of point estimates, we compute the mean squared errors (MSEs). Also, to
comparing of interval estimates, we compute the average lengths and coverage percentages.
Different schemes, parameters and hyper parameters are employed to obtain the simulation
results. We report all results, based on 3000 replications and the nominal level is 0.95. The
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censoring schemes which we used are as follows:

N —
Scheme 1: 7 =...=1r, = n,
n
2(N —
Scheme2:r; =...=r2 =0, Rey=... =R, = ( n)’
2 2 n
N — N —
Scheme 3: r; = 5 n’ To = =r,1 =0, r, 5 r

First, when the common scale parameter ¢ is unknown, without loss of generality, we
put a =3, b=2, c=4. Also, Bayesian inference are given based on three priors as:
Prior 1: aJ—O bJ—O Jj=1,23, Prior 2: a; =1, b; =0.1, j=1,2,3, and Prior 3:
a; =2, b; =02, j=1,2,3. We derive the MLE usmg (2.5), AMLE using (2.6), Bayes
estlmates of R via Llndley s approximation and MCMC method using (2.10) and (2.11),
respectively. Further, we obtain the asymptotic confidence and HPD credible intervals of R.
The results are given in Tables 5.1-5.2.

Second, when the common scale parameter ¢ is known, without loss of generality, we
puta = 2, b =3, ¢ = 4. Also, Bayesian inference are given based on three priors as: Prior
4:a;=0, b; =0, 7=1,2, Prior 5: a; =1, b; = 0.1, 7 = 1,2, and Prior 6: a; = 2, b; =
0.2, 5 =1, 2. We derive the MLE using (3.12), Bayes estimates using (3.15) and UMVUE of
R using (3.17). Further, we obtain the asymptotic and Bayesian intervals of R using (3.13)
and (3.16), respectively. The results are given in Table 5.3.

Third, when all parameters are unknown and different, without loss of generality, we put
a=15 b=3, c=2,d=4. Also, Bayesian inference are given based on three priors as:
Prior 7: a; =0, b; =0, 7 =1,2,3,4, Prior 8: a; =1, b; = 0.1, j = 1,2, 3,4, and Prior 9:
a; =2, b; =02, 7 =1,2,3,4. We derive the MLE, AMLE and Bayes estimates via MCMC
method using (4.23), (4.24) and (4.25), respectively. The results are given in Table 5.4.

To monitor the convergence of MCMC method, all three cases, we considered the trace
plots for different censoring schemes and parameters. In all cases, it is observed that the
MCMC method is converged. Some of this plots are shown in Figures 5.1-5.2.

From Tables 5.1-5.2, we observe that Bayes estimates and AMLE have the best and
worst performance, based on MSEs, respectively. Also, in Bayesian inference, the informative
priors perform better than non-informative ones, in point and interval estimates. Furthermore,
the Lindley’s approximation performs worse that the MCMC method.

From Table 5.3, we observe that Bayes estimates and UMVUESs have the best and worst
performance based on MSEs, respectively. Also, in Bayesian inference, the informative priors
perform better than non-informative ones, in point and interval estimates.

From Table 5.4, we observe that the Bayes estimates perform better that the MLEs
based on MSEs. Also, in Bayesian inference, the informative priors perform better than non-
informative ones, in point and interval estimates.

As a fact, from Tables 5.1-5.4, for fixed N, with increasing n, the MSEs of all estimates
decrease, the average confidence lengths decrease and the associated coverage percentages
increase, in all cases. This can be due to the fact, with increasing n, some additional
information is gathered.

6. CONCLUSION

In this paper, we obtain different estimates of stress-strength parameter, under the hybrid
progressive censored scheme, when stress and strength are two independent Kumaraswamy
random variables. The problem is solved in three cases. First, when X ~ W.SN(a,c)
and Y ~ WSN(b,c), we derive ML, AML and two approximated Bayes estimates using
Lindley’s approximation and MCMC method, due to the lack of explicit forms. Also, we

Copyright © 2023 ASSA. Adv Syst Sci Appl (2023)



61

STRESS-STRENGTH RELIABILITY OF A WEIBULL-STANDARD NORMAL DISTRIBUTION

€900°0  L£090  THOO'O  T909°0 | 88000  LL6SO  €9000  SI090 | 80100  8S6S0  ¥LOO0 11650 | 6€100  I€6S0 | OLI00  8¥190 | (€T
S9000  L86S0  ¥K000 #0850 | €800°0  ¥809°0 19000  9¥09°0 | 90100  LOI90  ¥LOO0  9TI90 | SKIOO  OFI90 | 9L100  OLI90 | (€T
85000  S9650  I¥000  S06S0 | L8000 81650  $9000  LI090 | 90100 L9650  1L000  LLO9O | LEIOO 80190 | 19100  TE6SO | (1)
€900°0  6L09°0  THOO'O  SLO90 | 6L000  8F09°0 99000 6650 | 60100 80190  LLOO0 08190 | 9FIO0 €190 | L9100 1850 | (£°€)
8500°0 1609°0 1S000 #0090 18000  I€09°0  $9000  THO90 | 80100  Ov6S0  LLOOO 19190 | SFIOO 19190 | 29100 18090 | (€T
19000  6L09°0  6£000 98650 | 6L00°0  €#6S0  S9000 18650 | ITIO0  TS6SO  SLOOO  SI6SO | SPIOO 18650 | €9100 L0190 | (I'D | (0g0L)
LSO00 98190  6K000  €609°0 | 18000  TTO90  T9000  6¥6SO | STIO0 86090  LLOOO  TTI9O | IFIO0 TSSO | OLIOO  +S190 | (€T
£900°0 1L09°0  €F000  1€6S0 | S8000 91090  S9000 L8650 | 80100  SL6SO  IL000  +LI90 | I¥100  T98S0 | 99100 64850 | (£1)
85000  L896S0 14000  8S8S°0 | L8000  S8650 89000  FL6SO | 90100 9190  8L000  T86SO | 8100  8LIYO | ILIO0  8€650 | (T
§9000 11090  PPO00  LL6SO | 68000  +L6SO  TI000  8L6SO | 90100  €6090  LLOOO  6£650 | LYIOO  S6190 | TLIOO  LE190O | (£€)
89000 96850  €4000  €£09°0 | 68000  LL6SO  S9000 00190 | 80100  6LI90 €000  LLI9O | LEIOO  L68SO | SLIOO  T9190 | (TT)
69000  $I09°0  THO0'0  €1650 | 18000  ¥86S0  ¥900°0  LS09'0 | LOIOO  TR090  L80OO  SSI90 | I¥I0'0 28090 | 9100 10190 | (I'D | (0€0S)
L8000  SE€6S0 89000  L96S0 | SITO0  €0I90  6L000  CTI090 | €E100  9L6S0 86000  TSO90 | THIOO L8190 | 6L100 81190 | (€0
98000  €76S0  0L000 €860 | L6000 98090 88000 1,090 | I¥I00  0L090 L6000  T9I90 | TEIO0 01850 | ¥6100 18650 | (€1
8L00°0  L86S0 99000  €T650 | 96000  LO6S0 L8000  TISSO | PEIOO  I¥8S0  T600'0  8EI90 | 69100  ILI9O | 6L100  SI6S0 | (T
98000  S98S°0 9000  T9I90 | TOLIOO 16090  I8000 L8650 | €2I00  ¥1090 66000 #8650 | ISI00 00650 | TLIOO  LO8SO | (€€)
76000  TS6S0 99000  L86S0 | 96000 86850  TR000  0T090 | SYIO0  TOI90 L6000  I6LSO | 0SI00 6850 | 98100 65090 | (T
L8000 60190 99000 0190 | 96000  LE6S0  €8000  8€09°0 | THIOO  LEI9O 86000 18650 | 89100 16850 | LLIOO 99850 | (I'D | (0T0S)
88000  S86S0  $9000 #8650 | L6000  LL8SO  €L000 69650 | 6TI00  €€09°0 16000 19850 | 6€100 85850 | 86100  6v09°0 | (€T
L8000  6L6S0  S9000 #8850 | €600°0  S68S0  8L000  TOI9O | LSIO0  ILLSO 98000  TTO90 | 8EI00  $809°0 | 6L100  91LS0 | (€1
€800°0  TY8S0  SLOOO  6TI90 | €6000  LE6SO 98000 68090 | 6¥100  L9LSO 96000  €TI90 | TSIOO 60190 | 96100  SI8S0 | (T
L8000 LTO90 89000  6V19°0 | €6000 6090  6L000 8190 | ¥HI00  €T650 68000  TTSSO | ILIOO  €46S0 | T8I0 95090 | (£°€)
98000  TTO90 L9000  THISO | L8OOO 65950  S8000  TI6SO | 9SI00  LPO90  €6000  19SS0 | L¥IOO  TEO90 | TLIOO  €L090 | (TT)
88000  TSLSO 89000  LS8S0 | 01100 11090  €8000 #8860 | ¥E€100  TIT90 L6000  1L09°0 | OLIO0  L09S0 | 28100 78190 | (I'D | (01'0€)
ASIN 155 HSIN 289 HSIN 259 HSIN 959 HSIN 959 HSIN 259 HSIN 259 HSIN 259
Aoppury DNDIN Aoppury DNDOIN Aoppury DNDOIN TN ATAY e (w'N)
€ Joud T loud 1 Joud

UMOUUN ST I U3YM 3 JO S9jeWINS9 I0J SHSIA pue saserq 1°C J[qe],

Adv Syst Sci Appl (2023)

Copyright © 2023 ASSA.



62 R. KAZEMI

Table 5.2. Average confidence/credible lengths and coverage percentages for estimates of R when c is unknown.

(N, n) CS AMLE MLE Prior 1 Prior 2 Prior 3
Tength CP Tength CP Tength CP Tength CP length CP
(30,10) (I,) | 05499 0912 | 05391 0925 [ 03680 0.935 | 04253 0942 | 02906  0.946
(2,2) | 05400 0911 0.5294  0.920 | 0.3687 0935 | 04329 0943 | 03830  0.945
(3,3) | 05414 0913 | 05311 0927 | 04577 0936 | 04172 0942 | 03847  0.944
(1,2) | 05534 0912 | 05204 0921 04539 0935 | 04178 0943 | 03856  0.945
(1,3) | 0.5421 0911 | 0.5302 0924 | 03617 0.936 | 04351 0942 | 03820  0.946
(2,3) | 05500 0911 0.5279  0.924 | 03626 0935 | 04237 0942 | 02902  0.945

(50,20) (1,1) 0.5415 0913 0.5289 0920 | 0.4568 0.935 0.4299  0.942 0.3800  0.944
(2,2) 0.5588 0.911 0.5296  0.923 0.4581 0.935 0.4155 0.943 02950  0.943
(3.3) 0.5532 0910 | 05374  0.921 03626  0.937 0.4228 0.941 0.2971 0.945
(1,2) 0.5583 0910 | 0.5206  0.927 0.3679 0.937 0.4317 0.942 0.3886  0.945
(1,3) 0.5569 0.910 | 0.5305 0.920 | 0.3639 0.936 | 0.4311 0.944 | 0.2939 0.944
2,3) 0.5551 0911 0.5374  0.923 0.3690  0.935 0.4297 0.943 0.2993 0.946

(50,30) (1,1) 0.4001 0.928 03740  0.939 0.3014  0.943 02622 0.947 0.3323 0.955
2.2) 0.5194  0.928 03719 0936 | 0.3022 0.944 | 02612  0.946 | 0.3205 0.952
(3.3) 0.4012 0.926 | 0.4507 0.937 0.3086  0.941 02589  0.947 0.3221 0.957
(1,2) 0.4085 0.927 03699  0.935 0.4156  0.944 | 0.2756  0.949 0.3305 0.950
(1,3) 0.5229 0.924 | 04569 0936 | 04155 0.941 02749 0946 | 03296  0.957
(2,3) 0.5147 0.925 03759 0936 | 04150  0.943 0.2627 0.947 0.3359 0.960

(70,30) (L1) 0.4079 0.924 0.3614 0.935 0.2956 0.940 0.2653 0.946 0.3344 0.959
(2,2) 0.5109 0.925 0.3625 0.938 0.3066 0.942 0.2503 0.947 0.3214 0.956
(3.3) 0.4067 0.924 0.4525 0.936 0.4124 0.940 0.2633 0.948 0.3257 0.954
(1,2) 0.4017 0.928 0.3696 0.935 0.2913 0.944 0.2552 0.946 0.3346 0.950
(1,3) 0.5126 0.926 0.3799 0.936 0.2981 0.943 0.2630 0.946 0.3336 0.956
(2,3) 0.5255 0.925 0.3626 0.938 0.4105 0.944 0.2773 0.945 0.3224 0.953

0.65 : : : : 0.8 ‘ ‘ ‘ :
Prior 1
Prior 2

0.6 Prior 3 0.7 WM

0.55 0.6 1
0.5f 1
0.45 W 0.4f Prior 1
Prior 2
Prior 3
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0.55
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Fig. 5.1. Trace plots with C.S (2, 2) with (N, n) = (30, 10) (top left), (1, 2)
with (N, n) = (70, 30) (top right) and (1, 3) with (IV, n) = (50, 30)(down), in unknown common c.
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Fig. 5.2. Trace plots with C.S (1, 1) with (IV,n) = (50, 20) (top left), (2, 3)
with (N, n) = (50, 30) (top right), (3, 3) with (N, n) = (70, 30) (down) in general case.

consider the existence and uniqueness of the MLE and construct the asymptotic and HPD
intervals for R. Second, when the common second shape parameter, ¢, is known, we obtain
the MLE and exact Bayes estimate of R. Third, in general case, when X ~ W SN(a, c;) and
Y ~ WSN(b, cy), we provide ML, AML and Bayesian inferences of R.

From the simulation results, which obtained by the Monte Carlo method, in point
estimates, we observed that the Bayes estimates have the minimum value of MSEs.
Also, in Bayesian inference, the informative priors perform better than non-informative
ones. Furthermore, the MCMC method performs better than Lindley’s approximation. In
interval estimates, we observed that the HPD credible intervals have the better performance
than the asymptotic confidence intervals. Also, in Bayesian inference, the HPD credible
intervals based on informative priors have the smallest average lengths and largest coverage
percentages.
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APPENDIX A

The standard extreme value distribution has the p.d.f. and c.d.f. as

v

gv)=¢e"¢, G)=1—e".

Therefore, based on the observed data {Uy, ..., U,} and {V4, ..., V,,}, ignoring the constant
value, the log-likelihood function is as follows:

0*(&1,&,0) x —nlog(o) + Zt" - Z(n + 1)e' — mlog(o) + Z 2 — Z(Sj + 1)e?,
i=1 i=1 = =
(6.26)
where
o o

Now by taking derivatives with respect to &;, & and o from (6.26), we obtain the following
equations:

o 1 O
= —— — 4 el | =
o, O_n ;(rﬁ Je ] 0,
e 1 “
T _m_;(sj+ Ve ] -
or_ 1 -n~|—m+ it- — i(r + Dte + Zm:z - Zm:(s +1)z;e® | =0
do oL i=1 l i=1 l l j=1 ! j=1 ’ ’ .
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To obtain the AMLE:s, let

QZ:]-_ k:nszl ) Z:]-a , I,
j=n—i+1j+ 14+ > Ry
k=n—j+1
m i+ >, Sk
g=1- i S S Y

i=m—j+1i+ 1+ > S
k=m—i+1

By expanding the functions e’ and e* in Taylor series around the points
v, :log(—log(l —qi)), v zlog(—log(l —cjj)),
respectively and keeping the first order derivatives, we have e’ = a; + b;t; and €% =

a; + bjzj, where a; = €”i(1 — v;), b; = e”1, a; = €”i(1 — i;) and b; = €% . With the similar
manner to [1], we derive the AMLEs of &1, & and o, say &1, &, and 0, respectively, by

& =A — 6B,
62 = A2 - 6327
5 —(Dy 4 Ds) + /(D1 + D2)? + 4(Cy + Co)(Ey + E»)

2(Cy + Cy) ’

where Ay, As, By, Bs, C1, Cy, D1, Do, F1, E5 are given as follows:

n

f:(m + 1)bsu; i a; — izzln-(l — ;)

A1:z:,11—, Blzi_l 7 , C1 =n,
=1 =1
;(Sj +1)bjv; ;@j - ;Sj(l — aj)
A2:]7m ! BQZJi m = _ ; 02:m7
> (s;+1)b; > (s +1)b;
j=1 j=1
D1 = Zaiui — AlBl<Z(Ti + 1)1)@) - Zr,ul(l — ai),
=1 =1 =1
Jo m B m
Dy = Zajvj AQBQ(Z(SJ' + 1)bj) - svi(l—ay),
j=1 j=1 j=1
El = Z(T’Z + 1)bl(ul — Al)z, E2 = Z(SJ + 1)Bj<vj — A2)2
i=1 j=1
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APPENDIX B

Let U(\) be a function of parameter value. The Bayes estimate of U(\), under the squared
error loss function is
[ u(N)eQNdA

Je@NdX

where Q(A) = £(\) + p(A), £(X) and p()) are the logarithm of likelihood function and prior
density of \, respectively. Lindley has been approximated E(u(\)|data) as

( (A )|data =u+ - ZZ wij + 2u;pj)oi; + ZZZZ&MJUU@%

where A = (Ay, ..., A\n), 4,5, k,p=1,...,m, X is the MLE of \, u = u(A), u; = ou/oN;,
wij = 0*ufONON;, Lijr = O30/ ONON;ONg, p; = Op/ON;, and o;; = (i, j)th element in the
inverse of matrix [—/;;] all calculated at the MLE of parameters.

When we confront the case of three parameter A = (A1, A2, A3), Lindley’s approximation
conducts to

E(u())|data) =

Y

E(u()N)|data) = u + (urdy 4 uads + usds + dy + ds) + %[A(ulall + U012 + u3013)
+ B(u1091 + u2092 + uz023) + C(u1031 + ug0se + u3033)],
calculated at \ = (Xl, Ao, /)\\3>, where
d; = p1oi1 + p20ie + p3043, 1 =1,2,3,
dy = 12019 + 113013 + U303,
1

ds = §(U11011 + U90099 + U33033),

A = l111011 + 20191012 + 20131013 + 20931093 + 291092 + 331033,
B = l119011 + 20199012 + 20139013 + 203392093 + (220099 + (332033,
C = l113011 + 20193012 + 20133013 + 20933023 + (293092 + {333033.

In our case, for (A1, A2, A3) = (a,b,¢) and u = R = 15, we have

a; — 1 as — 1 as — 1
! — b1, p2= 2b — by, p3= >

P1 =

0ij, 1,J = 1,2, 3 are obtained by using ¢;;, ¢, 7 = 1,2, 3 and

2n 2m
by = 57 lyo9 = F’
li33 = U331 = U313 = — Zw(ﬂfiﬂ"i,C; 2)>
i=1
log3 = U339 = L3935 = — Zw(yj, S5, C, 2),
j=1

2(m +mn) & &
U333 = s a;“’(%ﬂ%@ 3) — b;w(yj,Sj,C, 3)7
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and other /;;;, = 0. Moreover, ug = u;3 = 0, ¢ = 1,2,3, and u;, uy are given in (2.8). Also,

2 b 2
Uil = g W12 = U2l = s Y22 = hps- S0

a+
dy = U12012,
1
ds = 5(“11011 + U92099),

A = li1011 + 20131013 + l331033,
B = 20539093 + l922099 + l3320733,
C = l113011 + 20133013 + 20933093 + 293092 + 333033.

~

It is notable that all parameters are evaluated at (a, b, ¢).
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