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Abstract: In this paper, under the Type-II progressive censored scheme, we obtain the point
and interval estimates of stress-strength parameter (R), when stress and strength are two
independent Weibull-standard normal variables. We study the problem in three cases. First,
assuming that stress and strength have the different scale parameters and the common shape
parameter, we obtain maximum likelihood estimation, approximation maximum likelihood
estimation and two Bayesian approximation estimates due to the lack of explicit forms. Also,
we construct the asymptotic and highest posterior density intervals for R. Second, assuming that
common shape parameter is known, we derive the maximum likelihood estimation and Bayes
estimate and uniformly minimum variance unbiased estimate of R. Third, assuming that all
parameters are unknown and different, we achieve the statistical inference of R, namely maximum
likelihood estimation, approximation maximum likelihood estimation and Bayesian inference of
R. Furthermore, we use the Monte Carlo simulations to compare of the performance of different
methods.

Keywords: Stress-strength model, Type-II progressive censored sample, Weibull-standard
normal distribution, Bayesian inference, Monte Carlo simulation.

1. INTRODUCTION

One method of introducing distributions is to generalize previous distributions. In fact, the
new distribution includes the previous distributions for different values of the parameters.
Another method to introduce new distributions is to put a specific function of distribution
function of a random variable into the distribution function of another random variable. The
behavior of the distribution and hazard functions of these new random variables determine
the importance of studing them. Various techinqes have been introduced, especially in recent
years, to produce continuous distributions with the second method. If the support of these
distributions is positive, they can be used in reliability analysis.

The Weibull distribution is one of the most widely used distributions in the reliability
and survival studies. Some works on the stress-strength model of Weibull distribution and
its related distribution under censored data can be found in [1, 10, 11] and some references
therein. Consider a continuous distribution G and the Weibull cumulative density function
(c.d.f.) FX(x) = 1− e−axc

(x > 0) with positive parameters a and c. Based on this density,
by replacing x with G(x)/(1−G(x)), we can define the c.d.f. family by

FX(x|a, c, θ) = 1− exp

(
− a

(
G(x; θ)

1−G(x; θ)

)c)
, x ∈ D ⊂ R, a, c > 0,

where G(x; θ) is a baseline c.d.f., which depends on a parameter vector θ. Henceforth, let G
be a continuous baseline distribution. For each G distribution, the Weibull-G distribution with
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two extra parameters a and c is defined by the above c.d.f. [3]. For the normal distribution
n(µ, σ2),

G(x;µ, σ)

1−G(x;µ, σ)
=

Φ
(

x−µ
σ

)
1− Φ

(
x−µ
σ

) ,
where Φ(·) is the c.d.f. of the standard normal distribution n(0, 1). Then, the Weibull-normal
distribution (WND) is defined by

F (x) = 1− exp

−a

 Φ
(

x−µ
σ

)
1− Φ

(
x−µ
σ

)
c , x, a, c, σ > 0, µ ∈ R.

Thus, WND with scale parameter a and shape parameter c, respectively, which denoted by
WN(a, c, µ, σ2), has the probability density function (p.d.f.), and failure rate function as
follows:

f(x) =
ac ϕ

(
x−µ
σ

)
σ

Φ
(

x−µ
σ

)c−1

(
1− Φ

(
x−µ
σ

))c+1 exp

−a

 Φ
(

x−µ
σ

)
1− Φ

(
x−µ
σ

)
c ,

h(x) =
ac ϕ

(
x−µ
σ

)
σ

Φ
(

x−µ
σ

)c−1

(
1− Φ

(
x−µ
σ

))c+1 , x, a, c, σ > 0, µ ∈ R

respectively.
In the stress-strength modelling, R = P (X < Y ) is a measure of component reliability

when it is subjected to random stress X and has strength Y . Note that if X and Y are
two independent random variables from WN(a, c, µ, σ2) and WN(b, c, µ, σ2) distributions,
respectively, then with the change of variable

u =

 Φ
(

x−µ
σ

)
1− Φ

(
x−µ
σ

)
c

,

we have

R =

∫ +∞

−∞
fX(x)(1− FY (x))dx =

∫ ∞

0

ae−(a+b)udu =
a

a+ b
.

Because the our purpose is to analysis of the strees-strength reliability we focus on the
standard normal distribution (SN) case. The reason for this is R is a function of a and b.
Thus, for the WSND,

FWSN(x) = 1− exp

{
− a

(
Φ(x)

1− Φ(x)

)c}
,

fWSN(x) = ac ϕ(x)
Φ(x)c−1(

1− Φ(x)
)c+1 exp

{
− a

(
Φ(x)

1− Φ(x)

)c}
,

hWSN(x) = ac ϕ(x)
Φ(x)c−1(

1− Φ(x)
)c+1 , x, a, c > 0.
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It has been used very effectively for analyzing lifetime data, particularly when the data
are censored. Among various censoring schemes, the Type II progressive censoring scheme
has become very popular one in the last decade. It can be described as follows: Consider N
units are placed under a study and only n(< N) units are completely observed until failure.
At the time of the first failure (the first stage), r1 of the N − 1 surviving units are randomly
withdrawn (censored intentionally) from the experiment. At the time of the second failure
(the second stage), r2 of the N − 2− r1 surviving units are withdrawn and so on. Finally,
at the time of the nth failure (the nth stage), all the remaining rn = N − n− r1 − ...− rn−1

surviving units are withdrawn. We will refer to this as progressive Type-II right censoring
with scheme (r1, r2, ..., rn). It is clear that this scheme includes the conventional Type-II right
censoring scheme (when r1 = r2 = ... = rn−1 = 0 and rn = N − n) and complete sampling
scheme (when N = n and r1 = r2 = ... = rn = 0). For further details on progressively
censoring and relevant references, the reader may refer to the book by Balakrishnan and
Aggarwala [2].

Although, in complete sample case, many authors have been studied the stress-strength
models, much attention has not been paid to censored sample case. Whereas in really
applicable situations, for many reasons such as financial plane or limited time, the researchers
confront censored data.

In this paper, based on Type-II progressive censoring, the reliability parameter R =
P (X < Y ) is estimated, when X and Y are two independent random variables from the
WSN distribution (WSND).

The rest of this paper is arranged as follows. In Section 2, under the Type-II progressive
censoring, assuming X ∼ WSN(a, c) and Y ∼ WSN(b, c), we obtain the point and interval
estimates of R = P (X < Y ), from the frequentist and Bayesian viewpoints. Because the
maximum likelihood estimations (MLEs) of unknown parameters and R cannot be earned in
the closed forms, we obtain the approximation maximum likelihood estimations (AMLEs) of
parameters and R which have the explicit forms. Also, we develop the Bayes estimates of
R, using Lindley’s approximation and MCMC method due to the lack of explicit forms.
Moreover, different confidence intervals such as asymptotic and HPD intervals of R are
provided. In Section 3, assuming the common shape parameter is known, the MLE and
Bayes estimate and uniformly minimum variance unbiased estimate (UMVUE) of R are
earned. Because the assumption which we study in Section 2 is quite strong, we consider
the statistical inference of R in general case. So, in Section 4, under the Type-II progressive
censoring scheme, assuming WSN(a, c) and WSN(b, d), we provide the MLE, AMLE and
Bayes estimate of R. In Section 5, we give the simulation results and conclude the paper in
Section 6.

2. INFERENCE ON R WITH UNKNOWN COMMON c

2.1. Maximum likelihood estimation of R
Assume that X and Y are two independent random variables from WSN(a, c) ≡
WN(a, c, 0, 1) and WSN(b, c) ≡ WN(b, c, 0, 1) distributions, respectively. In this section,
under the Type-II progressive censoring, we derive the MLE of R. Because R is a function
of the unknown parameters, first we obtain the MLEs of a, b and c. Suppose X =
(X1:N , X2:N , ..., Xn:N) is a progressively Type-II censored sample from WSN(a, c) with
censored scheme r = (r1, r2, ..., rn) and Y = (Y1:M , Y2:M , ..., Ym:M) is a progressively Type-
II censored sample from WSN(b, c) with censored scheme s = (s1, s2, ..., sm). For notation
simplicity, we will write (X1, X2, ..., Xn) for (X1:N , X2:N , ..., Xn:N) and (Y1, Y2, ..., Ym) for
(Y1:M , Y2:M , ..., Ym:M). Therefore, the likelihood function of the unknown parameters a, b and
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c, can be written as

L(a, b, c) =

[
k1

n∏
i=1

fWSN(xi)[1− FWSN(xi)]
ri

]
×
[
k2

m∏
j=1

fWSN(yj)[1− FWSN(yj)]
sj

]
,

where k1 = N(N − 1− r1)(N − 2− r1 − r2)...(N − n+ 1− r1 − ...− rn−1) and
k2 = M(M − 1− s1)(M − 2− s1 − s2)...(M −m+ 1− s1 − ...− sm−1). Based on
the observed data, the likelihood function can be obtained as:

L(data|a, b, c) = k1k2(ac)
n

 n∏
i=1

ϕ(xi)
Φ(xi)

c−1(
1− Φ(xi)

)c+1

 exp

{
− a

n∑
i=1

(ri + 1)

(
Φ(xi)

1− Φ(xi)

)c}

× (bc)m

 m∏
j=1

ϕ(yj)
Φ(yj)

c−1(
1− Φ(yj)

)c+1

 exp

{
− b

m∑
j=1

(sj + 1)

(
Φ(yj)

1− Φ(yj)

)c}
.

Therefore, the log-likelihood function is:

ℓ(a, b, c) = Constant + n log(a) +m log(b) + (n+m) log(c)

+
n∑

i=1

log(Φ(xi)) + (c− 1)
n∑

i=1

log(Φ(xi))− (c+ 1)
n∑

i=1

log(1− Φ(xi))

+
m∑
j=1

log(Φ(yj)) + (c− 1)
m∑
j=1

log(Φ(yj))− (c+ 1)
m∑
j=1

log(1− Φ(yj))

− a
n∑

i=1

(ri + 1)

(
Φ(xi)

1− Φ(xi)

)c

− b
m∑
j=1

(sj + 1)

(
Φ(yj)

1− Φ(yj)

)c

. (2.1)

Set

w(x, t, c, k) := (t+ 1)

(
Φ(x)

1− Φ(x)

)c

logk
(

Φ(x)

1− Φ(x)

)
, x > 0, k ∈ N ∪ {0}.

So, to earn the MLEs of a, b and c, namely, â, b̂ and ĉ, respectively, we should solve the
following equations:

∂ℓ

∂a
=

n

a
−

n∑
i=1

w(xi, ri, c, 0) = 0, (2.2)

∂ℓ

∂b
=

m

b
−

m∑
j=1

w(yj, sj, c, 0) = 0, (2.3)

∂ℓ

∂c
=

m+ n

c
+

n∑
i=1

log

(
Φ(xi)

1− Φ(xi)

)
+

m∑
j=1

log

(
Φ(yj)

1− Φ(yj)

)

− a
n∑

i=1

w(xi, ri, c, 1)− b
m∑
j=1

w(yj, sj, c, 1) = 0. (2.4)
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From the equations (2.2) and (2.3), we have

â(c) = n

( n∑
i=1

(ri + 1)

(
Φ(xi)

1− Φ(xi)

)c)−1

= n

( n∑
i=1

w(xi, ri, c, 0)

)−1

,

b̂(c) = m

( m∑
j=1

(sj + 1)

(
Φ(yj)

1− Φ(yj)

)c)−1

= m

( m∑
j=1

(w(yj, sj, c, 0)

)−1

.

Also, to derive ĉ, we apply one numerical method such as Newton-Raphson on the equation
(2.4). After obtaining the MLEs of a, b and c, by using the invariance property, the MLE of
R can be derived as

R̂MLE =
â

â+ b̂
. (2.5)

2.2. Approximation maximum likelihood estimation of R
From the Section 2.1, we see that the MLEs of unknown parameters and R cannot be earned
in the closed forms. So in this section, we obtain the AMLEs of the parameters which have the
explicit forms. Let Z ′ and Z ′′ be Weibull and Extreme value distributions, in symbols Z ′ ∼
W (a, θ) and Z ′′ ∼ EV (ξ, σ), if they have the following cumulative distribution functions
respectively as:

FZ′(z) = 1− e−
za

θ , z > 0, a, θ > 0,

FZ′′(z) = 1− e−e
z−ξ
σ , z ∈ R, ξ ∈ R, σ > 0.

The following simple theorem is critical to obtain the AMLEs of the parameters.

Theorem 2.1: (i) If Z ∼ WSN(a, c), then

Z ′ =
Φ(Z)

1− Φ(Z)
∼ W (c, 1/a).

(ii) If Z ′ ∼ W (c, 1/a) and Z ′′ = log(Z ′), then Z ′′ ∼ EV (ξ, σ), where

ξ = −1

c
log(a) and σ =

1

c
.

Proof
The proof is obvious. □

Suppose that {X1, . . . , Xn} and {Y1, . . . , Ym} be two Type-II progressive censoring
samples with the above censoring schemes and

X ′
i =

Φ(xi)

1− Φ(xi)
, Ui = log(X ′

i),

Y ′
j =

Φ(yj)

1− Φ(yj)
, Vj = log(Y ′

j ).

Applying Theorem 2.1, we have Ui ∼ EV (ξ1, σ) and Vj ∼ EV (ξ2, σ), where

ξ1 = −1

c
log(a), ξ2 = −1

c
log(b), σ =

1

c
.
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After earning ξ̃1, ξ̃2 and σ̃ , the values of ã, b̃ and c̃ can be evaluated by (see Appendix A):

ã = e−
ξ̃1
σ̃ , b̃ = e−

ξ̃2
σ̃ , c̃ =

1

σ̃
.

So, the AMLE of R, namely R̃, is

R̃ =
ã

ã+ b̃
. (2.6)

2.3. Asymptotic confidence interval
In this section, we earn the asymptotic confidence interval of R by the asymptotic distribution
of R̂, which obtain from the asymptotic distribution of λ̂ = (â, b̂, ĉ). We denote the observed

Fisher information matrix by I(λ) = [Iij] =

[
− ∂2ℓ

∂λi∂λj

]
, i, j = 1, 2, 3. By differentiating

twice from (2.1) with respect to a, b and c, the inlines of I(λ) matrix can be obtained as:

I11 =
n

a2
, I22 =

m

b2
, I12 = I21 = 0,

I13 = I31 =
n∑

i=1

w(xi, ri, c, 1), I23 = I32 =
m∑
j=1

w(yj, sj, c, 1),

I33 =
m+ n

c2
+ a

n∑
i=1

w(xi, ri, c, 2) + b
m∑
j=1

w(yj, sj, c, 2).

Theorem 2.2:
Let â, b̂ and ĉ be the MLEs of a, b and c. Then

[(â− a) (̂b− b) (ĉ− c)]T
D−→ N3(0, I

−1(a, b, c)),

where I(a, b, c) and I−1(a, b, c) are symmetric matrices and

I(a, b, c) =

(
I11 0 I13

I22 I23
I33

)
, I−1(a, b, c) =

1

|I(a, b, c)|

(
b11 b12 b13

b22 b23
b33

)
,

in which |I(a, b, c)| = I11I22I33 − I11I
2
23 − I213I22,

b11 = I22I33 − I223, b12 = I13I23, b13 = −I13I22,

b22 = I11I33 − I213, b23 = −I11I23, b33 = I11I22.

Proof
From the asymptotic normality of the MLE, the theorem resulted. □

Theorem 2.3:
Let R̂MLE be the MLE of R. Then,

(R̂MLE −R)
D−→ N(0, B),

where

B =
1

|I(a, b, c)|

[(∂R
∂a

)2
b11 +

(∂R
∂b

)2
b22 + 2

(∂R
∂a

)(∂R
∂b

)
b12

]
. (2.7)
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Proof
Using Theorem 2.2 and applying delta method, the asymptotic distribution of R̂ = â

â+b̂
can

be obtained as follows:

(R̂MLE −R)
D−→ N(0, B),

where B = bT I−1(a, b, c)b, with b = [∂R
∂a
, ∂R

∂b
, ∂R

∂c
]T = [∂R

∂a
, ∂R

∂b
, 0]T , in which

∂R

∂a
=

b

(a+ b)2
,

∂R

∂b
= − a

(a+ b)2
. (2.8)

Also, I−1(a, b, c) is defined in Theorem 2.2. Therefore, B can be represented as (2.7) and the
theorem is resulted. □

Using Theorem 2.3, the asymptotic confidence interval of R can be derived. It is notable
that B should be estimated by the MLEs of a, b and c. So, a 100(1− γ)% asymptotic
confidence interval of R can be constructed as,

(R̂MLE − z1− γ
2

√
B̂, R̂MLE + z1− γ

2

√
B̂),

where zγ is 100γ-th percentile of N(0, 1).

2.4. Bayes estimation
In this section, under the squared error loss function, we infer the Bayesian estimation
and corresponding credible interval of the stress-strength parameter, when a ∼ Γ(a1, b1),
b ∼ Γ(a2, b2) and c ∼ Γ(a3, b3) are independent random variables. Based on the observed
censoring samples, the joint posterior density function of a, b and c are given by:

π(a, b, c|data) =
L(data|a, b, c)π1(a)π2(b)π3(c)∫∞

0

∫∞
0

∫∞
0

L(data|a, b, c)π1(a)π2(b)π3(c)dadbdc
, (2.9)

where

π1(a) ∝ aa1−1e−b1a, a > 0, a1, b1 > 0,

π2(b) ∝ ba2−1e−b2b, b > 0, a2, b2 > 0,

π3(c) ∝ ca3−1e−b3c, c > 0, a3, b3 > 0.

As we see from (2.9), the Bayes estimates cannot be derived in the closed form. So, we
approximate them by applying two methods:

• Lindley’s approximation,
• MCMC method.

2.4.1. Lindley’s approximation One of the most numerical methods to approximate the
Bayes estimate has been introduced by Lindley in [8]. This method has explained in Appendix
B. Based on this approximation, the Bayes estimate of R is:

R̂Lin = R + [u1d1 + u2d2 + d4 + d5] +
1

2
[A(u1σ11 + u2σ12)

+B(u1σ21 + u2σ22) + C(u1σ31 + u2σ32)]. (2.10)

As we see, constructing the HPD credible interval is not possible, using the Lindley’s
approximation. So, we apply the Markov Chain Monte Carlo (MCMC) method to
approximate the Bayes estimate and construct the corresponding HPD credible intervals.
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2.4.2. MCMC method By (2.9), we get the posterior p.d.fs of a, b and c as:

a|c, data ∼ Γ
(
n+ a1,

n∑
i=1

w(xi, ri, c, 0) + b1

)
,

b|c, data ∼ Γ
(
n+ a2,

m∑
j=1

w(yj, sj, c, 0) + b2

)
,

π(c|a, b, data) ∝ cn+m+a3−1

 n∏
i=1

Φ(xi)
c−1(

1− Φ(xi)
)c+1


 m∏

j=1

Φ(yj)
c−1(

1− Φ(yj)
)c+1


× exp

{
− a

n∑
i=1

w(xi, ri, c, 0)− b

m∑
j=1

w(yj, sj, c, 0)− b3c

}
It is obvious that the posteriors p.d.f. of c are not the well known distributions. So, we
utilize the Metropolis-Hastings method with normal proposal distribution to generate random
samples from it. Therefore, the Gibbs sampling algorithm can be proposed as follows:

1. Start with the begin value (a(0), b(0), c(0)).
2. Set t = 1.
3. Generate c(t) from π(c|a(t−1), b(t−1), data), using Metropolis-Hastings method.

4. Generate a(t) from Γ
(
n+ a1,

∑n
i=1 w(xi, ri, c, 0) + b1

)
.

5. Generate b(t) from Γ
(
n+ a2,

∑m
j=1 w(yj, sj, c, 0) + b2

)
.

6. Calculate Rt =
at

at+bt
.

7. Set t = t+ 1.
8. Repeat steps 3-7, for T times.

Applying this algorithm, the Bayes estimate of R, under the squared error loss function is
given by

R̂MC =
1

T

T∑
t=1

Rt. (2.11)

Moreover, a 100(1− γ)% HPD credible interval of R can be constructed by utilizing the
method of Chen and Shao [4].

3. INFERENCE ON R WITH KNOWN COMMON c

3.1. Maximum likelihood estimation of R
Suppose X = (X1:N , X2:N , ..., Xn:N) is a progressively Type-II censored sample from
WSN(a, c) with censored scheme r = (r1, r2, ..., rn) and Y = (Y1:M , Y2:M , ..., Ym:M) is
a progressively Type-II censored sample from WSN(b, c) with censored scheme s =
(s1, s2, ..., sm). Based on Section 2.1, when the common shape parameter c is known, the
MLE of R can be earned easily by

R̂MLE =

(
1 +

m
∑n

i=1w(xi, ri, c, 0)

n
∑m

j=1 w(yj, sj, c, 0)

)−1

. (3.12)
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In a similar manner as Section 2.3, (R̂MLE −R)
D−→ N(0, C), where C = (∂R

∂a
)2 1

I11
+

(∂R
∂b
)2 1

I22
, and ∂R

∂a
and ∂R

∂b
are given in (2.8). So, a 100(1− γ)% asymptotic confidence interval

for R can be constructed as,

(R̂MLE − z1− γ
2

√
Ĉ, R̂MLE + z1− γ

2

√
Ĉ), (3.13)

where zγ is 100γ-th percentile of N(0, 1).

3.2. Bayes estimation
In this section, we infer the Bayesian estimation and corresponding credible interval of
the stress-strength parameter, when a ∼ Γ(a1, b1) and b ∼ Γ(a2, b2) are independent random
variables. Based on the observed censoring samples, the joint posterior density function of a
and b are given by:

π(a, b|c, data) =
(V + b1)

n+a1(U + b2)
m+a2

Γ(n+ a1)Γ(m+ a2)
an+a1−1bm+a2−1e−a(V+b1)−b(U+b2), (3.14)

where V =
∑n

i=1w(xi, ri, c, 0) and U =
∑m

j=1w(yj, sj, c, 0). Under the squared error loss
function, to obtain R Bayes estimate, we solve the following integral

R̂B =

∫ ∞

0

∫ ∞

0

a

a+ b
× π(a, b|c, data)dadb.

Now, we use the idea of Kizilaslan and Nadar [5] and obtain the R Bayes estimate as

R̂B =


(1− z)n+a1(n+ a1)

w
F 2
1 (w, n+ a1 + 1;w + 1, z), |z| < 1,

(n+ a1)

w(1− z)m+a2
F 2
1 (w,m+ a2;w + 1, z(1− z)−1), z < −1,

(3.15)

where w = n+m+ a1 + a2, z = 1− V + b1
U + b2

and

F 2
1 (a, b; c, z) =

1

B(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt, |z| < 1,

is the hypergeometric series, which is quickly evaluated and readily available in standard
software such as MATLAB. Moreover, we construct a 100(1− γ)% Bayesian interval for
the stress-strength parameter by (L,U), where L and U are the lower and upper bounds,
respectively which satisfy∫ L

0

fR(R)dR =
γ

2
,

∫ U

0

fR(R)dR = 1− γ

2
, (3.16)

where fR(R) is the probability density function of R which obtained from (3.14) as

fR(R) =
1

B(n+ a1,m+ a2)
(1− z)n+a1Rn+a1−1(1−R)m+a2−1(1−Rz)−w, 0 < R < 1.
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3.3. Uniformly minimum variance unbiased estimate of R
Suppose X = (X1:N , X2:N , ..., Xn:N) is a progressively Type-II censored sample from
WSN(a, c) with censored scheme r = (r1, r2, ..., rn) and Y = (Y1:M , Y2:M , ..., Ym:M) is
a progressively Type-II censored sample from WSN(b, c) with censored scheme s =
(s1, s2, ..., sm). When the common shape parameter c is known, based on the observed data,
the likelihood function is:

L(data, c|a, b) ∝ (ac)n

 n∏
i=1

ϕ(xi)
Φ(xi)

c−1(
1− Φ(xi)

)c+1

 exp{−aU}

× (bc)m

 m∏
j=1

ϕ(yj)
Φ(yj)

c−1(
1− Φ(yj)

)c+1

 exp{−bV }.

From the above equation, we conclude that V and U are complete sufficient statistics for
a and b, respectively. We can verify that X∗

i =
(

Φ(Xi)
1−Φ(Xi)

)c
, i = 1, . . . , n is one Type-II

progressive censoring samples from an exponential distribution with mean a−1. Now, using
the transformations

Z1 = NX∗
1 ,

Z2 = (N − r1 − 1)(X∗
2 −X∗

1 ),
...

Zn = (N −
n−1∑
i=1

ri − n+ 1)(X∗
n −X∗

n−1).

From Balakrishnan and Aggarwala [2], we conclude that Z1, . . . , Zn are independent and

identically distributed as an exponential distribution with mean a−1. So, V =
n∑

i=1

Zi ∼

Γ(n, a).

Lemma 3.1:
Let X∗

i =
(

Φ(Xi)
1−Φ(Xi)

)c
, i = 1, . . . , n and Y ∗

j =
(

Φ(Yj)

1−Φ(Yj)

)c
, j = 1, . . . ,m. Then the

conditional p.d.fs of X∗
1 given V and Y ∗

1 given U are, respectively, as follows:

fX∗
1 |V=v(x) = N(n− 1)

(v −Nx)n−2

vn−1
, 0 < x <

v

N
,

fY ∗
1 |U=u(y) = M(m− 1)

(u−My)m−2

um−1
, 0 < y <

u

M
.

Proof
The proof of the lemma is similar to the proof of Lemma 2 in [7].
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Theorem 3.1:
For the complete sufficient statistics V and U , the UMVUE of R, say ˆ̂

R, is as follows:

ˆ̂
R =


1−

n−1∑
k=0

(−1)k(u
v
)k

(n−1
k )

(m−1+k
k )

, u < v,

m−1∑
k=0

(−1)k( v
u
)k

(m−1
k )

(n−1+k
k )

, u > v.
(3.17)

Proof
It is observable that X∗

1 and Y ∗
1 are exponential variables with mean (Na)−1 and (Mb)−1,

respectively. By this, we can easily show that

ϕ(X∗
1 , Y

∗
1 ) =

{
1, MY ∗

1 > NX∗
1 ,

0, MY ∗
1 < NX∗

1 ,

is an unbiased estimate for R. So,

ˆ̂
R = E(ϕ(X∗

1 , Y
∗
1 )|V = v, U = u)

=

∫∫
A
fX∗

1 |V=v(x)fY ∗
1 |U=u(y)dxdy,

where A = {(x, y) : 0 < x < v/N, 0 < y < u/M,My > Nx}. Moreover, fX∗
1 |V=v(x) and

fY ∗
1 |U=u(y) are given in Lemma 3.1. Now, for u < v, we have

ˆ̂
R =

NM(n− 1)(m− 1)

vn−1um−1

u
M∫
0

My
N∫

0

(v −Nx)n−2(u−My)m−2dxdy

= 1− M(m− 1)

vn−1um−1

u
M∫
0

(v −My)n−1(u−My)m−2dy

= 1− (m− 1)

1∫
0

(1− t)m−2

(
1− u

v
t

)n−1

dt

= 1− (m− 1)

1∫
0

(1− t)m−2

n−1∑
k=0

(
n− 1

k

)
(−1)k

(
u

v

)k

tkdt

= 1−
n−1∑
k=0

(−1)k
(
u

v

)k
(
n−1
k

)(
m−1+k

k

)
By a similar method, for u > v, the result can be verified.
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4. ESTIMATION OF R IN GENERAL CASE

4.1. Maximum likelihood estimation of R
Assume that X and Y are two independent random variables from WSN(a, c) and
WSN(b, d) distributions, respectively. We have

R = a

∫ ∞

0

exp{−au− bu
d
c }du.

So, the likelihood function, based on the observed data can be obtained as:

L(data|a, b, c, d) = k1k2(ac)
n

 n∏
i=1

ϕ(xi)Φ(xi)
c−1(

1− Φ(xi)
)c+1

 exp

{
− a

n∑
i=1

(ri + 1)

(
Φ(xi)

1− Φ(xi)

)c}

× (bd)m

 m∏
j=1

ϕ(yj)
Φ(yj)

d−1(
1− Φ(yj)

)d+1

 exp

{
− b

m∑
j=1

(sj + 1)

(
Φ(yj)

1− Φ(yj)

)d}
.

Therefore, the log-likelihood function is as:

ℓ(a, b, c, d) = Constant + n log(a) +m log(b) + n log(c) +m log(d)

+
n∑

i=1

log(Φ(xi)) + (c− 1)
n∑

i=1

log(Φ(xi))− (c+ 1)
n∑

i=1

log(1− Φ(xi))

+
m∑
j=1

log(Φ(yj)) + (d− 1)
m∑
j=1

log(Φ(yj))− (d+ 1)
m∑
j=1

log(1− Φ(yj))

− a
n∑

i=1

(ri + 1)

(
Φ(xi)

1− Φ(xi)

)c

− b
m∑
j=1

(sj + 1)

(
Φ(yj)

1− Φ(yj)

)d

. (4.18)

So, to earn the MLEs of a, b, c and d, namely, â, b̂, ĉ and d̂, respectively, we should solve the
following equations:

∂ℓ

∂a
=

n

a
−

n∑
i=1

w(xi, ri, c, 0) = 0, (4.19)

∂ℓ

∂b
=

m

b
−

m∑
j=1

w(yj, sj, d, 0) = 0, (4.20)

∂ℓ

∂c
=

m

c
+

n∑
i=1

log

(
Φ(xi)

1− Φ(xi)

)
− a

n∑
i=1

w(xi, ri, c, 1) = 0, (4.21)

∂ℓ

∂d
=

m

d
+

m∑
j=1

log

(
Φ(yj)

1− Φ(yj)

)
− b

m∑
j=1

w(yj, sj, d, 1) = 0. (4.22)

After obtaining the MLEs of a, b, c and d, by using the invariance property, the MLE of
R can be derived as

R̂MLE = â

∫ ∞

0

exp{−âu− b̂u
d̂
ĉ }du. (4.23)
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4.2. Approximation maximum likelihood estimation of R
Suppose that {X1, . . . , Xn} and {Y1, . . . , Ym} be two Type-II progressive censoring samples
from WSN(a, c) and WSN(b, d) distributions and

X ′
i =

Φ(xi)

1− Φ(xi)
, Ui = log(X ′

i),

Y ′
j =

Φ(yj)

1− Φ(yj)
, Vj = log(Y ′

j ).

Applying Theorem 2.1, we have Ui ∼ EV (ξ1, σ1) and Vj ∼ EV (ξ2, σ2), where

ξ1 = −1

c
log(a), ξ2 = −1

d
log(b), σ1 =

1

c
, and σ2 =

1

d
.

In a similar manner as Section 2.2, we derive the AMLEs of ξ1, ξ2, σ1 and σ2, say ξ̃1, ξ̃2, σ̃1

and σ̃2, respectively, by

ξ̃1 = A1 − σ̃1B1,

ξ̃2 = A2 − σ̃2B2,

σ̃1 =
−D1 +

√
D2

1 + 4C1E1

2C1

,

σ̃2 =
−D2 +

√
D2

2 + 4C2E2

2C2

,

where A1, A2, B1, B2, C1, C2, D1, D2, E1, E2 are given in Appendix A. After earning ξ̃1, ξ̃2,
σ̃1 and σ̃2, the values of ã, b̃ and c̃ can be evaluated by

c̃ =
1

σ̃1

, d̃ =
1

σ̃2

, ã = exp
(−ξ̃1

σ̃1

)
, b̃ = exp

(−ξ̃2
σ̃2

)
.

Then,

R̃ = ã

∫ ∞

0

exp{−ãu− b̃u
d̃
c̃ }du. (4.24)

4.3. Bayes estimation
In this section, under the squared error loss function, we infer the Bayesian estimation
and corresponding credible interval of the stress-strength parameter, when the unknown
parameters a ∼ Γ(a1, b1), b ∼ Γ(a2, b2), c ∼ Γ(a3, b3) and d ∼ Γ(a4, b4) are independent
random variables. In a similar manner as Section 2.4, as the Bayesian estimation of R has
not a closed form, we approximate it by MCMC method. After simplify the joint posterior
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density function of the unknown parameters, we get the posterior p.d.fs of a, b, c and d as:

a|c, data ∼ Γ
(
n+ a1,

n∑
i=1

w(xi, ri, c, 0) + b1

)
,

b|d, data ∼ Γ
(
n+ a2,

m∑
j=1

w(yj, sj, d, 0) + b2

)
,

π(c|a, data) ∝ cn+a3−1

 n∏
i=1

Φ(xi)
c−1(

1− Φ(xi)
)c+1

× exp

{
− a

n∑
i=1

w(xi, ri, c, 0)− b3c

}
,

π(d|b, data) ∝ dm+a4−1

 m∏
j=1

Φ(yj)
d−1(

1− Φ(yj)
)d+1

× exp

{
− b

m∑
j=1

w(yj, sj, d, 0)− b4d

}
.

It is recognized that the posterior p.d.fs of c and d are not well known distributions. So, we
utilize the Metropolis-Hastings method with normal proposal distribution to generate random
samples from them. Therefore, the Gibbs sampling algorithm can be proposed as follows:

1. Start with the begin value (a(0), b(0), c(0), d(0)).
2. Set t = 1.
3. Generate c(t) from π(c|a(t−1), data), using Metropolis-Hastings method.
4. Generate d(t) from π(d|b(t−1), data), using Metropolis-Hastings method.

5. Generate a(t) from Γ
(
n+ a1,

∑n
i=1 w(xi, ri, c(t−1), 0) + b1

)
.

6. Generate b(t) from Γ
(
n+ a2,

∑m
j=1 w(yj, sj, d(t−1), 0) + b2

)
.

7. Calculate

Rt = a(t)

∫ ∞

0

exp

{
− a(t)u− b(t)u

d(t)
c(t)

}
du.

8. Set t = t+ 1.
9. Repeat steps 3-8, for T times.

Using this algorithm, under the squared error loss function, the R Bayes estimate is given by

R̂MC =
1

T

T∑
t=1

Rt. (4.25)

Moreover, a 100(1− γ)% HPD credible interval of R can be constructed by utilizing the
method of Chen and Shao [4].

5. SIMULATION STUDY

Using Monte Carlo simulations, we compare the behavior of different methods, in this
section. To compare of point estimates, we compute the mean squared errors (MSEs). Also, to
comparing of interval estimates, we compute the average lengths and coverage percentages.
Different schemes, parameters and hyper parameters are employed to obtain the simulation
results. We report all results, based on 3000 replications and the nominal level is 0.95. The
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censoring schemes which we used are as follows:

Scheme 1: r1 = . . . = rn =
N − n

n
,

Scheme 2: r1 = . . . = rn
2
= 0, Rn

2
+1 = . . . = Rn =

2(N − n)

n
,

Scheme 3: r1 =
N − n

2
, r2 = . . . = rn−1 = 0, rn =

N − n

2
.

First, when the common scale parameter c is unknown, without loss of generality, we
put a = 3, b = 2, c = 4. Also, Bayesian inference are given based on three priors as:
Prior 1: aj = 0, bj = 0, j = 1, 2, 3, Prior 2: aj = 1, bj = 0.1, j = 1, 2, 3, and Prior 3:
aj = 2, bj = 0.2, j = 1, 2, 3. We derive the MLE using (2.5), AMLE using (2.6), Bayes
estimates of R via Lindley’s approximation and MCMC method using (2.10) and (2.11),
respectively. Further, we obtain the asymptotic confidence and HPD credible intervals of R.
The results are given in Tables 5.1-5.2.

Second, when the common scale parameter c is known, without loss of generality, we
put a = 2, b = 3, c = 4. Also, Bayesian inference are given based on three priors as: Prior
4: aj = 0, bj = 0, j = 1, 2, Prior 5: aj = 1, bj = 0.1, j = 1, 2, and Prior 6: aj = 2, bj =
0.2, j = 1, 2. We derive the MLE using (3.12), Bayes estimates using (3.15) and UMVUE of
R using (3.17). Further, we obtain the asymptotic and Bayesian intervals of R using (3.13)
and (3.16), respectively. The results are given in Table 5.3.

Third, when all parameters are unknown and different, without loss of generality, we put
a = 1.5, b = 3, c = 2 , d = 4. Also, Bayesian inference are given based on three priors as:
Prior 7: aj = 0, bj = 0, j = 1, 2, 3, 4, Prior 8: aj = 1, bj = 0.1, j = 1, 2, 3, 4, and Prior 9:
aj = 2, bj = 0.2, j = 1, 2, 3, 4. We derive the MLE, AMLE and Bayes estimates via MCMC
method using (4.23), (4.24) and (4.25), respectively. The results are given in Table 5.4.

To monitor the convergence of MCMC method, all three cases, we considered the trace
plots for different censoring schemes and parameters. In all cases, it is observed that the
MCMC method is converged. Some of this plots are shown in Figures 5.1-5.2.

From Tables 5.1-5.2, we observe that Bayes estimates and AMLE have the best and
worst performance, based on MSEs, respectively. Also, in Bayesian inference, the informative
priors perform better than non-informative ones, in point and interval estimates. Furthermore,
the Lindley’s approximation performs worse that the MCMC method.

From Table 5.3, we observe that Bayes estimates and UMVUEs have the best and worst
performance based on MSEs, respectively. Also, in Bayesian inference, the informative priors
perform better than non-informative ones, in point and interval estimates.

From Table 5.4, we observe that the Bayes estimates perform better that the MLEs
based on MSEs. Also, in Bayesian inference, the informative priors perform better than non-
informative ones, in point and interval estimates.

As a fact, from Tables 5.1-5.4, for fixed N , with increasing n, the MSEs of all estimates
decrease, the average confidence lengths decrease and the associated coverage percentages
increase, in all cases. This can be due to the fact, with increasing n, some additional
information is gathered.

6. CONCLUSION

In this paper, we obtain different estimates of stress-strength parameter, under the hybrid
progressive censored scheme, when stress and strength are two independent Kumaraswamy
random variables. The problem is solved in three cases. First, when X ∼ WSN(a, c)
and Y ∼ WSN(b, c), we derive ML, AML and two approximated Bayes estimates using
Lindley’s approximation and MCMC method, due to the lack of explicit forms. Also, we
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Table 5.2. Average confidence/credible lengths and coverage percentages for estimates of R when c is unknown.

(N,n) C.S AMLE MLE Prior 1 Prior 2 Prior 3
length C.P length C.P length C.P length C.P length C.P

(30,10) (1,1) 0.5499 0.912 0.5391 0.925 0.3680 0.935 0.4253 0.942 0.2906 0.946
(2,2) 0.5400 0.911 0.5294 0.920 0.3687 0.935 0.4329 0.943 0.3830 0.945
(3,3) 0.5414 0.913 0.5311 0.927 0.4577 0.936 0.4172 0.942 0.3847 0.944
(1,2) 0.5534 0.912 0.5204 0.921 0.4539 0.935 0.4178 0.943 0.3856 0.945
(1,3) 0.5421 0.911 0.5302 0.924 0.3617 0.936 0.4351 0.942 0.3820 0.946
(2,3) 0.5500 0.911 0.5279 0.924 0.3626 0.935 0.4237 0.942 0.2902 0.945

(50,20) (1,1) 0.5415 0.913 0.5289 0.920 0.4568 0.935 0.4299 0.942 0.3800 0.944
(2,2) 0.5588 0.911 0.5296 0.923 0.4581 0.935 0.4155 0.943 0.2950 0.943
(3,3) 0.5532 0.910 0.5374 0.921 0.3626 0.937 0.4228 0.941 0.2971 0.945
(1,2) 0.5583 0.910 0.5206 0.927 0.3679 0.937 0.4317 0.942 0.3886 0.945
(1,3) 0.5569 0.910 0.5305 0.920 0.3639 0.936 0.4311 0.944 0.2939 0.944
(2,3) 0.5551 0.911 0.5374 0.923 0.3690 0.935 0.4297 0.943 0.2993 0.946

(50,30) (1,1) 0.4001 0.928 0.3740 0.939 0.3014 0.943 0.2622 0.947 0.3323 0.955
(2,2) 0.5194 0.928 0.3719 0.936 0.3022 0.944 0.2612 0.946 0.3205 0.952
(3,3) 0.4012 0.926 0.4507 0.937 0.3086 0.941 0.2589 0.947 0.3221 0.957
(1,2) 0.4085 0.927 0.3699 0.935 0.4156 0.944 0.2756 0.949 0.3305 0.950
(1,3) 0.5229 0.924 0.4569 0.936 0.4155 0.941 0.2749 0.946 0.3296 0.957
(2,3) 0.5147 0.925 0.3759 0.936 0.4150 0.943 0.2627 0.947 0.3359 0.960

(70,30) (1,1) 0.4079 0.924 0.3614 0.935 0.2956 0.940 0.2653 0.946 0.3344 0.959
(2,2) 0.5109 0.925 0.3625 0.938 0.3066 0.942 0.2503 0.947 0.3214 0.956
(3,3) 0.4067 0.924 0.4525 0.936 0.4124 0.940 0.2633 0.948 0.3257 0.954
(1,2) 0.4017 0.928 0.3696 0.935 0.2913 0.944 0.2552 0.946 0.3346 0.950
(1,3) 0.5126 0.926 0.3799 0.936 0.2981 0.943 0.2630 0.946 0.3336 0.956
(2,3) 0.5255 0.925 0.3626 0.938 0.4105 0.944 0.2773 0.945 0.3224 0.953
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Fig. 5.1. Trace plots with C.S (2, 2) with (N,n) = (30, 10) (top left), (1, 2)
with (N,n) = (70, 30) (top right) and (1, 3) with (N,n) = (50, 30)(down), in unknown common c.
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Fig. 5.2. Trace plots with C.S (1, 1) with (N,n) = (50, 20) (top left), (2, 3)
with (N,n) = (50, 30) (top right), (3, 3) with (N,n) = (70, 30) (down) in general case.

consider the existence and uniqueness of the MLE and construct the asymptotic and HPD
intervals for R. Second, when the common second shape parameter, c, is known, we obtain
the MLE and exact Bayes estimate of R. Third, in general case, when X ∼ WSN(a, c1) and
Y ∼ WSN(b, c2), we provide ML, AML and Bayesian inferences of R.

From the simulation results, which obtained by the Monte Carlo method, in point
estimates, we observed that the Bayes estimates have the minimum value of MSEs.
Also, in Bayesian inference, the informative priors perform better than non-informative
ones. Furthermore, the MCMC method performs better than Lindley’s approximation. In
interval estimates, we observed that the HPD credible intervals have the better performance
than the asymptotic confidence intervals. Also, in Bayesian inference, the HPD credible
intervals based on informative priors have the smallest average lengths and largest coverage
percentages.
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APPENDIX A

The standard extreme value distribution has the p.d.f. and c.d.f. as

g(v) = ev−ev , G(v) = 1− e−ev .

Therefore, based on the observed data {U1, . . . , Un} and {V1, . . . , Vm}, ignoring the constant
value, the log-likelihood function is as follows:

ℓ∗(ξ1, ξ2, σ) ∝ −n log(σ) +
n∑

i=1

ti −
n∑

i=1

(ri + 1)eti −m log(σ) +
m∑
j=1

zj −
m∑
j=1

(sj + 1)ezj ,

(6.26)

where

ti =
ui − ξ1

σ
, zj =

vj − ξ2
σ

.

Now by taking derivatives with respect to ξ1, ξ2 and σ from (6.26), we obtain the following
equations:

∂ℓ∗

∂ξ1
= − 1

σ

[
n−

n∑
i=1

(ri + 1)eti
]
= 0,

∂ℓ∗

∂ξ2
= − 1

σ

[
m−

m∑
j=1

(sj + 1)ezj
]
= 0,

∂ℓ∗

∂σ
= − 1

σ

[
n+m+

n∑
i=1

ti −
n∑

i=1

(ri + 1)tie
ti +

m∑
j=1

zj −
m∑
j=1

(sj + 1)zje
zj

]
= 0.
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To obtain the AMLEs, let

qi = 1−
n∏

j=n−i+1

j +
n∑

k=n−j+1

Rk

j + 1 +
n∑

k=n−j+1

Rk

, i = 1, . . . , n,

q̄j = 1−
m∏

i=m−j+1

i+
m∑

k=m−i+1

Sk

i+ 1 +
m∑

k=m−i+1

Sk

, j = 1, . . . ,m.

By expanding the functions eti and ezj in Taylor series around the points

νi = log
(
− log(1− qi)

)
, ν̄j = log

(
− log(1− q̄j)

)
,

respectively and keeping the first order derivatives, we have eti = ai + biti and ezj =
āj + b̄jzj , where ai = eνi(1− νi), bi = eνi , āj = eν̄j(1− ν̄j) and b̄j = eν̄j . With the similar
manner to [1], we derive the AMLEs of ξ1, ξ2 and σ, say ξ̃1, ξ̃2, and σ̃, respectively, by

ξ̃1 = A1 − σ̃B1,

ξ̃2 = A2 − σ̃B2,

σ̃ =
−(D1 +D2) +

√
(D1 +D2)2 + 4(C1 + C2)(E1 + E2)

2(C1 + C2)
,

where A1, A2, B1, B2, C1, C2, D1, D2, E1, E2 are given as follows:

A1 =

n∑
i=1

(ri + 1)biui

n∑
i=1

(ri + 1)bi

, B1 =

n∑
i=1

ai −
n∑

i=1

ri(1− ai)

n∑
i=1

(ri + 1)bi

, C1 = n,

A2 =

m∑
j=1

(sj + 1)b̄jvj

m∑
j=1

(sj + 1)b̄j

, B2 =

m∑
j=1

āj −
m∑
j=1

sj(1− āj)

m∑
j=1

(sj + 1)b̄j

, C2 = m,

D1 =
n∑

i=1

aiui − A1B1

( n∑
i=1

(ri + 1)bi

)
−

n∑
i=1

riui(1− ai),

D2 =

J2∑
j=1

ājvj − A2B2

( m∑
j=1

(sj + 1)b̄j

)
−

m∑
j=1

sjvj(1− āj),

E1 =
n∑

i=1

(ri + 1)bi(ui − A1)
2, E2 =

m∑
j=1

(sj + 1)b̄j(vj − A2)
2.
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APPENDIX B

Let U(λ) be a function of parameter value. The Bayes estimate of U(λ), under the squared
error loss function is

E
(
u(λ)|data

)
=

∫
u(λ)eQ(λ)dλ∫
eQ(λ)dλ

,

where Q(λ) = ℓ(λ) + ρ(λ), ℓ(λ) and ρ(λ) are the logarithm of likelihood function and prior
density of λ, respectively. Lindley has been approximated E(u(λ)|data) as

E
(
u(λ)|data

)
= u+

1

2

∑
i

∑
j

(uij + 2uiρj)σij +
1

2

∑
i

∑
j

∑
k

∑
p

ℓijkσijσkpup

∣∣∣∣
λ=λ̂

,

where λ = (λ1, . . . , λm), i, j, k, p = 1, . . . ,m, λ̂ is the MLE of λ, u = u(λ), ui = ∂u/∂λi,
uij = ∂2u/∂λi∂λj , ℓijk = ∂3ℓ/∂λi∂λj∂λk, ρj = ∂ρ/∂λj , and σij = (i, j)th element in the
inverse of matrix [−ℓij] all calculated at the MLE of parameters.

When we confront the case of three parameter λ = (λ1, λ2, λ3), Lindley’s approximation
conducts to

E
(
u(λ)|data

)
= u+ (u1d1 + u2d2 + u3d3 + d4 + d5) +

1

2
[A(u1σ11 + u2σ12 + u3σ13)

+B(u1σ21 + u2σ22 + u3σ23) + C(u1σ31 + u2σ32 + u3σ33)],

calculated at λ̂ = (λ̂1, λ̂2, λ̂3), where
di = ρ1σi1 + ρ2σi2 + ρ3σi3, i = 1, 2, 3,
d4 = u12σ12 + u13σ13 + u23σ23,

d5 =
1

2
(u11σ11 + u22σ22 + u33σ33),

A = ℓ111σ11 + 2ℓ121σ12 + 2ℓ131σ13 + 2ℓ231σ23 + ℓ221σ22 + ℓ331σ33,
B = ℓ112σ11 + 2ℓ122σ12 + 2ℓ132σ13 + 2ℓ232σ23 + ℓ222σ22 + ℓ332σ33,
C = ℓ113σ11 + 2ℓ123σ12 + 2ℓ133σ13 + 2ℓ233σ23 + ℓ223σ22 + ℓ333σ33.

In our case, for (λ1, λ2, λ3) ≡ (a, b, c) and u = R = a
a+b

, we have

ρ1 =
a1 − 1

a
− b1, ρ2 =

a2 − 1

b
− b2, ρ3 =

a3 − 1

c
− b3,

σij , i, j = 1, 2, 3 are obtained by using ℓij , i, j = 1, 2, 3 and

ℓ111 =
2n

a3
, ℓ222 =

2m

b3
,

ℓ133 = ℓ331 = ℓ313 = −
n∑

i=1

w(xi, ri, c, 2),

ℓ233 = ℓ332 = ℓ323 = −
m∑
j=1

w(yj, sj, c, 2),

ℓ333 =
2(m+ n)

c3
− a

n∑
i=1

w(xi, ri, c, 3)− b

m∑
j=1

w(yj, sj, c, 3),
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and other ℓijk = 0. Moreover, u3 = ui3 = 0, i = 1, 2, 3, and u1, u2 are given in (2.8). Also,
u11 =

−2b
(a+b)3

, u12 = u21 =
a−b

(a+b)3
, u22 =

2a
(a+b)3

. So,

d4 = u12σ12,

d5 =
1

2
(u11σ11 + u22σ22),

A = ℓ111σ11 + 2ℓ131σ13 + ℓ331σ33,

B = 2ℓ232σ23 + ℓ222σ22 + ℓ332σ33,
C = ℓ113σ11 + 2ℓ133σ13 + 2ℓ233σ23 + ℓ223σ22 + ℓ333σ33.

It is notable that all parameters are evaluated at (â, b̂, ĉ).
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