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Abstract: Nipah virus is one of the life-threatening infectious diseases in South-East Asian
regions. In this study, we developed a compartmental model of Nipah virus transmission using
an ordinary differential equation. We find the disease-free equilibrium and compute basic
reproduction number (R0). The sensitivity analysis of the parameters of the basic reproduction
number of the model is studied and identifies the most sensitive parameters which can control
the transmission dynamics of the Nipah virus. The model is extended to the optimal control
problem and is analyzed by using Pontryagin’s Maximum Principle. Further, we analyze the
cost-effective and three different time-dependent control strategies to minimize the number of
infectives in during that period of time. Finally, compare the results of the optimal control models
using numerical simulation.
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1. INTRODUCTION

Nipah virus disease is a Zoonotic infection caused by Nipah virus, a paramyxovirus
belonging to the genus Henipavirus of the family paramyxoviridae. Nipah Virus is one of
the deadliest infectious diseases in South-East Asian regions since end of the century. It is
transmitted to humans from infected bats, infected pigs, or contaminated fruits. Also it can
be transmitted directly from human to human contact [1, 6]. The transmission of disease can
be from bats to human, human to human and contaminated fruits to human. The symptoms
of the Nipah Virus are fever, headache, dizziness, muscle pain, vomiting, drowsiness, and
sore throat [5]. There is no medicine and vaccine available for either human or animals. The
primary treatment for humans is supportive care. According WHO the case fatality rate is
estimated at 40 % to 75 %. This rate can very by outbreak depending on local capabilities
for epidemiological surveillance and clinical management. In 1998, the first of Nipah virus
case was recorded during Malaysian outbreak. In 1999, Nipah Virus was detected from an
infected human of Sungai Nipah village in Malaysia [4]. In 1999, first largest Nipah virus
outbreak was identified in Malaysia and Singapore among pig farmers. In Malaysia and
Singapore outbreaks 276 cases were reported [1, 21] between 1998 to 1999. In that period
most of the infected people had contact with sick pigs [16], and death rate infected people
were 39% [7]. In India and Bangladesh, the evidence of Nipah Virus transmitted through
raw date palm sap contaminated with infectious bat excretions. In 2001, Bangladesh Nipah
outbreaks a total of 321 infection cases were reported [1, 16], and 161 of them deaths,
accounting for a 70 percentage fatality rate. In India, the first Nipah outbreak was reported
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in Siliguri town in 2001, followed by the second outbreak in Nadia district in West Bengal
state in 2007. In 2018, a Nipah outbreak In India and Bangaladesh human to human [9, 17],
transmission is regularly reported according to CDC, but in Malaysia and Singapore there is
no evidence of human to human transmission. In 2018, a Nipah Virus outbreak was reported
in Kozhikode district and in 2019, another outbreak reported in Kochi district in Kerala.
During this outbreak 17 Nipah infected people were dead. In 2021 also few Nipah virus
suspected cases reported in Kozhikode district of Kerala. A 12-years old boy were infected
and later the boy was death at a private hospital. The high risk of Nipah Virus infected
countries other than above mention include Australia, Bhutan, Brunei, Cambodia, China,
Indonesia, Laos, Madagascar, Myanmar, Nepal, Philippines, Papua New Guinea, Taiwan,
Thailand, and Vietnam.

Many Nipah virus mathematical models are proposed and analysis in the literature to
study the various aspects of transmission dynamics of disease. The study of Biswas [1]
shows that the control strategy of deadly NiV in Bangladesh. Chua et. al. [6] studied
Isolation of Nipah virus from Malaysian Island flying-fox. Chua et. al. [5] studied emergent
of deadly Paramyxovitus of Nipah virus. Chua [4] discussed about Nipah virus outbreak in
Malaysia. Mondal et. al. [7], studied controlling the spread of Nipah virus in Bangladesh
through a mathematical model. Parashar et. al. [16], shows that the risk factors for human
infection with a new zoonotic paramyxovirus and Nipah virus during the Malaysia outbreak
in 1998-1999. Goh et. al. [9], shows that clinical features of Nipah virus encephalitis among
pig farmers in Malaysia. Goswami [3], studied stability analysis of a mathematical model
and discussed sensitivity analysis of basic reproduction number. Paton et.al. [17], shows that
the outbreak of NiV infection among abattoir works in Singapore. Uppal [21], studied about
emergence of Malaysia Nipha virus outbreak.

This paper is organized as follows: Section 2, formulates the model, analysis of the
model includes positive invariant, boundedness. Section 3, compute the basic reproduction
number using next-generation matrix method. Section 4, discuss sensitivity analysis of basic
reproduction number and identify most sensitive parameter. Section 5, deals with the optimal
control techniques using Pontryagin’s Maximum Principal. Section 6, presents the numerical
Results and discussion. Finally we concludes our the paper in Section 7.

2. MATHEMATICAL MODEL

A non-linear mathematical model is formulated for Nipah virus by considering the total
population variable and the standard incident type interaction for transmission of the disease.
We incorporate the awareness parameter in the model as media has a positive effect on
controlling the transmission of any type of infectious disease. An extensive study suggests
that any awareness program related to the disease can alert susceptible individuals and will
not contact with infective. Also, due to the awareness program some infectives can take
medical care and recover from the disease. This proposed study is an extension work of
our previous mathematical model in [12], the mainly focuses of this study is on finding
the optimal control strategies to reduce the Nipah virus transmission. The model is divided
into seven mutually exclusive compartments viz., susceptible humans (Sh), exposed humans
(Eh), infected humans (Ih), recovered humans (Rh), susceptible fruits (Sf ), infected fruits
(If ), and infected bats (Ib). The model is a non-linear standard action type and considering

logistic growth bIb

(
1− Ib

K

)
on the infected bat’s population. Here, the incident rate

β1Ih
Nh

is

the average number contacts with infectives per unit time of one susceptible [20]. Although,(
β1Ih
Nh

)
Sh is the number of new cases per unit time among the susceptible. Nipah virus
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Table 2.1. Description of biological parameters

Parameter Description Value
Λh Rate of recruitment of human population 15
Λf Rate of recruitment of fruits 20
β1 Usual transmission probability between Sh and Ih 0.0541
β2 Transmission probability between Sh and If 0.0521
β3 Transmission probability between Ih and Sf 0.0631
δh Contact rate between Eh and Ih 0.53
γh Recovery rate of human population 0.009
µh Natural mortality rate of human population 0.19
µ1 Natural mortality rate of human population due to infection 0.09
µf Natural mortality rate of fruits 0.095
µb Natural mortality rate of bats 0.0123
b Growth rate coefficient of infected bats 0.005
K Carrying capacity of infected bats 100 - 500
ah Recovery rate of exposed humans due to effect of awareness 0.95

has been studied by many authors, most of the models are mass action type model but here
we have formulated a standard incident type model. We have consider standard incidence
type interaction between between human and fruits, which is more reasonable than mass
action type model. This type of consideration is more suitable for many disease like Nipah
virus, Zika virus, Dengue fever etc. It is well known that Nipah virus disease is one of the
deadliest endemic, so long term study of the dynamics of disease is most significant. The
biological interpretations of parameters and values of the parameters are shown in Table 1.
The mathematical model of Nipah described as follows:

S ′
h = Λh − β1Sh

Ih
Nh

− β2Sh
If
Nh

− µhSh

E ′
h = β1Sh

Ih
Nh

+ β2Sh
If
Nh

− (δh + ah + µh)Eh

I ′h = δhEh − (γh + µh + µ1)Ih
R′

h = ahEh + γhIh − µhRh (2.1)

S ′
f = Λf − β3Sf

Ib
Nh

− µfSf

I ′f = β3Sf
Ib
Nh

− µfIf

I ′b = bIb

(
1− Ib

K

)
− µbIb

2.1. Positivity and Boundedness of the system
Here, we shall show that the positivity and boundedness of the population. From the system
(2.1), we have

S ′
h

∣∣∣
Sh=0

= Λh > 0, E ′
h

∣∣∣
Eh=0

= β1Sh
Ih
Nh

+ β2Sh
If
Nh

≥ 0,

I ′h

∣∣∣
Ih=0

= δhEh ≥ 0, (R′
h)Rh=0 = ahEh + γhIh ≥ 0,
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S ′
f

∣∣∣
Sf=0

= Λf > 0, I ′f

∣∣∣
If=0

= β3Sf
Ib
Nh

≥ 0, I ′b

∣∣∣
Ib=0

= 0

Here, all the rates are non-negative, so if we start in the interior of the non-negative
bounding R6, we shall always remain in this cone keeping mind of the fact that direction
of the vector field is inward on all the bounding planes. We note the change rate of the
total population Nh = Sh + Eh + Ih +Rh and Nf = Sf + If are given by the following
differential equations.

N ′
h = Λh − µhNh − µ1Ih

N ′
f = Λf − µfNf

This gives lim sup
t→∞

Nh ≤ Λh

µh

, lim sup
t→∞

Nf ≤ Λf

µf

. Therefore, all Sh(t), Eh(t), Ih(t), Rh(t) are

bounded by
Λh

µh

and the solutions Sf (t), If (t) are bounded by
Λf

µf

. Hence, the biological

feasible region of the proposed system (2.1) is given by the following positively invariant
region:

Ω = (Sh, Eh, Ih, Rh, Sf , If , Ib) ∈ R7
+ : (Sh + Eh + Ih +Rh) ≤

Λh

µh

, (Sf + If ) ≤
Λf

µf

3. BASIC REPRODUCTION NUMBER R0

The disease-free equilibrium of the proposed model as E0=(N0
h , E

0
h, I

0
h, R

0
h, N

0
f , I

0
f , I

0
b ) =(

Λh

µh

, 0, 0, 0,
Λf

µf

, 0, 0

)
.

To find the basic reproduction number R0, using the next-generation matrix method as
described in [2, 8, 12, 13]. The matrix F and V as follows:

F =


β1(Nh − Eh − Ih −Rh)

(
Ih + If
Nh

)
0

β3(Nf − If )
Ib
Nh

0

 and V =


(δh + ah + µh)Eh

−δhEh + (γh + µh + µ1)Ih
µfIf

−bIb

(
1− Ib

K

)
− µbIb


Jacobian of F and V at E0 as follows

F=


0 β1 β1 0
0 0 0 0

0 0 0 β3
µhΛf

µfΛh
0 0 0 0

 and V =

 δh + µh + ah 0 0 0
−δh γh + µh + µ1 0 0
0 0 µf 0
0 0 0 −b+ µb


The largest eigenvalue of FV −1 is called the basic reproduction number R0 and is
obtained as follows:

R0 =
β1δhµfΛhc3 − β3µhΛfc1c2

2c1c2c3µfΛh

+

√(
β1δhµfΛhc3 − β3µhΛfc1c2

2c1c2c3µfΛh

)2

+
β1β3δhµhΛf

µfΛhc1c2k4
(3.2)

where,
c1 = δh + µh + ah; c2 = γh + µh + µ1, c3 = µb − b,
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4. SENSITIVITY ANALYSIS OF REPRODUCTION NUMBER

In this section, we perform sensitivity analysis for the parameters involved in reproduction
number R0, which reflects that increase or decrease in these parameter causes increase or
decrease in R0 [3, 19]. The sensitivity of R0 to different parameters is shown in Figs. 4.1
to 4.7. It is used to discover the parameters that have a high impact on R0 and should be
targeted by intervention strategies. Sensitivity indices allows to measure the relative change
in a variable when parameter changes. For that we use the forward sensitivity index of a
variable, with respect to a given parameter, which is defined as the ratio of the relative change
in the variable to the relative change in the parameter. If such variable is differentiable with
respect to the parameter, then the sensitivity index is defined using partial derivatives. The
normalized forward sensitivity index of R0, which is differentiable with respect to a given
parameter P , is defined by

Y R0
P =

P

R0

∂R0

∂P
(4.3)

The above formula can be used to compute the analytical expression for the sensitivity of
R0 to each parameter that it includes. Accordingly, the sensitivity indexes of the model (2.1)
are illustrate in Fig. 4.1. Consequently, the value of R0 increases with increase in the values
of all positive indices parameters β1, β3, δh, µf , µb, and Λf with R0. Also, the parameters
ah, γh, µh, µ1, b, and Λh have negative index with R0. It is clearly observed that the effect of
the parameter Λh is the maximum and hence it is the most sensitive parameter of R0. It means
that small change (increase or decrease) in the parameters Λh will significant change in the
value of R0. Other sensitive parameter R0 are β1, δh, µh as small change in these parameters
can cause large change in the value of R0. So correct estimation of these parameters is very
important to predict transmission of this disease. It is obvious that phenomenon of a lower
value of R0 will boost to prevent the disease prevalence. Thus, to control the disease from the
population, we have to control the increase of parameters having positive indices with R0,
whereas parameters with negative indices should be maintained.
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Fig. 4.1. Forward sensitivity of R0 for the parameters as β1 = 0.0541; β3 = 0.0631; δh = 0.53; ah = 0.95;
γh = 0.009; µh = 0.19; µf = 0.095; µ1 = 0.09; µb = 0.0123; b = 0.005; Λh = 15; Λf = 20.

5. THE OPTIMAL CONTROL MODEL

In this section, three different types of control intervention viz., u1(t), u2(t), andu3(t)
are incorporated into the model system (2.1) and extended to optimal control problem.

Copyright © 2022 ASSA. Adv Syst Sci Appl (2022)



OPTIMAL CONTROL TECHNIQUES OF NIPAH VIRUS DISEASE 181

0
1

1

1R
0

0.8

3

0.5 0.6

1

2

0.4
0.20 0

Fig. 4.2. Influence of β1 and β3 on R0.
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Fig. 4.3. Influence of β1 and µh on R0.
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Fig. 4.4. Influence of β1 and a on R0.

There interventions are implementing either pharmaceutical(treatment) or non-
pharmaceutical(effect of information). The main goal of this research is to investigate
the best control strategies with minimum cost of implementation as well as financial loss
generated. Since there is no proper vaccination and appropriate medicines for Nipah virus
infections, so in the model we introduce three control strategies, viz, creating awareness
u1(t), estimation of novel technologies u2(t), and the treatment u3(t). If u1(t), u2(t), and
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Fig. 4.5. Influence of β1 and µf on R0.
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Fig. 4.6. Influence of β1 and δh on R0.
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Fig. 4.7. Influence of Λh and γh on R0.

u3(t) are equal to zero, then there is no effort being placed in these controls at time t and if
they are equal to one then the maximum effort is applied. The details of each intervention
are described as follows:
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• Control variable u1(t): The force of Nipah Virus infections is reduce by (1-u1(t)),
where the effect control measures u1(t) increase awareness in the population which
results in the reduction of the transmission rate β1 and the control measures the effort
required for giving health cares for the infected people to reduce the infected individuals.
Creating awareness activity among the community about the risky areas before outbreak
of the disease is more effective. Personal care should be taken in order to avoid direct
contact with the person infected by Nipah virus. Also, using masks, gloves and glasses
will help in prevention and control effectively potential outbreaks.

• Control variable u2(t): The control variable u2(t) is estimation of novel technologies
or methods to minimize spread of the virus within bat or pig population. Controlling
bat is associated with a reduction in human cases. This is an effective intervention but
requires considerable amount of money. Thus, our main objective is to minimize the
disease effect in pig or bat population with minimum cost.

• Control variable u3(t): The control variable u3(t) is the use of effective medicines for
the treatment measure of infectious humans and insecticide to the Nipah virus infection
causing species. η is the modification parameter in control u3(t). Due to the expensive
nature of the antibody drugs, in this effective intervention requires large amount of
money. Thus, the main objective of this intervention is to minimize the disease effect
in human population with minimum cost.

dSh

dt
= Λh − (1− u1(t))β1Sh

Ih
Nh

− (1− u2(t))β2Sh
If
Nh

− µhSh

dEh

dt
= (1− u1(t))β1Sh

Ih
Nh

+ (1− u2(t))β2Sh
If
Nh

− (δh + ah + µh)Eh

dIh
dt

= δhEh − (γh + ηu3(t) + µh + µ1)Ih

dRh

dt
= ahEh + (ηu3(t) + γh)Ih − µhRh (5.4)

dSf

dt
= Λf − (1− u2(t))β3Sf

Ib
Nh

− µfSf

dIf
dt

= (1− u2(t))β3Sf
Ib
Nh

− µfIf

dIb
dt

= bIb

(
1− Ib

K

)
− µbIb

Consider u1(t) = u1, u2(t) = u2, and u3(t) = u3 for further analysis.

5.1. COST CONSTRUCTION AND CHARACTERIZATION OF OPTIMAL CONTROLS
This particular section devotes into two parts which include determination of the total
cost generated due to applied controls as well as diseases itself. Whereas the second part
determines the analytical forms of the controls.

5.1.1. Total cost determination Here, the total cost is determined for the applied control
interventions and disease as well, which need to be minimized.

• Cost due to disease: The cumulative cost incurred due to the disease burden is modeled
as follows: ∫ t

0

A1(Eh + Ih) + A2(Sf + If )dt
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This cost consists of various components such as cost due to loss of manpower,
opportunity loss and significant economic losses for farmers.

• Cost incurred due to health care awareness : The total cost involved in reducing the
transmission between human to human is given as∫ t

0

A3u
2
1dt.

• Cost incurred due to novel technologies: The total cost involved in reducing bat or pig
infection is defined as ∫ t

0

A5u
2
2dt.

• Cost incurred in treatment for infected human population: The cumulative cost in
process of treating infected human is defined by∫ t

0

A5u
2
3dt.

The cost functional corresponding to total cost incurred, for fixed time t, which need to be
minimized is given by

J(u1, u2, u3) =

∫ t

0

[
A1(Eh + Ih) + A2(Sf + If ) + A3Ib +

1

2
(A4u

2
1 + A5u

2
2 + A6u

2
3)

]
dt

(5.5)
subject to the model system (5.4). The parameter A1 ≥ 0, A2 ≥ 0, A3 ≥ 0, A4 ≥ 0, A5 ≥
0, A6 ≥ 0 are the weight and balancing constants, which measure the respective cost
involvement over the interval [0, t]. In order to find an optimal control, u1

∗, u2
∗, and u3

∗

such that
J(u1

∗, u2
∗, u3

∗) = min
(u1,u2,u3)∈U

J(u1, u2, u3), (5.6)

where U is the control set and is defined as

U = {(u1, u2, u3) : 0 ≤ u1, u2, u3 ≤ 1, t ∈ [0, t]}

Here, all the controls are bounded and measurable.

5.1.2. Existence and characterization of optimal controls Here, we shall first establish the
existence of such control functions that minimises the cost functional J . The Lagrangian L
of this problem is defined as:

L(Eh, Ih, Sf , If , Ib, u1, u2, u3) = A1(Eh + Ih) + A2(Sf + If ) + A3Ib +
1

2
A4u1

2

+
1

2
A5u

2
2 +

1

2
A6u

2
3

Now, we shall use Pontryagin’s maximum principle [18] for necessary conditions for optimal
controls system (5.4). For that by choosing X = (Sh, EhIh, Rh, Sf , If , Ib), U = (u1, u2, u3)
and λ = (λ1, λ2, λ3, λ4, λ5, λ6), the associated Hamiltonian H can be written as

H(X,U , λ) = L(Eh, Ih, Sf , If , Ib, u1, u2, u3) + λ1
dSh

dt
+ λ2

dEh

dt
+ λ3

dIh
dt

+ λ4
dRh

dt

+λ5
dSf

dt
+ λ6

dIf
dt

+ λ7
dIb
dt

(5.7)
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Since u∗
1,u

∗
2, u

∗
3 are solutions to the control problem (5.4), there exists the adjoint variables

λ1, λ2, λ3, λ4, λ5, λ6 satisfying the following conditions.

dx

dt
=

∂H(t, x, u∗
1, u

∗
2, u

∗
3, λ1, λ2, λ3.λ4, λ5, λ6, λ7)

∂λ

0 =
∂H(t, x, u∗

1, u
∗
2, u

∗
3, λ1, λ2, λ3.λ4, λ5, λ6, λ6, λ7)

∂u
dλ

dt
= −∂H(t, x, u∗

1, u
∗
2, u

∗
3, λ1, λ2, λ3.λ4, λ5, λ7)

∂x
(5.8)

Theorem 5.1:
For the objective functional (5.5) and the control set (5.8) subject to control system (5.4)
there exists an optimal control u∗ = (u1

∗, u2
∗, u3

∗) ∈ U such that

J(u1
∗, u2

∗, u3
∗) = min

U
J(u1, u2, u3).

Proof
To prove this theorem, we use [14]. As, we have discussed above that all the state
variables (population) are bounded for each bounded controls coming from the control
set U . Furthermore, Lipschitz condition with respect to state variables is satisfied by
the right hand side functions of the model system (5.4). The control variable set U
is also convex and closed by the definition and the model system (5.4) is linear
in control variables u1,u2 and u3 with coefficients depending on state variables. The

integrand of the function L = A1(Eh + Ih) + A2(Sf + If ) + A3Ib +
1

2
A4u1

2 +
1

2
A5u

2
2 +

1

2
A6u

2
3 is convex on the control set U due to quadratic nature of control variables

u1,u2 and u3 respectively. Moreover, L = A1(Eh + Ih) + A2(Sf + If ) + A3Ib +
1

2
A4u1

2 +

1

2
A5u

2
2 +

1

2
A6u

2
3 ≥

1

2
A4u1

2 +
1

2
A5u

2
2 +

1

2
A6u

2
3. Now consider c1 = min(A1, A2, A3) > 0

and g(u1, u2, u3) = c1(u1
2 + u2

2 + u3
2). Thus, L ≥ g(u1, u2, u3) holds true and g is

continuous. Also, g satisfies the condition |(u1, u2, u3)|−1g(u1, u2, u3) → ∞ whenever
|(u1, u2, u3)| → ∞. Thus, all the conditions for the existence of controls are fulfilled. Hence
from result [10, 14, 15, 18], we conclude that there is a control pair u∗

1, u
∗
2, u

∗
3 such that

J(u1
∗, u2

∗, u3
∗) = min

U
J(u1, u2, u3).

Theorem 5.2:
For optimal controls measures u∗

1, u
∗
2, u

∗
3 and the state solutions S∗

h, E
∗
h, I

∗
h, R∗

h, S
∗
f , I

∗
f ,

I∗b of the state system (5.4), there exists adjoint variables λ = (λi)
t ∈ R7, i = 1, 2, 3, 4, 5, 6, 7

such that

dλi

dt
= −∂H

∂ui

(5.9)

with transversality conditions

λ1(t) = λ2(t) = λ3(t) = λ4(t) = λ5(t) = λ6(t) = λ7(t) = 0 (5.10)

Further, the optimal controls (u1
∗, u2

∗), u3
∗ which minimizes J over the region U given by

u1
∗ = min{1,max(0, ũ1)}
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u2
∗ = min{1,max(0, ũ2)}

u3
∗ = min{1,max(0, ũ3)}

where,

ũ1 =
β1Ih

(Sh + Eh + Ih +Rh)A4

ũ2 =

(
4β3

SfIb
N2

h

+
Ib
Nh

+
Sf

Nh

)
(λ6 − λ5)

A5

(5.11)

ũ3 =
(γh + η)(λ3 − λ4)

A6

Proof
Let u∗

1, u
∗
2, u

∗
3 be the optimal control functions and S∗

h, E
∗
h, I

∗
h, R

∗
h, S∗

f , I
∗
f , I

∗
b are the

corresponding state variables. Then, Pontryagin’s Maximum Principle ensures the existence
of the following adjoint variable λi(i = 1, 2, 3, 4, 5, 6, 7) ∈ R6, which satisfies the following
canonical equations:

dλ1

dt
= − ∂H

∂Sh

,
dλ2

dt
= − ∂H

∂Eh

,
dλ3

dt
= −∂H

∂Ih
,
dλ4

dt
= − ∂H

∂Rh

,
dλ5

dt
= − ∂H

∂Sf

,

dλ6

dt
= −∂H

∂If
,
dλ7

dt
= −∂H

∂Ib

with transversality conditions (5.10) and the Hamiltonian (5.7) .

To establish the adjoint system (5.9) and the transversality conditions in (5.10), we
use Hamiltonian H in (5.7).

By using third condition of (5.6), we get (5.11), as follows

−dλ1

dt
= (1− u1)β1

(Eh + Ih +Rh)Ih
N2

h

(λ1 − λ2) + (1− u2)β2
(Eh + Ih +Rh)If

N2
h

(λ1 − λ2)

+(1− u2)β3
SfIb
N2

h

(λ6 − λ5) + µhλ1

dλ2

dt
= −A1 + (1− u1)β1

ShIh
N2

h

(λ2 − λ1) + (1− u2)β2
ShIf
N2

h

(λ2 − λ1)

+(1− u2)β3
SfIb
N2

h

(λ6 − λ5) + (ah + µh)λ2

dλ3

dt
= −A1 + (1− u1)β1

Sh(Sh + Eh +Rh)

N2
h

(λ2 − λ1) + (1− u2)β2
ShIf
N2

h

(λ2 − λ1)

+(1− u2)β3
SfIb
N2

h

(λ6 − λ5) + (γh + ηu3)(λ3 − λ4) + (µh + µ1)λ3

dλ4

dt
= (1− u1)β1

ShIh
N2

h

(λ2 − λ1) + (1− u2)β2
ShIf
N2

h

(λ2 − λ1)
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+(1− u2)β3
SfIb
N2

h

(λ6 − λ5) + µhλ4

dλ5

dt
= −A2 + (1− u2)β3

Ib
Nh

(λ6 − λ5) + µfλ5

dλ6

dt
= −A2 + (1− u2)β2

Sh

Nh

(λ1 − λ2) + µfλ6

dλ7

dt
= −A3 + (1− u2)β3

Sf

Nh

(λ5 − λ6) + µbλ7 − (b− 2bIb
K

)λ7

Using the second condition of (5.6), we get (5.11), as follows

∂H
∂u1

= A4u1 +
β1Ih(λ1 − λ2)

Sh + Eh + Ih +Rh

= 0

This implies,

u1 =
β1Ih(λ2 − λ1)

(Sh + Eh + Ih +Rh)A4

∂H
∂u2

= A5u2 +

(
4β3

SfIb
N2

h

+
Ib
Nh

+
Sf

Nh

)
(λ5 − λ6) = 0

This implies,

u2 =

(
4β3

SfIb
N2

h

+
Ib
Nh

+
Sf

Nh

)
(λ6 − λ5)

A5

And,
∂H
∂u3

= A6u3 + (γh + η)(λ3 − λ4) = 0

This implies,

u3 =
(γh + η)(λ3 − λ4)

A6

Moreover, lower and upper bounds of these control are 0 and 1 respectively. Thus, if
ũ1 > 1, ũ2 > 1, ũ3 > 1, then

u1 = u2 = u3 = 1.

Also, ũ1 < 0, ũ2 < 0 , ũ3 < 0, then

u1 = u2 = u3 = 0.

Otherwise, we have
u1 = ũ1, u2 = ũ2, and u3 = ũ3

Hence, for these controls u∗
1, u

∗
2, u

∗
3 we get optimum value of the function J .
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6. NUMERICAL RESULTS AND DISCUSSION

With the help of MATLAB, the optimal control model is simulated. We simulate our optimal
control model by using the parameters shown in Table 1. Most of the values of Table 1
are taking from [10]. The weight constants for the optimal control problem are taken as
A1 = 1, A2 = 1, A3 = 1, A4 = 55, A5 = 75, A6 = 85. We solve the optimality system (5.4)
by iterative method with the help of forward and backward difference approximations [14].
We consider the time interval as [0, 150]. First we solve the state equations by the forward
difference approximation method then we use the backward difference approximation
method to solve the adjoint equations. It is observed that from Fig. 6.15, the optimal control
model gives a better result as compacted to the model without the optimal control model as it
reduces the number of infectives significantly in a desired interval of time. Following are the
different types of control strategies to see the impact of optimal control in the total number
of human infectives.

Strategy I: When only one control is used at a time

(i) Employing only control measure u1 to optimize the objective function J , while control
intervention u2 = u3 = 0, were not employed. The influence of u1 is shown in the Fig. 6.8,
to minimize the objective function, the optimal control u1 is maintained at the maximum
level. A single preventive measure can influence the spread of Nipah virus in the population.
From the figures, it is clear that the control intervention u1 is more effective compared to
other types of controls.

(ii) Employing only control measure u2 is used to optimize the objective function J , while
control intervention u1 = u3 = 0, were not employed. The influence of u2 is demonstrated in
Fig. 6.9,to minimizing cost as well as infection of Nipah virus.

(iii) Employing only control measure u3 is used to optimize the objective function
J , while control intervention u2 = u3 = 0, were not employed. The influence of u3 is
demonstrated in Fig. 6.10, to minimize the disease effect in human population with minimum
cost.

Strategy II: When two controls are used

Employing double control interventions (u1, u2) when u3 = 0, (u1, u3) when u2 = 0,
and (u2, u3) when u1 = 0, to optimize the objective function J. The control intervention are
demonstrated in Figs. 6.11, 6.12, and 6.13. It is observed that combination of two control
intervention is most effective then using signal control intervention. Significant number of
Nipah virus infective cases reduce.

Strategy III: When all three controls are used

Employing all three control interventions (u1, u2, u3) to optimize the objective function
J . This control intervention is demonstrated in Fig. 6.14. It is easy to say that the total number
of infectious individuals decreases significantly if we combine all three optimal controls u1,
u2, and u3. The three optimal control application is the best control strategy to minimize the
number of infectives, and will definitely reduce the spread of Nipah virus.
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Fig. 6.8. Control profile of u1, when u2 = u3 = 0.

0 50 100 150
Time(in Days)

0

0.2

0.4

0.6

0.8

1

C
o

n
tr

o
l P

ro
fi

le
 (

u
2)

u
2
, when u

1
=u

3
=0

Fig. 6.9. Control profile of u2, when u1 = u3 = 0.
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Fig. 6.10. Control profile of u3, when u2 = u3 = 0.

7. CONCLUSION

The transmission dynamics of Nipah virus mathematical model is proposed and analyzed.
Disease-free equilibrium and the basic reproduction number (R0) is computed. The
sensitivity of different parameters of (R0) is presented and it is clear that from the forward
sensitivity indices figure that Λh, β1, δh, and µh are very sensitive parameter. Its shows that
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Fig. 6.11. Control profile of u1, u2, when u3 = 0.
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Fig. 6.12. Control profile of u1, u3, when u2 = 0.
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Fig. 6.13. Control profile of u2, u3, when u1 = 0.

small change in these parameters can cause huge change in the value of basic reproduction
number R0. The parameter ah corresponds effects of awareness and it is the fact that due
to awareness programs by media, the equilibrium level of the infected population decreases
significantly. The proposed mathematical model is extended to optimal control problem by
incorporating three time-dependent optimal control parameters to reducing transmission
and cost duo to Nipah virus outbreak by using Pontryagin’s Maximum Principal. The
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Fig. 6.14. Control profile of u1, u2, and u3.
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Fig. 6.15. Variation of infected human populations against time with and without optimal control.

optimal control model provides a more reliable result as compacted to the model without the
optimal control model. This control strategy reduces the number of infectives significantly
in a desired interval of time. Numerical simulation is performed to support our analytical
findings. The fact of the control strategies are demonstrated with the help of Matlab and it
is observed that combining all three optimal controls give significant effect. The simulation
result indicates the effectiveness of optimal control strategies in reducing the number of
infectives.
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