
Adv Syst Sci Appl 2022; 04; 212-223
Published online at http://ijassa.ipu.ru.

Computer Program to Automate the Determination of the
Size of Sanitary Protection Zones (SPZS) and Surveillance
Zones for the Storage of Sources of Ionizing Radiation in

places of Burial / Storage of Radioactive Waste

Petr Istratov1, Yury Minaev1, Elena Zarubina1, Petr Zolotariov1
1) Medical University Reaviz, Moscow, Russia

Abstract: The rapid development of nuclear power and industry, has led to the need to address
the issues of waste disposal, which are sources of ionizing radiation and can be hazardous to
human health. In this regard, the development of automated systems for preliminary assessment
of the place of future disposal of radioactive waste (RW) and the width of the sanitary protection
zone (SPZ), to avoid falling outside residential areas, is an urgent task. The purpose of this study
was to develop algorithms for solving the task of processing and analyzing information for
modeling the operation of the radioactive waste disposal system, as well as to test the
performance of these algorithms in practice. On the basis of artificial intelligence (neural network)
the "Computer program for automation of determination of dimensions of sanitary-protective
zones (SPZ) and surveillance zones for storage of sources of ionizing radiation in places of
burial/storage of radioactive wastes" was developed. The main advantage of the developed neural
network is that it can identify non-obvious attributes for determining the size of sanitary
protection zones (SPZ). These algorithms do not rely on the existing knowledge about the
influence of the analyzed indicators, which makes them objective and allows to use them to
create models of the state of storage of radiation sources.

Keywords: neural networks, algorithm, sanitary protection zone.

1. INTRODUCTION

Rapid development of nuclear power and industry has led to the necessity of solving the
issues of waste disposal, which are sources of ionizing radiation and may pose a danger to
human health.

All issues related to the organization of measures to protect the population living in the
vicinity of such facilities are strictly regulated, however, when choosing a place for disposal
of radioactive waste one always has to take into account, in addition to the class of waste, the
combined effect of various factors both natural and climatic (wind rose, amount of
precipitation, soil nature, natural radioactive background of the area, presence or absence of
forests, their nature and much more) and anthropogenic nature (for example, presence of
industrial waste). In this connection, development of automated systems for preliminary
assessment of the place of future disposal of radioactive waste (RW) and the width of the
sanitary protection zone (SPZ), in order to avoid getting outside the zones of residential
development, is an urgent task.

The purpose of this study was to develop algorithms for solving the problem of
information processing and analysis to simulate the operation of the radioactive waste
disposal system, as well as to test the performance of these algorithms in practice.

In general case the problem to be solved refers to the problem of classification. This is
the main and very extensive group of medical and biological problems. The answer in them
is a class - the choice of one variant from a predetermined set of variants. For our problem,

 P. ISTRATOV, Y. MINAEV, E. ZARUBINA, P. ZOLOTARIOV 213

Copyright ©2022 ASSA. Adv. in Systems Science and Appl. (2022)

classification is defined as a binary problem (elementary classification) - in this case, the set
of possible answers consists of two options (classes), with the first option determining the
size of the obtained sanitary protection zone as sufficient, and the second option as not
adequate enough to solve the problem.

2. OBJECTIVES

The scientific goal of this work consisted of solving the following main tasks:
1. Choose the form of AI implementation for the developed program;
2. Analyze and select the most significant indicators for the system development;
3. Create an expert system based on the selected indicators;
4. Test the system operation under conditions of real estimation of the SWD width in

the area of the RAW disposal site.

3. METHODS

Several stages of development of "Computer program for automation of determining the
size of sanitary protection zones (SPZ) and surveillance zones for storage of sources of
ionizing radiation in places of burial / storage of radioactive waste" can be distinguished in
creation of a self-training neural network, some of which coincide with the stages of creation
of traditional systems.

Problem formulation: the same as for the traditional systems plus the choice of the
optimal neural network structure and training methods (for most tasks the structure and
methods are standard).

1. Collection of training data.
A set of examples for training the network, each of which represents an array of input

data and its corresponding response known in advance.
2. Creating and training a neural network.
If the task is within the standard scheme (in most cases), you don't need to do any

statistical calculations, but programming work, too. If the task is non-standard, you need to
adapt the structure of a neural network and the method of estimation calculation in training.
Training of a neural network in most standard cases is an automatic process, which only after
its completion requires a specialist to evaluate the results. Of course, it may often require
correction, creation of additional networks with other parameters, etc., but it is always
possible to evaluate the system performance at any stage of training by testing a control
sample. Developing methodology of neural network expert systems, we proceeded from the
possibility to develop the most individualized (designed for one particular user-specialist)
systems by this specialist. Of course, nothing prevents to combine in one system individual
experience of several experts. The absence of "mathematical" stages realizes such
possibilities. The subject specialist is able to set the task himself; moreover, no one but him
can do it better. The subject specialist must also collect the material. Schemes of problem
setting, ways of data representation and ways of response production by a neural network are
designed in such a way that most tasks in many fields fit into these standard schemes. So
with well-designed neural network software tools and neural network documentation, most
specialists are able to develop not very complex neural network applications on their own.

3. Interface creation.
The same as for traditional expert systems.
4. Debugging and testing.
This stage mainly includes debugging of the program, since testing is often carried out

during the training of networks.
5. Post-training.

214 PROGRAM TO AUTOMATE THE DETERMINATION OF THE SIZE OF SANITARY PROTECTION ZONES

Copyright ©0000 ASSA Adv. in Systems Science and Appl. (0000)

This stage is typical only for learning systems. When creating neuroexpert programs it is
quite seldom possible to collect enough data for good network training at once. So when
creating a neural network researchers determine the best parameters of networks and do the
initial training. Subsequently users train the system in conditions of real work and real data,
transferring the experience to it. Moreover, the fundamental difference of methodology of
neural network systems creation from traditional ones is exactly, that system is never created
at once ready and never completely finished, continuing to accumulate experience in the
process of operation.

Let's look at the structure and functioning of an individual neuron. Each connection from
neuron to neuron is called a synapse. Fig. 1 shows a neuron with a group of synapses
connecting the neuron either to other neurons or to the outside world. To consider how a
neuron works, it does not matter whether the signal comes to the neuron from the outside
world or from another neuron, and it does not matter where the signal is sent from the
neuron. In full-connected networks the output signal is sent to all other neurons.

S y n a p s e 1

Synapse 2

Synapse 3

Adder Converter

Synapse 1

Fig. 1. Diagram of a neuron

A neuron consists of two functional units: the input adder and the neuron itself, or the
transducer.

A neuron functions as follows: at the current moment signals from other neurons and/or
from the external world are sent to it via input synapses (there are 3 on the figure). Each
synapse has a parameter called synapse weight, which represents some number. A signal
passing through a synapse is multiplied by the weight of that synapse. Depending on the
weight, the signal can be amplified (weight modulus > 1) or attenuated (weight modulus < 1)
in amplitude. The signals from all the synapses leading to a given neuron are received by the
adder.

The summator sums all incoming signals and sends one number, the resulting sum, to the
neuron itself (transducer). The value of this number will depend both on the values of initial
signals and synapse weights. The neuron, which receives this number, transforms it
according to its function resulting in another number, and sends it to all other neurons via the
"axon" through the corresponding synapses. Subsequent neurons perform the same
operations with the received signals, the only difference being that, firstly, the weights of
their synapses may already be different, and secondly, other neurons may have another type
of the transformation function. In the neural networks we construct, all neurons have the
same function. This function, called the characteristic function, has the form:

f (X) = X/(C+X), (1.0)

where X is the signal coming from the adder, C is a constant called the neuron
characteristic. Experimentally we got that the optimal range of the characteristic for solving

 P. ISTRATOV, Y. MINAEV, E. ZARUBINA, P. ZOLOTARIOV 215

Copyright ©2022 ASSA. Adv. in Systems Science and Appl. (2022)

the vast majority of problems is from 0.1 to 0.8. Plots of the characteristic function for both
cases are shown in Fig. 2. The choice of such a function is due to the fact that it is smooth
and continuous over the entire range of variables X, the range of values is always limited.

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

-1 -0,5 0 0,5 1

Fig. 2. Diagram of the characteristic function

Training the back propagation network includes the following operations [24]:
1. Select the next training pair from the training set; feed the input vector to the input of

the network.
2. Compute the output of the network.
3. Calculate the difference between the output of the network and the required output

(target vector of the training pair).
4. Adjust the weights of the network to minimize the error.
5. Repeat steps 1 to 4 for each vector of the training set, until the error on the whole set

reaches an acceptable level.
The operations in steps 1 and 2 are similar to those in the already trained network, i.e.,

you feed the input vector and calculate the resulting output. The computation is performed in
layers. In Fig. 3.3 first the outputs of neurons of layer j are computed, then they are used as
inputs of layer k, the outputs of neurons of layer k are computed, which form the output
vector of the network.

In step 3, each of the outputs of the network, which in Fig. 3 are labeled OUT, is
subtracted from the corresponding component of the target vector to get an error. This error
is used in step 4 to correct the weights of the network, with the sign and magnitude of the
weight changes determined by the learning algorithm (see below).

After a sufficient number of repetitions of these four steps, the difference between the
actual outputs and the target outputs should decrease to an acceptable value, and the network
is said to be trained. Now the network is used for recognition and the weights are unchanged.

Steps 1 and 2 can be looked at as a "forward pass" as the signal propagates through the
network from input to output. Steps 3, 4 constitute the "reverse pass", here the calculated
error signal propagates back through the network and is used to adjust the weights. These
two passes will now be detailed and expressed in a more mathematical form.

Forward passage. Steps 1 and 2 can be expressed in vector form as follows: input vector
X is fed and the output is vector Y. The vector pair input-target X and T is taken from the
training set. Calculations are performed on vector X to get output vector Y.

As we have seen, calculations in multilayer networks are performed layer by layer,
starting from the layer closest to the input. The NET value of each neuron of the first layer is
calculated as a weighted sum of the neuron's inputs. Then the activation function F
"compresses" the NET and gives the OUT value for each neuron in that layer. When the

216 PROGRAM TO AUTOMATE THE DETERMINATION OF THE SIZE OF SANITARY PROTECTION ZONES

Copyright ©0000 ASSA Adv. in Systems Science and Appl. (0000)

output set of a layer is obtained, it is the input set for the next layer. The process is repeated
layer by layer until the final set of outputs of the network is obtained.

This process can be expressed in condensed form using vector notation. The weights
between neurons can be thought of as a matrix W. For example, the weight from neuron 8 in
layer 2 to neuron 5 in layer 3 is denoted by w8,5. Then the NET vector of layer N can be
expressed not as the sum of products, but as the product of X and W. In vector notation, N =
XW. Component application of the function F to the NET-vector N yields the output vector
O. Thus, for this layer the computational process is described by the following expression:

О = F(XW) (2.1)

The output vector of one layer is the input vector for the next layer, so calculating the
outputs of the last layer requires applying equation (2.3) to each layer from the network input
to its output.

Reverse pass. Adjusting the weights of the output layer. Since each neuron in the output
layer has a target value, weights can easily be adjusted using a modified delta rule. The inner
layers are called "hidden layers", for their outputs there are no target values for comparison.
Therefore, the training becomes more complicated.

Neuron in the hidden layer Neuron in the outpyt layer

Tuning factor

Fig. 3. Adjusting the weight in the output layer

Fig. 3 shows the learning process for one weight from neuron p in hidden layer j to
neuron q in output layer k. The output of neuron of layer k, subtracted from the target value
(Target), gives an error signal. It is multiplied by the derivative of the compressive function
[OUT(1 - OUT)] calculated for this neuron of layer k, thus giving the value δ.

δ = OUT(1 – OUT)(Target – OUT) (2.2)

Then δ is multiplied by the OUT value of neuron j, from which the weight in question
comes out. This product is in turn multiplied by the learning rate coefficient η (usually from

 P. ISTRATOV, Y. MINAEV, E. ZARUBINA, P. ZOLOTARIOV 217

Copyright ©2022 ASSA. Adv. in Systems Science and Appl. (2022)

0.01 to 1.0), and the result is added to the weight. The same procedure is performed for each
weight from the hidden layer neuron to the neuron in the output layer.

The following equations illustrate this calculation:

Δwpq,k = η δq,k OUT (2.3)

wpq,k(n+1) = wpq,k(n) + Δwpq,k (2.4)

where wpq,k(n) is the value of weight from neuron p in the hidden layer to neuron q in
the output layer at step n (before correction); note that index k refers to the layer where this
weight ends, i.e, according to the convention adopted in this book, with which it is
combined; wpq,k(n+1) is the value of the weight at step n + 1 (after correction); δq,k is the
value δ for neuron q, in the output layer k; OUTp,j is the value OUT for neuron p in the
hidden layer j.

Adjusting the weights of the hidden layer. Consider one neuron in the hidden layer that
precedes the output layer. As it passes forward, this neuron transmits its output to neurons in
the output layer through the weights that connect them. During learning, these weights
function in reverse order, passing the value δ from the output layer back to the hidden layer.
Each of these weights is multiplied by the value of δ of the neuron to which it is connected in
the output layer. The value δ required for a hidden layer neuron is obtained by summing all
such products and multiplying by the derivative of the compressive function (see Fig. 4):









 

q
kpq,kq,jp,jp,kq, δ)OUT(1OUTδ w

 (2.5)

When the value of δ is obtained, the weights feeding the first hidden level can be adjusted
using equations (2.5) and (2.6), where the indices are modified according to the layer.

P r e l i m i n a r y l a y e r (i)
Hi dden layer (j)

Output layer (k)

Neuron p

Preli mi nary layer (i)

Fig. 4. Setting the weight in the hidden layer

For each neuron in a given hidden layer, δ must be calculated and all the weights
associated with this layer adjusted. This process is repeated layer by layer towards the input,
until all weights are adjusted.

Using vector notations, the error back propagation operation can be written in a much
more compact way. Let us denote the set of values δ of the output layer by Dk and the set of

218 PROGRAM TO AUTOMATE THE DETERMINATION OF THE SIZE OF SANITARY PROTECTION ZONES

Copyright ©0000 ASSA Adv. in Systems Science and Appl. (0000)

weights of the output layer as array Wk. To obtain Dj, the δ vector of the output layer, the
following two operations are sufficient:

1.Multiply the o-vector of the output layer Dk by the transpose matrix of weights W'k
connecting the hidden layer to the output layer.

2.Multiply each component of the resulting product by the derivative of the compressive
function of the corresponding neuron in the hidden layer.

In the symbolic notation

Dj = DkW’k $[0j $(I – 0j)], (2.6)

where the operator $ denotes the component product of vectors, Oj is the output vector of
layer j, and I is a vector whose components are all equal to 1.

Adding a neural bias. In many cases it is desirable to endow each neuron with a learning
bias. This allows to shift the origin of the logistic function, giving the effect similar to the
adjustment of perseptron neuron threshold, and leads to the acceleration of the learning
process. This feature can be easily introduced into the learning algorithm by adding a weight
to each neuron, attached to +1. This weight is trained the same way as all other weights,
except that the signal applied to it is always equal to +1, not the output of the previous layer
neuron.

Pulse. The literature [24] describes a learning acceleration method for the
backpropagation algorithm that also increases the stability of the process. This method,
called pulse, consists in adding to the weight correction a term proportional to the magnitude
of the previous weight change. Once a correction occurs, it is "remembered" and serves to
modify all subsequent corrections. The correction equations are modified as follows:

Δwpq,k(n+1)= η δq,k OUTp,j + Δwpq,k(n) (2.7)

wpq,k(n+1) = wpq,k(n) + Δwpq,k(n+1) (2.8)

where (α – is the momentum coefficient, usually set around 0.9. Using the momentum
method, the network tends to follow the bottom of narrow gullies of the error surface (if
any), rather than moving from slope to slope. This method seems to work well on some
problems, but has a weak or even negative effect on others.

There is a similar method based on exponential smoothing, which may have an advantage
in a number of applications.

Δwpq,k(n+1)= (1-) δq,k OUTp,j + Δwpq,k(n) (2.9)

Then the change in weight is calculated

wpq,k(n+1) = wpq,k(n) + ηΔwpq,k(n+1), (2.10)

where α the smoothing coefficient varies and ranges from 0.0 to 1.0. If equal to 1.0, the
new correction is ignored and the previous correction is repeated. In the region between 0
and 1, the weight correction is smoothed by a value proportional to . Still, η is the learning
rate coefficient, serving to control the average weight change.

For the development of the program was used (Type of implementing computer) PC
(personal computer). The programming language was C++ Builder XE8. Operating system
used: Windows XP, Vista, Windows 7, Windows 8, Windows 10.

For system training there was created a database (Certificate of Database Registration
No. 2021622507 dated 09.11.2021) for storage and issuing of operative and reference
information about condition of ionizing radiation sources (in places of radioactive waste
disposal/storage) and toxic pollution at their quantitative content which is/are insignificantly
exceeding operating hygienic norms/levels. The description of the database provides a list of
information fields for a comparative analysis of toxic air pollution in the analyzed conditions
of the residential area and residential area of comparison settlements. For each item, 32
measurements were made (presented in the database).

 P. ISTRATOV, Y. MINAEV, E. ZARUBINA, P. ZOLOTARIOV 219

Copyright ©2022 ASSA. Adv. in Systems Science and Appl. (2022)

Indicators were analyzed in the computer program:
- Natural background radioactivity (values were analyzed);
- Character of soil (variants);
- Presence of forests (variants);
- Amount of precipitation;
- Radionuclides (excess of specific activity in the analyzed soil samples);
- Content of chemical pollutants in the air of the residential area (normal/exceeding the

average daily MPC).

4. RESULTS

For the development and preparation of computer implementation of the proposed
program, neural networks were chosen as a variant of implementation of artificial
intelligence systems.

Any expert system, including the one under development, should conditionally consist of
four blocks: an interface with the user, a knowledge base, a computing block, a block of
explanations, allowing the user to trace the "course of reasoning" of the system in a particular
case. The connecting element between these blocks is the method by which the expert
system, in response to the user's request, produces a result (conclusion). The paper proposes
a classification of such methods into three main groups:

1) methods of logical rules "in pure form", when the formalization of the rules of
obtaining the result is carried out by the expert;

2) the same methods, but formalization of rules is carried out by the researcher, observing
the work of the specialist from outside;

3) methods based on the principle "look and learn".
Creating even simple expert systems based on Methods 1 and 2 is a complex task,

primarily because it requires the joint work of specialists of different profiles. Traditional
expert systems based on knowledge bases and logical rules require quite a lot of time and
money for creation. Creation of expert system can be divided into several stages.

1. Task setting: defining the objectives of the expert system, the set of input data and the
form of presentation of the answer.

2. Data collection: a set of representative material for statistical research and its
structuring - division into subgroups according to various attributes.

3. Statistical processing: identification of patterns linking the input data to the answer -
calculation of averages and relative values, their comparison, correlation, regression, factor
analysis, etc.

4. Creating a knowledge base: drawing up logical rules by which the expert system
should work.

5. Algorithm programming: transferring logical rules to a programming language.
6. Creation of system interface: development of means of interaction of the system with

the user - data input forms, response output, etc.
7. Debugging and testing: checking the program operation and testing in real conditions.
When creating logical expert systems, the 3rd, 4th and 5th stages take the most time and

require the joint work of both subject specialists and programmers and mathematicians.
Despite the emergence of computer tools for designing expert systems, the main work is
entrusted to specialists. Several serious problems arise in this case.

The first one is that when solving complex real-world problems (medicine, biology), the
number of logical rules increases significantly. Often there is such a complex system of
interrelations between them that it simply cannot be comprehended. Breaking a problem into
blocks does not always help either: firstly, it is not always easy to do, and secondly, when
breaking it down, some connections may sometimes get lost.

220 PROGRAM TO AUTOMATE THE DETERMINATION OF THE SIZE OF SANITARY PROTECTION ZONES

Copyright ©0000 ASSA Adv. in Systems Science and Appl. (0000)

The second and even more serious problem is that it is not always possible to express the
computational process by logical rules. This may be due both to the complexity of the
problem itself, and to the peculiarities of the subject specialist's activity. This is especially
evident in medicine, where the decision-making process largely relies on the intuition and
experience of a physician who is not an expert in his own thinking. In all of these cases, it is
said that the task is not amenable to algorithmization. Moreover, even if the creators manage
to develop an algorithm, there is never a sufficient guarantee that it will work correctly in
real conditions, and this can be checked only after all the work on creating the system has
been completed.

In the creation of the self-learning system developed by the authors (Certificate of
Registration of Computer Software №2021681088 from 02.12.2021), you can identify
several stages, some of which coincide with the stages of creating traditional systems.

1. Problem Statement. The same as for the traditional systems plus the choice of the
optimal structure of a neural network and training methods (for the majority of problems the
structure and methods are standard). \

2. Gathering of training data. A set of examples for training the network, each of which
presents an array of input data and a corresponding response known in advance (Database
Registration Certificate № 2021622507, 09.11.2021). Collection of data for further training
of the network was carried out during 3 years for all selected parameters in conditions of
different radiation background, chemical pollution, natural-climatic factors and their
combinations, which entered into a single database.

3. Neural network creation and training. This stage does not require any statistical
calculations. The training of the developed neural network was an automatic process, which
only after its completion required the participation of a specialist to evaluate the results and
compare them with the existing database. Schemes of problem statement, ways of data
representation and ways of response production by the neural network are designed in such a
way that most of the problems fit into these standard schemes.

4. Creation of interface of this program is the same as for traditional expert systems.
5. Debugging and testing. The stage included mainly debugging of program work, as

testing was carried out in the process of network training.
The available advantages of this neural network expert system are shown when solving

hard-to-algorithm problems:
1. A neural network makes decisions on the basis of experience, which it acquires

independently. "Independently" in this case means that a user of expert system does not need
to establish relationships between input data and necessary decision, spending time on
various statistical processing, selection of mathematical apparatus, creation and checking of
mathematical models.

2. The decision made by a neural network is not categorical. The network gives out the
decision together with a degree of confidence in it, that leaves to the user an opportunity to
critically estimate its answer.

3. A neural network allows to model a decision-making situation.
4. A neural network gives an answer very quickly (fractions of a second), which allows

to use them in various dynamic systems, which require immediate decision-making.
It should be emphasized that application of implicit algorithms does not contradict and

does not cancel use of formal methods, but can be complemented by them if necessary.
The program has additional functions: saving the results of the work; printing the results

of the forecast; clearing the values of the indicators to be filled in.
The selection of indicators was carried out in various combinations taking into account

the results obtained after training of artificial neural networks and evaluation of the results of
their work (Fig. 5).

 P. ISTRATOV, Y. MINAEV, E. ZARUBINA, P. ZOLOTARIOV 221

Copyright ©2022 ASSA. Adv. in Systems Science and Appl. (2022)

Feature name Meaning Score

Natural radioactivity background

Soil characteristics

Forests

Downfall

Radionuclides

Chemical contamination

Per year

Slay soil

Greenwood

Downfall per year

Cl

Clear Calculati on About Pri nt Exi t

Fig. 5. Main screen of the computer program

Subsequent tests of the neural network showed that the quality of its work for an
objective assessment was 80% of the correct solutions, which confirmed the possibility of
using AI for mathematical modeling of the assessment of harm of personnel work in the
conditions of sanitary protection zones, as well as calculating the minimum distances from
the RAW object to the residential development in a particular area (Fig. 6).

EXPERT SYSTEM FORECAST

Model prediction

EXPERT SYSTEM CONCLUSION

ESTIMATED SIZE OF THE SANITARY PROTECTION ZONE 16 KM

CLOSE

Fig. 6. Results screen

5. CONCLUSION

The developed computer program: "Automation of determination of dimensions of
sanitary protection zones (SPZ) and surveillance zones for storage of sources of ionizing
radiation in places of burial / storage of radioactive waste" was intended to automate the
process of calculations of dimensions of sanitary protection zones (SPZ) and surveillance
zones for storage of sources of ionizing radiation in places of burial / storage of radioactive
waste based on mathematical regression models.

The main advantage of the developed neural network is that it can identify non-obvious
attributes for determining the size of sanitary protection zones (SPZ). These algorithms do
not rely on the available knowledge about the influence of the analyzed indicators, which
makes them objective and allows to use them to create models of the state of storage of
radiation sources.

222 PROGRAM TO AUTOMATE THE DETERMINATION OF THE SIZE OF SANITARY PROTECTION ZONES

Copyright ©0000 ASSA Adv. in Systems Science and Appl. (0000)

REFERENCES

1. Artobolevsky, I.I., Vishnevsky, A.A. & Bykhovsky M.L. Information retrieval
systems in medicine. Machine diagnostics and information retrieval in medicine.

2. Bartsev S.I. & Okhonin, V.A. (1986). Adaptive networks of information processing.
Preprint of Institute of Physics SB AS USSR, 59, 1–20.

3. Bedrekovsky, M.A., Gamkrelidze, S.A. & Fedchenko, O.I. (1991) Elemental base of
neurocomputers. Zarubezhnaya radioelektronika, 6, 45–49.

4. V.I. Chernov, I.E. Esaulenko, M.V. Frolov et. al. (2009) Informatika. Kniga 1.
Osnovi obschei informatiki [Computer science. Book 2. Fundamentals of Medical
Informatics]. Moscow, Russia: Drofa, [in Russian].

5. Duke W., Emanuel W. (2003). Informacionnie tehnologii v mediko-biologicheskih
issledovaniyah [Information technologies in medical and biological research]. Saint
Perersburg, Russia: Piter.

6. Federal Law On the Management of Radioactive Waste and Amendments to Certain
Legislative Acts of the Russian Federation of 11.07.2011 N 190-FZ (last revision).

7. Gasparyan, S.A. (2001). Classification of medical information systems. Information
technologies in health care, 10-12.

8. Gassnikov, V.K. (1997). Fundamentals of scientific management and informatization
in health care: a training manual. Izhevsk, Russia.

9. Gelfand, I.M., Huberman, Sh.A., Gindikin, S.G., et. al. (1985). Some problems of
classification and prognostication from different fields of medicine. Problems of Medical
Diagnostics and Forecasting from the Viewpoint of Mathematics, 110–125.

10. Gelman, V.Y. (2000). Kompiuternie kommunikacii v medicine [Computer
communications in medicine]. Saint Petersburg, Russia, [in Russian].

11. Gelman, V.Y. (2001). Medicinskaya informatika [Medical informatics. Workbook.].
Saint-Petersburg, Russia: Piter, [in Russian].

12. Genkin, A.A. (1999) Novie infomacionnie tehnologii analiza medicinskih dannih
(kompleks program OMIS) [New information technology of medical data analysis (OMIS
program complex)]. Saint Peresrburg, Russia, [in Russian].

13. Gorban, A.N. Obychenie neironnih setei [Training of neural networks]. Moscow,
Russia: Paragraph, [in Russian].

14. Gubler, E.V. (1978) Chislennie metodi analiza i raspoznavaniya patologicheskih
protsessov [Computational methods of analysis and recognition of pathological processes].
Leningrad, USSR: Medicine, [in Russian].

15. Makarova, N.V. et. al. (2001) Informatics: textbook. Moscow, Russia.
16. Information technologies of territorial management. Specialized issue "Telemedicine".

Moscow, Russia: All-Russian Research Institute for Computer Technologies and
Informatization. - Т. 40. - 2003.

17. Kudrina, V. G. (1999) Meditsinskaya informatika [Medical informatics]. Moscow,
Russia, [in Russian].

18. Marasanov, V.V. Matematicheskie modeli differentsialnoi diagnostiki boleznei
[Mathematical models of differential diagnostics of diseases]. Kishinev, USSR: Shtintsa, [in
Russian].

19. Masalovich, A.I. (1992) From neuron to neurocomputer. Journal of Doctor Dobb, 1,
20–24.

 P. ISTRATOV, Y. MINAEV, E. ZARUBINA, P. ZOLOTARIOV 223

Copyright ©2022 ASSA. Adv. in Systems Science and Appl. (2022)

20. Nemirko, A.P. (1991) Avtomaticheskie sistemi dlya meditsinskogo i biologicheskogo
issledovaniya [Automated systems for medical and biological research]. Saint Petersburg,
Russia, [in Russian].

21. Omelchenko, V.P. & Demidova, A.A. (2018) Informatika. Praktikum [Practice on
medical informatics]. Moscow, Russa: GEOTAR-Media, [in Russian].

22. Postnova, T.B. (1972). Informatsionnie sistemi i sistemi diagnostiki v meditsine
[Information and diagnostic systems in medicine]. Moscow, Russia: Nauka, [in Russian].

23. Rossiev, D.A. (1994). Ekspertnie samoobuchayuschiesya sistemi neironnih setei v
meditsine [Neuro-networked self-learning expert systems in medicine]. Krasnoyarsk, Russia,
[in Russian].

24. Rossiev, D.A. (1995). Self-learning neural network expert systems in medicine:
theory, methodology, tools, implementation. M.D. Thesis, Biophysics. Krasnoyarsk.

25. Wasserman, P. (1989) Neurocomputer Technique: Theory and Practice. New York,
NY: Van Nostrand Reinhold Co.

