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Abstract: We consider a sequential quadratic programming algorithm for optimization problems
with equality and inequality constraints, equipped with the standard Armijo linesearch procedure
for a nonsmooth exact penalty function, intended for globalization of convergence. We are
interested in the case when the standard assumptions for local superlinear convergence of the
method may not hold. Specifically, we allow for violation of standard constraint qualifications
and second-order sufficient optimality conditions, in which case attraction to so-called critical
Lagrange multipliers is known to have a negative impact on convergence rate. In these
circumstances, some known acceleration techniques can be expected to take effect only provided
the true Hessian and the full SQP step are asymptotically accepted, and these are the main issues
addressed in this work. The presented constructions extend some previously known ones to the
case when inequality constraints are involved.
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1. INTRODUCTION

In this work we consider the equality- and inequality-constrained optimization problem
minimize f(z) subjectto h(z) =0, g(z) <0, (1.1)

where the objective function f : R® — R and the constraint mappings h : R® — R! and
g : R™ — R™ are sufficiently smooth, and we are concerned with some crucial peculiarities
of performance of Newton-type methods near solutions or stationary points of problem (1.1)
that are in a sense singular.

Let L : R® x R! x R™ — R be the Lagrangian of problem (1.1), i.e.,
L(z, A) = f(z) + (A, h(@)) + (1, 9(2)),

where (-, -) stands for the Euclidian inner product. Then the stationary points and associated
Lagrange multipliers of problem (1.1) are characterized by the Karush—Kuhn—Tucker (KKT)
optimality system

oL

(A ) =0 ha)=0, p=20, g(x) <0, (u g(x))=0. (1.2)
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For a feasible point z of problem (1.1), the linear independence constraint qualification
(LICQ) consists of saying that the gradients 1 (7), j € {1, ..., I}, gi(), i € A(Z), are
linearly independent, where A(z) = {i € {1, ..., m} | g;(z) = 0} is the set of indices of
inequality constraints active at . If 7 is a local solution of (1.1), satisfying LICQ, then there
exists the unique pair (), ji) € R x R™ such that the triple (Z, ), ji) solves (1.2).

In this work, we are mostly interested in the case when LICQ does not hold, but Z is
stationary for (1.1) with some (possibly nonunique) associated Lagrange multiplier. In this
case, the set of Lagrange multipliers may naturally contain some special instances, called
critical multipliers (to be defined formally in Section 2 below), that are known to strongly
attract dual sequences of various primal-dual optimization algorithms, and this phenomenon
has a strong negative impact on convergence rate; see [14—16] and the summaries of this
research in [18, Section 7.1] and [19].

The effect of attraction to critical multipliers can be locally avoided by using some dual
stabilization mechanisms, like the one of the stabilized sequential quadratic programming
method; see the original proposals in [22, 24], as well as a more recent treatment in [17]
and [18, Section 7.2.2]. However, even such modified algorithms typically have large domains
of convergence to critical multipliers when they exist [11], and this becomes even more of an
issue when globalization of convergence is concerned.

Generally, there can be at least two different approaches to the specified criticality issue.
One is indeed to try to avoid convergence to a critical multiplier, and some further tools for
this were developed very recently in [5]. The essence of an alternative approach, adopted in
this work, can be expressed as follows: since it is difficult to avoid convergence to critical
multipliers, this convergence can be accelerated by employing the knowledge of its rather
special character. This point will be explained in Section 2, first for generic systems of
nonlinear equations and for optimization problems with equality constraints only, using the
results from [6-9] and [10], respectively.

One of the outcomes of this analysis is a very simple extrapolation strategy for
accelerating convergence of the basic sequential quadratic programming (SQP) method to
critical Lagrange multipliers, that can be easily incorporated into globalization schemes based
on linesearch. The main goal of this paper is to extend this approach to optimization problems
involving inequality constraints as well, and this is accomplished in Section 3. Section 4
presents some numerical results confirming the use of the approach, and Section 5 contains
some concluding remarks and discussion of directions for further research.

Some words about our notation and terminology. The Euclidian (l5), [, and [, norms will
be denoted by || - ||, || - ||1, and || - ||oo» respectively. For a function ¢ : R™ — R, by ¢'(z; &)
we denote the standard directional derivative of ¢ at x € R” in a direction £ € R". The null
space and the range space of a linear operator A : R” — R’ are denoted by ker A and im A,
respectively. For a given z € R™ and an index set I C {1, ..., m}, the symbol z; stands for
the subvector of z with components corresponding to 7 € I.

A set U C RP is called starlike with resect to u € R? if for every v € U and ¢ € (0, 1], it
holds that tu + (1 — t)u € U. Any v € RP is called an excluded direction for a set U starlike
with respect to w if u 4 tv ¢ U for all ¢ > 0. A set which is starlike with respect to a given
point is called asymptotically dense if the complement of the corresponding set of excluded
directions is open and dense.

2. NONLINEAR EQUATIONS AND EQUALITY-CONSTRAINED OPTIMIZATION

Consider a system of nonlinear equations
O(u) =0 (2.3)

with a smooth mapping ¢ : R? — RP. A solution @ of (2.3) is called (non)singular if the
Jacobian ®'(#) is a (non)singular matrix. For a given current iterate u* € RP?, the basic
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k

Newton method (NM) defines the next iterate as ©**!' = u* + v*, where v* is a solution of

the linearized (at u*) equation
O (uF) + &' (uF)v = 0. (2.4)

The classical theory says that when u° € RP? is taken close enough to a nonsingular solution
of (2.3), then the NM defined this way generates the unique sequence of iterates {u*}, and
this sequence converges to u superlinearly; see, e.g., [18, Section 2.1.1].

Here we are mainly interested in the cases of when the solution in question can be singular,
perhaps even nonisolated. To that end, we make use of the following second-order regularity
concept assuming that @ is twice differentiable at %: the mapping @ is said to be 2-regular at
@ in a direction v € R? if

im ®'(a) + " (a)[v, ker '(u)] = RP.

If ®’(u) is nonsingular, then ® is 2-regular at @ in every direction, including v = 0. At the
same time, 2-regularity may hold at singular (and even nonisolated) solutions in nonzero
directions, including those from ker ®’(@). The following theorem summarizes the results on
local convergence of the basic NM, obtained in [8, Theorem 6.1] and [9, Theorem 2.1].

Theorem 2.1:
Let ® : R? — RP be twice differentiable near u € RP, with its second derivative Lipschitz-
continuous with respect to u, that is,

@' (u) — @"(a) = O(lu — ul)

as uw — u. Let u be a singular solution of equation (2.3), and assume that there exists
v € ker ®'(u) such that O is 2-regular at u in this direction.

Then there exists a set U C RP starlike with respect to u, asymptotically dense at u, and
such that for every starting point u° € U, there exists the unique sequence {u*} C R? such
that for all k, the step v* = u*t! — u¥ is the solution of (2.4), and u* # @, {u*} converges to
Uu,

k+1 -
lim —_““ _ 1 2.5)

and the sequence {(u* — u)/||u* — ||} converges to some v € ker ®' ().

The convergence pattern specified by (2.5) suggests that acceleration of convergence
can be achieved by doubling the basic NM step. This, however, should be done with due
care, as simply doubling each step may force the resulting sequence to leave the domain
of convergence, which is asymptotically dense but need not contain a full neighborhood of
the solution in question. To that end, somehow more involved acceleration techniques have
been developed in [7,9], such as extrapolation and overrelaxation. The simplest extrapolation
technique consists of generating, along with the basic NM sequence {u*}, an auxiliary

sequence {U"*} obtained by doubling the NM step: for each k compute
= uF + 208, (2.6)

According to [9, Theorem 4.1], under the assumptions of Theorem 2.1 above, this auxiliary
sequence {u*} converges linearly to i, with the asymptotic ratio of 1/4 (instead of 1/2 for
{u*}, given by (2.5)), from all points in the domain of convergence of NM sequences {u*}.

We now turn our attention to globalization issues, and recall that convergence of the
NM can be globalized in standard ways, e.g., by the Armijo linesearch procedure for the
residual ||(-)|| used as a merit function; see [18, Section 5.1.1]. The following is a prototype
algorithm of this kind.

Copyright © 2022 ASSA. Adv Syst Sci Appl (2022)



76 A.F.IZMAILOV, I. S. RODIN

Algorithm 2.1:
Fix the parameters o € (0, 1) and 6 € (0, 1). Choose u” € R?, and set k = 0.

1. Compute v* € RP solving the linear system (2.4). If (2.4) cannot be solved, stop with

failure.
2. Set o = 1. If the inequality
2" + av®)|| < (1 = oa)[|@(u")] 2.7)
holds, set o, = « and go to Step 3. Otherwise, keep replacing o by A« until (2.7) is
satisfied.

3. Set u*™! = u* + ayvF, increase k by 1, and go to Step 1.

According to [18, Theorem 5.3], this algorithm converges globally in a sense that any
accumulation point % of any sequence {u*} generated by this algorithm satisfies

(®'(a))"®(u) = 0.

Moreover, according to [18, Theorem 5.4], Step 2 of Algorithm 2.1 accepts the unit stepsize
when u* is close to a nonsingular solution, thus allowing the globalized algorithm to inherit
the superlinear convergence rate of the basic NM.

Near singular solutions, the crucial issue of asymptotic acceptance of the unit stepsize is
much more involved. The following result was obtained in [6, Theorem 1].

Theorem 2.2:

Under the assumptions of Theorem 2.1, a set U in it can be chosen so that for every starting
point u® € U, Algorithm 2.1 with o € (0, 3/4) uniquely defines the sequence {u*}, and
ar = 1 is accepted at Step 2 of this algorithm for all k large enough.

Combining Theorems 2.1 and 2.2, one can conclude that once a sequence generated by
Algorithm 2.1 enters the domain U specified in those theorems, this sequence converges
linearly to @ with the asymptotic ratio of 1/2. Moreover, for the “extrapolated” sequence
{@*} generated according to (2.6), the asymptotic ratio is 1/4. It is important to note that the
main iterative sequences {u*} are not affected at all by computing the auxiliary sequences
{u*}, and hence, doing so does not affect the global convergence properties of the algorithm.
It should also be mentioned that generating the auxiliary sequence {u*} costs essentially
nothing.

Ge%’ting back to optimization, we first consider the case when there are no inequality
constraints in (1.1) (i.e., m = 0):

minimize f(z) subjectto h(z)=0. (2.8)

In this case, the KKT system (1.2) can be written as (2.3) withp =n +1, & : R" x Rl —
R™ x RE,
oL
o) = (Grte N nie)). 29)

where u = (x, A), and the missing argument y of L is dropped. Algorithm 2.1, as well as its
version with extrapolation, and Theorems 2.1 and 2.2 are certainly applicable to this special
case of a nonlinear equation (2.3). The problem, however, is that in the optimization context,
using the residual of a first-order optimality system as a merit function can hardly be justified:
a merit function should be reflecting the intention to find a solution of the optimization
problem rather than just any stationary point of it.

One typical choice of an optimization-related merit function for problem (2.8) is the /4
exact penalty function ¢, : R — R,

() = f(x) + cl[Al2)]]1,
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where ¢ > 0 is a penalty parameter; see [1, Section 17], [23, Section 18.4], [18, Section 6.2].
Observe, however, that after this change of the merit function, Theorem 2.2 is no more
applicable, and the issue of asymptotically accepting the unit stepsize becomes even more
involved, in particular, due to inherent nonsmoothness of (., and to the presence of a
penalty parameter c. Another source of complications is that the primal part £* of the NM
step v* = (&*, n*) computed at the current iterate u* = (2*, A\¥) can be guaranteed to be a

direction of descent for ¢, (with an appropriate choice of ¢) at u* only provided the Hessian
of the Lagrangian

Hy = aQL(x’“ AF) (2.10)

k — axz ) :

is positive definite, which is not at all automatic even close to a solution/multiplier pair
satisfying the second-order sufficient optimality condition. To that end, the algorithm for
problem (2.8), presented next, has Step 3, where the sufficient descent property of the
generated primal direction is verified.

Algorithm 2.2:
Fix the parameters ¢ > 0, ¢ > 0, p > 0 and o, 6 € (0, 1). Choose u° = (2°, \°) € R™ x R/,
andsetc_; = 0and k = 0.

1. Compute v* = (&*, n*) solving the linear system

oL
oy @5 XY+ HE + (W) =0, h(*)+H@EHE=0, @1
x
with Hj, given by (2.10). If (2.11) cannot be solved, stop with failure.
2. Set
4(1 — NE oo Nl oo
¢ = maxd ¢y, 2N 7o + [Nl | 1 2.12)
3—4do
If maximum in (2.12) is attained at the second argument, replace ¢, by ¢ + ¢.
3. If the inequality
Pl (@5 €) < —plle®|? (2.13)
is violated, stop with failure.
4. Set a = 1. If the inequality
o (2" + a€") < g, (2¥) + oay], (2*; €) (2.14)

holds, set o, = v and go to Step 5. Otherwise, keep replacing o by O« until (2.14) is
satisfied.
5. Define uF! = (2F+1) \f+1) as uf+1 = u* + ag0*, increase k by 1, and go to Step 1.

Observe that (2.11) with H; given by (2.10) is nothing else but the NM equation (2.4)
with v = (£, 1), for ® defined in (2.9). On the other hand, this method can be seen as the
SQP algorithm, since (2.11) is the Lagrange optimality system for the equality-constrained
quadratic programming subproblem

1
minimize (f'(z"), &) + §<Hk§, €) subjectto h(z%) + A (2F)€ = 0; (2.15)
for details see, e.g., [18, Section 4.2].
Asymptotic acceptance of the true Hessian and unit stepsize by Algorithm 2.2 has been
investigated very recently in [10]. In order to present the main result of that work, some more

terminology will be needed. According to [11, Proposition 1] and [12, Proposition 2], the
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assumptions of Theorem 2.1 for ® defined in (2.9) may hold at @ = (z, \) only if X is a
critical Lagrange multiplier associated with a stationary point x of problem (2.8). Criticality
of A\ means that the linear subspace

O?L

Q(Z, \) = {g € ker 1/ (x) @(i’ ¢ € im(h’(j))T} (2.16)

is nontrivial; see [18, Definition 1.41]. In particular, the assumptions of Theorem 2.1 do hold
under the following requirements:

 The multiplier j is critical of order 1, which means that dim Q(z, 5\) =1, or, in other

terms, . _
Q(z, \) = span{¢} (2.17)
with some £ € R \ {0}.
* It holds that
rank h'(7) =1—1 (2.18)
and _
R"(Z)[E, €] & im W' (). (2.19)

The following counterpart of Theorem 2.2 for equality-constrained optimization problems
appears in [10, Theorem 3.1].

Theorem 2.3:
Let f : R" = Rand h : R® — R! be three times differentiable near © € R", with their third
derivatives Lipschitz-continuous with respect to T. Let T be a stationary point of problem
(2.8), with an associated Lagrange multiplier X € R, and assume that (2.17) with Q(Z, \)
defined in (2.16), (2.18), and (2.19) hold with some ¢ € R" \ {0}. Assume also that h'(z) # 0,
and set i = (T, \).

Then there exist p > 0 and a set U C R" x R! starlike with respect to i, asymptotically
dense at u, and such that for every starting point u° € U, Algorithm 2.2 with o € (0, 3/4)

uniquely defines the sequence {u*}, this sequence converges to , and oy, = 1 is accepted at
Step 4 of this algorithm for all k large enough.

Getting back to a general optimization problems involving inequality constraints, we
recall that according to [18, Definition 7.8], a Lagrange multiplier (), i) associated with
a stationary point Z of problem (1.1) is called critical with respect to an index set A C A(Z)
if fig@na =0 and (A, fia) is a critical Lagrange multiplier associated with the stationary
point Z of the equality-constrained optimization problem

minimize f(z) subjectto h(x) =0, ga(z) = 0. (2.20)

As discussed in [15] and [18, Section 7.1.2], the effect of criticality on performance of primal-
dual algorithms shows up precisely this way, through stabilization of specific activity patterns.
This is confirmed by the numerical experiments discussed in Section 4 below.

3. OPTIMIZATION WITH INEQUALITY CONSTRAINTS

Unlike Algorithms 2.1 and 2.2, the algorithm for problem (1.1) that we present next is not
just a prototype algorithm in the following sense: it is supplied by a mechanism intended to
avoid unnecessary terminations with failure, especially far from solutions, and it is exactly
what we used in numerical experiments in Section 4. More precisely, the issue of possible
infeasibility of the iteration subproblem (3.23) (a counterpart of (2.15) involving linearized
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inequality constraints) is not addressed in this algorithm, and it still stops with failure in such
cases, as this is a general issue concerned with SQP methods, and there are known tools for
tackling it; see, e.g., [18, Section 6.2]. However, when the iteration subproblem is feasible

but cannot be solved, or when the generated primal direction £* does not pass the sufficient
descent test (3.25) (a counterpart of (2.13)), the algorithm does not stop with failure, but
rather sequentially adjusts the basic choice of

0*L
Hy, = —— (", A%, i) (3:21)

in such a way that eventually the needed & satisfying (3.25) is always found.
For every value of the penalty parameter ¢ > 0, we now need to re-define the penalty
function ¢, : R™ — R in order to incorporate the inequality constraints:

e(x) = f() + c([|h(@) [l + || max{0, g(z)} ). (3.22)

Algorithm 3.1:
Fix the parameters ¢ > 0, ¢ > 0, p > 0 and 0, 6 € (0, 1). Choose u® = (z° \°, %) € R" x
R!, and set c_; = 0 and k = 0.

1. Define Hj, according to (3.21).
2. Compute £* as a stationary point of the quadratic programming problem

minimize (f'(z"), €) + %<Hk§7 £)
subject to  h(x®) + W' (2F)€ = 0, g(a®) + ¢'(2%)€ <0,

(3.23)

and (A1, ;/**1) as an associated Lagrange multiplier. If (3.23) is infeasible, stop with
failure. If (3.23) is feasible, but a stationary point of (3.23) cannot be found, go to Step 5.
Otherwise, set n® = N1 — \F ¢k = Lk ok = (gk, nk, CF).

3. Set

A(1 — ARFL R AR Y[l
SN GRS [0 e i) P[00, SR WO
3—4o
If max in (3.24) is attained at the second argument, replace ¢, by ¢, + ¢. Set
Ay = (f'(a), &) — ar([|n(@®)]l1 + | max{0, g(«")}]).
4. If the inequality
Ay < —pl|€F|? (3.25)
is satisfied, go to Step 6.
5. Choose 7, > 0, replace Hy by Hj, + 711, and go to Step 2.
6. Set o = 1. If the inequality
Qe (27 + al®) < @, (%) + cal, (3.26)

holds with ¢, defined according to (3.22), set a, = « and go to Step 7. Otherwise, keep
replacing « by O« until (3.26) is satisfied.

7. Define uF ! = (zF+1) N1 1) as o + ayvF, increase k by 1, and go to Step 1.

In Step 7 of this algorithm, it is quite typical to use the stepsize parameter in primal
updates only; see, e.g., [18, Algorithm 6.7]. However, the theory developed in [10] for the
equality-constrained case requires using the stepsize parameter in dual updates as well. This
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variant of linesearch SQP algorithms is also quite common; see, e.g., [23, Algorithm 18.3].
Theoretical global convergence properties of this kind of algorithms, as well as their rate of
convergence properties under “standard” assumptions were recently discussed in [20]; see
also references therein.

Here, however, we are concerned with the cases when those “standard” assumptions for
fast local convergence may fail to hold, and in particular, with the cases of convergence
to multipliers critical with respect to a relevant index set. Motivated by its success in the
equality-constrained case, our proposal being tested in this work is to generate an extrapolated
auxiliary sequence {u"} according to (2.6), with expectation that its convergence will be

faster than that of the main sequence {u*}.

4. NUMERICAL EXPERIMENTS

Algorithm 3.1 will be abbreviated as SQP-mH, while its variant supplied with extrapolation,
and hence, generating an auxiliary sequence {u*} according to (2.6), will be abbreviated as
SQP-mH-EP. Note that (2.6) always employs the direction v* obtained by the basic choice of
H,, specified in (3.21). If for some & such v* cannot be defined, we put 7**! = u*+1,

Instead of modifying the Hessian of the Lagrangian, possible lack of positive definiteness
of the true Hessian can be tackled by defining H; as quasi-Newton approximations of
the Hessian. A standard choice adopted here consists of using BFGS approximations
complemented by Powell’s correction at Step 1 of Algorithm 3.1 instead of (3.21); see [18,
Section 4.1] for details. Furthermore, in the resulting algorithm abbreviated as SQP-BFGS,
Steps 4 and 5 of Algorithm 3.1 are dropped, and the stepsize parameter is used for primal
updates only, i.e., \¥t1 = Xk + pF and ph ! = b + C*,

The parameter values used in our computations were as follows: ¢ =¢ =1, p = 1079,
o = 0.01, 8 = 0.5. Furthermore, we adopted the following rule for controlling 74 at Step 5 of
Algorithm 3.1: for every given k, when Step 5 is invoked for the first time, we set 7, = 1, and
then multiply it by 2 every next time Algorithm 3.1 invokes Step 5.

Runs of algorithms SQP-BFGS and SQP-mH were terminated with success if a newly
generated iterate u" satisfied

|®(u*)]] < 107°. (4.27)
For SQP-mH-EP, for every k = 1, 2, ... we first compute %", and terminate the run with
success if

lo@*)] <1077 (4.28)

otherwise, we proceed with computing u* and verifying (4.27). When successful termination
did not occur after 200 iterations, or the backtracking procedure at Step 6 of Algorithm 3.1
produced a trial value « such that o|[v¥|| < 10719, the process was terminated with failure.

The experiments were performed in Matlab environment, with PATH solver [3, 4] used
for quadratic programming subproblems.

Problem instances for the experiments were taken from DEGEN test collection [13]
that contains optimization problems with constraints violating LICQ. We employed all
problems from DEGEN involving inequality-constraints (numerical results for purely
equality-constrained problems can be found in [10]), except for those where the solutions
of interest is not a stationary point (problems 20112, 20220, 20224, 30212 and 30302). This
leaves 59 test problems.

For each of those problems, all algorithms being tested were initialized at the same 100
starting points u® = (2°, A%, u°) generated randomly in the I,.-ball of radius 100, centered at
the primal solution of interest (reported in DEGEN) for the primal part z°, and at (0, 0) for
the dual part (\°, 11°), with the additional nonnegativity restriction on p°.
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As measures of efficiency, we used the average number of quadratic programming
subproblems solved and the average number of evaluations of the objective function,
constraint mappings, and their derivatives, per one successful run. These results are presented
in the form of performance profiles [2]. For DEGEN test set, we employed a modified
construction of performance profiles, intended for the case of multiple runs for each test
problems; see [21] for details.

02§ - — —SsQP-mH

SQP-mH-EP
----------- BFGS-SQP

2 4 6 8 10 12 14 16 18 20 22

(a) Performance profile

0.4

021

SQP-mH
- — —SQP-mH-EP
; ;

0

I I I I I
1 15 2 25 3 35 4 45 5

(b) Subproblems per iteration

Fig. 4.1. Subproblems solved

The performance profile in Figure 4.1a demonstrates that SQP-mH-EP is as robust as
SQP-mH, somehow more robust than SQP-BFGS, and by far more efficient than both
by the number of quadratic subproblems solved per a successful run. The effect of using
extrapolation is achieved because the true Hessian and the unit stepsize are typically
asymptotically accepted, and the set of active constraints of subproblems asymptotically
stabilizes.

In addition, the plots in Figure 4.1b show which portion of problems required solving
no more than a given number of quadratic subproblems per iteration on the average. It can
be seen that the behavior of SQP-mH and SQP-mH-EP in this respect is quite similar. In
particular, for 40% of test problems, only one quadratic subproblem per iteration had to be
solved on the average, while solving two or more subproblems was needed for less than 10%
of problems.
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0.2 - — —SQP-mH

SQP-mH-EP
-+~ BFGS-SQP
; ;

2 4 6 8 10 12 14 16 8 20 22

(a) Evaluations of f

0.2 - — —SQP-mH

SQP-mH-EP
----------- BFGS-SQP

2 4 6 8 10 12 14 16 8 20 22

(b) Evaluations of h and g

- = —sQP-mH
SQP-mH-EP
----------- BFGS-SQP

2 4 6 8 10 12 14 16 18 20 22
(c) Evaluations of derivatives

Fig. 4.2. Performance profiles by evaluations

The performance profiles in terms of evaluations of f, of the constraint mappings, and
of their derivatives are presented in Figures 4.2a, 4.2b and 4.2c, respectively. According to
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Figure 4.2a, the relative efficiency of SQP-mH-EP by evaluations of f is lower than that by
the count of subproblems solved, but the positive effect of using extrapolation is still evident.

The picture in Figure 4.2b by evaluations of h and g, and in Figure 4.2¢ by evaluations
of the derivatives is quite different though from that in Figures 4.1a and 4.2a: SQP-mH-EP
demonstrated the best results by these measures of efficiency for about 10% of problems
only. This behavior is explained by the fact that even if the true Hessian and the full step
are typically asymptotically accepted, and the set of active constraints stabilizes, additional
evaluations of h, g, and derivatives are required at extrapolated points for verifying the
stopping test (4.28).

S. CONCLUDING REMARKS

We have discussed the use of extrapolation techniques for acceleration of convergence of
the SQP method equipped with linesearch, when convergence is to a critical Lagrange
multiplier of an optimization problem involving inequality constraints. A specific algorithmic
implementation of these constructions has been developed and numerically tested.

It would be interesting to develop a reasonably complete supporting theory, i.e., conditions
ensuring asymptotic acceptance of the true Hessian and the unit stepsize, as it is known
to be possible for equality-constrained problems, and hopefully can be achieved by some
kind of asymptotic reduction to the equality-constrained case. Observe, however, that the key
difficulty for such development apparently consists of establishing the relation between the
values and directional derivatives of the penalty functions for (1.1) and for (2.20) in the SQP
directions.
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