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Abstract: Mathematical model of the spread of a virus in trains which considers transmission of 
infection from two types of sick passengers (clearly infected and latently infected) was built and 
named SEI (Susceptible-Exposed-Infected) model. Ventilation and movements of the passengers 
inside the train are considered through the porous medium equation. An algorithm for filling 
empty seats in the train is developed. A route of ten hours duration with two stop stations was 
simulated. The results of numerical calculations allow to conclude that asymptomatic infected 
passengers are the most dangerous group in the spread of infection. 
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1. INTRODUCTION 
The spread of coronavirus disease COVID-19 caused serious problems for the economies 
and health systems of all the world.  Most of countries took the necessary precautions to slow 
down the spread of the infection, but these steps do not allow to live without limits. The 
results of mathematical modeling of disease dynamics can be used in emergency situations 
[21]. 

Transport is a very dangerous channel which has huge influence on disease dynamics. Bo 
Xu et al. (2019) constructed the national highway network between 333 cities in China to 
show that road transport has significant impacts on Pandemic Influenza A (H1N1) in 
Mainland China [19]. Colizza et al. (2006) used worldwide air travel infrastructure to 
forecast global epidemics [6]. Balcan et al. (2003) used airline traffic and small-scale 
commuting ows to analyze their role in the global epidemics [2]. Therefore, after the 
outbreak of COVID-19 many countries limited transport mobility. Linka et al. (2020) 
suggested that an unconstrained mobility would have accelerated the spreading of the virus, 
especially in such countries as Spain, and France [14]. Analysis of the situation in Italy 
confirms that, in addition with other factors (socio-economic, territorial and pollutant 
variables), the availability of the transport system had the main impact on Covid-19 crisis [5]. 
Cartenì et al. (2021) in further researches showed that the certified COVID-19 cases certified 
are directly related to the number of public transport trips [4].  

Rail transport is a dangerous source of infection. Zou et al. (2021) analyzed the influence 
of train-induced wind on the COVID-19 pandemic and their results confirmed significance 
of rail transport to the transmission of the virus [22]. An outbreak of COVID-19 started in 
Wuhan, Hubei. Wuhan is located in the center of China and has a convenient transportation 
system and Hubei is identified as a hub of traveling and transport in the country which 
played a big role in the spreading of COVID-19 [15]. The transmission risk of COVID-19 on 
high-speed trains in China in the period from 19 December 2019 through 6 March 2020 is 
quantified in [9]. This analysis helps to understand more clearly the risk of COVID-19 
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transmission among train passengers. Viruses are transmitted through surfaces [18] and via 
airborne droplets, especially quickly indoors [12].  

Most of the studies connected with the modeling of COVID-19 spread do not considered 
the influence of transport [10,16,17,20].  Though there are various works about modeling of 
COVID-19 spread via air travel (for instance, [7,13,14]), a few attention is paid to the disease 
transmission through rail travel passengers.  

The aim of this study is to investigate the infection spread connected with passengers 
transportation. To achieve it, a modified SEI model is built. The infection spread within a  
train is described by the porous medium equation. A random process of filling free seats is 
considered through the developed algorithm and a pseudo-random number generator is used. 

2. MATHEMATICAL MODEL 
Modified SEI model (Susceptible-Exposed-Infected) with constant population N divided into 
three groups: susceptible (S), exposed (E) and infected (I) passengers. As for the rail travels 
the group of recovered is not so important because we study only the dynamics of the virus 
spreading, the infection itself is instantaneous. The consequences stretch over the time. 
Isolation can be discontinued between 5 or 10 days after symptom onset. One of the longest 
train journeys is the Trans–Siberian Railway, and one of the routes on it from Moscow to 
Vladivostok is about 7 days. These periods are very similar to each over, that is why it is 
assumed that during rail travel most of passengers spend less time than is required for full 
recovery. Also, in the case of COVID-19 the impact of asymptomatic patients is significant 
[8]. Thus, modified SEI model is the R group excluded and included the group of exposed 
(asymptomatic) passengers E, which also can infect susceptible passengers S as symptomatic 
infected individuals I. The compartmental model is formulated by the following set of 
ordinary differential equations: 

     (2.1) 

     (2.2) 

       (2.3) 

                                       (2.4) 
When symptomatic infected passengers I infect susceptible passengers S with the 

transmission rate , individuals from group S can become symptomatic infected with the rate 
 or asymptomatic infected E with the rate  at = . If asymptomatic infected 

passengers E infect susceptible passengers S with the transmission rate , the number of 
asymptomatic individuals increases at the rate . 

Movements of susceptible, symptomatic infected and asymptomatic infected along 
the train mutually influence on each other. To consider it parabolic partial differential 
equations are used to enter variables responsible for motion. The train can be represented as 
a rod with a length l, which is insulated at the boundaries.  Characteristics of the spread 

 of infection for groups inside the train (road) are functions of space  and time 
( ). They are presented as a porous medium equation: 

                           (2.5) 
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where  is a constant which describes porosity. It is equal to the ratio of the volume 
occupied by pores  to the total volume [3, pp. 7-9]: 

       (2.6) 
The effect of porosity considers that the train has a general ventilation, through which 

the infection can be transmitted, and movements of the passengers inside the train and the 
restaurant car.  The solutions or the porous medium equation converge to solutions of the 
heat equation when   [1]. 

Variables which describes each group of SEI model and space (x) are normalized to 
one. The passengers from all the groups have influence on susceptible S and exposed E 
individuals. Dynamics of symptomatic infected passengers I depends on the groups S and I.  
Thus, considering the equations (2.1)- (2.3) as the source terms and porosity (2.5) the model  
is formulated by the following set of equations: 

     (2.7) 

    (2.8) 

                   (2.9) 

       (2.10) 

where   is a positive definite matrix that characterized the intensity of infections. 
From station to station the train is isolated at the ends and the actual state of the 

system cannot be known. That is why we used second-type boundary condition, as known as 
Neumann boundary condition, which specifies the value of the normal derivative of the 
function. This means that for an interval   the boundary conditions for each 
group are: 

     (2.11) 

     (2.12) 

     (2.13) 
Each passenger has his own place and at every point of the train we can calculate to 

which group the passenger belongs to. We consider that asymptomatic E and symptomatic I 
passengers are formulated as functions, where parameters ,  specify the proportion of the 
sick passengers at each place of the train, the points  determine the  area of infection, 
and variance  measures how sick passengers impact on susceptible neighbors. The initial 
conditions for the groups E and I are described by the following equations: 

     (2.14) 

      (2.15) 

Parameters ( ) and ( ) refers to the groups E and I, respectively.  
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The number of susceptible is determined from the (2.10): 

            (2.16) 
Determination of seats that sick passengers can buy is a random process. That is why, 

if the train is empty, values   are determinated, using the pseudo-random number 
generator. Equations (2.14) – (2.15) are calculated given number of times. The results 
obtained at each point are summarized. The arithmetic mean is taken.  

 
The algorithm to set the initial conditions at interchange points is very similar. It 

consists of the following steps: 
1. Divide the length of the train by the number of cars. 
2. Select the car that people leave using a pseudo-random number generator 
3. Choose how many percent leaves the car using a pseudo-random number generator. 
4. Divide this percentage evenly between each of the groups  
5. Make steps 2-4 until the train is free for a chosen percent 
6. Fill selected cars according to the statistics of each group depending on the city. 
7. Make steps 2-6 a given number of times to average the results. 

 
The transmission rate  between susceptible passengers S with symptomatic infected 

passengers I is assumed to be  =0,42. Since passengers are indoors and the disease may not 
occur clearly immediately, probability to become asymptomatic infected E is higher than 
probability to become symptomatic infected I. Therefore, the rate  between susceptible 
passengers S with asymptomatic infected passengers E is equal to . The rate  
between susceptible passengers S with symptomatic infected passengers I is equal to 

. According to [11], the transmission rate  is even higher than , and within this 
study of the model is assumed to be  = 0,5. The matrix  has positive definite eigenvalues, 
which ensures the non-negativity of the solutions, and is presented in the such form in this 
study: 

 

 
 

3. RESULTS 
The total travel time is restricted by ten hours. There are two stop stations at which structure 
of passengers changed. The travel time between stations no greater than five hours. The train 
consists of sixteen cars, each with nine compartments. Considering staff, the number of the 
passengers is . We set the porosity  

Model (2.7) - (2.9) with boundary and initial conditions (2.11) - (2.16) are 
implemented with explicit method on Python. The random module was used to generate 
pseudo-random numbers. 

Fig. 3.1 shows the initial conditions for each group (S, E, I) at first station.  Panels 
(b)–(c) from Fig.1 shows that the asymptomatic infected E and symptomatic infected I 
passengers are unevenly distributed throughout the train. The share of each group is 
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Fig. 3.1. The initial conditions for susceptible S (a) asymptomatic infected E (b) and symptomatic infected I (c) 

passengers at station one. The ordinate axis shows the share of each group ( ) at the point , the abscissa 
axis presents the location in the train ( ) 
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Fig. 3.2 shows the dynamics over the time and space for each group  through 
the trip from first to second station.  It can be seen from the surfaces that the susceptible 
group (Fig. 3.2 (a)) tends to fall, while the number of asymptomatic infected (Fig. 3.2 (b)) 
passengers grows. The asymptomatic infected people almost do not change due to their 
inactivity. 

 

 
Fig. 3.2. The surfaces for susceptible S (a) asymptomatic infected E (b) and symptomatic infected I (c) 

passengers during the trip. The abscissa axis presents the location in the train ( ), on the ordinate axis is time 

( ), on the applicate axis is the share of each of each group ( ) 

 
Consider the simulation results on arrival at station two of each group.  
Fig. 3.3 shows the share at each point. The share of each group at last step is  

. During a five-hour trip the number of 
susceptible passengers decreased by 0,5 percent, number of asymptomatic infected 
passengers increased by 0,4 percent. It is clearly seen that location of symptomatic infected 
passengers (Fig. 3.3 (с)) is very similar to initial conditions (Fig.3.1 (с)). By comparing the 
dynamics over the time of asymptomatic infected passengers from departure (Fig. 3.1 (b)) to 
arrival (Fig. 3.3 (b)) it can be seen at the beginning most of the sick passengers are in the first 
half of the train. Due to the effect of porosity, this difference is more noticeable at the end. 
The more asymptomatic infected passengers are in the area, the more possibility to get 
infected. 
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Fig. 3.3. The share for susceptible S (a) asymptomatic infected E (b) and symptomatic infected I (c) passengers 
on arrival at station two. The ordinate axis shows the share of each group ( ) at the point , the abscissa 

axis presents the location in the train ( ) 

Fig. 3.4 shows the initial conditions for each group (S, E, I) at second station. Based 
on the algorithm at the interchange points there are 7 percent who leaves the train and the 
free cars are filled by 98 percent susceptible and asymptomatic infected passengers 
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respectively. It is assumed that the probability of taking seats by symptomatic infected 
passengers is very small with such filling. 

Despite the small change in the initial conditions, there is a small difference between 
at arrival at second station (Fig. 3.3) and departure from this station (Fig. 3.4). The share of 
each group is .  

 

 
Fig. 3.4. The initial conditions for susceptible S (a) asymptomatic infected E (b) and symptomatic infected I (c) 
passengers at station two. The ordinate axis shows the share of each group ( ) at the point , the abscissa 

axis presents the location in the train ( ) 
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The share of each group at last step is: 
  
The number of asymptomatic infected passengers E has already increased by 0,6 

percent which is one and a half bigger than the results of simulation from first to second 
station. Higher asymptomatic infected people lead to a faster spread od virus. The number 
symptomatic infected passengers, on the other hand, was almost unchanged. Despite their 
danger during the trip, they are inactive and with a small change of number of passengers 
there is a small probability that free seats will be filled by people from this group. 

5. CONCLUSION 
Modified SEI model in the porous medium was built. The probability of infecting from 
clearly infected and latently infected groups, passenger movement and ventilation were 
considered. The numerical calculations showed that the effect of a porous medium affects the 
breadth of the spread of infection. An algorithm to determine the initial conditions in the case 
of filling a free train and at interchange stations was developed. This algorithm considers 
factor of random filling of seats of passengers of different groups. Within the model 
problem, a small change in the composition of the train at the stop station led to increase of 
the virus spread. The numerical calculations made it possible to conclude that asymptomatic 
infected passengers have the greatest influence on the spread of infection than symptomatic 
infected. The increase in the number of asymptomatic infected passengers has led to a rapid 
increase spreading of disease. For a more detailed analysis, it is necessary to obtain reliable 
data on passenger traffic. 
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