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Abstract

This paper considers optimal designs based on the D-, G-, A-, I- and Ds-optimality
criteria for a random intercept model with heteroscedastic errors. It is shown that
the search of optimal approximate designs can be confined at extreme settings of
the design region if heteroscedastic structure satisfies specified conditions. Closed
expressions for the optimal proportions are given.
Keywords Optimal design, Random intercept model, Heteroscedastic errors, Ide-
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1 Introduction

Random coefficient models have been widely used for the researching in the area
of biosciences, psychology and population pharmacokinetics, where repeated mea-
surements are available from different individuals. These models have been in-
troduced by Longford[1], for recent researching we refer to Pena and Yohai[2]
and Yu[3]. In recent years, the problem of optimal designs for random coefficient
models has attracted growing interest. Schmelter[4-5] showed that optimal de-
signs in the linear mixed models could be restricted to the class of group-wise
identical designs, and optimal designs in the class of single-group designs were
also optimal designs in the larger class of more group designs when the design
criteria satisfied some assumptions. Schwabe and Schmelter[6], Schmelter et al[7]
and Luoma et al[8] . investigated optimal designs in random intercept model,
random slope model and random coefficient cubic regression model, respective-
ly. Entholzner et al[9] obtained optimal and efficient designs in mixed models.
Debusho and Haines[10] provided V-optimal and D-optimal designs with longi-
tudinal data in linear regression models with a random intercept.

There are many other results of optimal designs are obtained, such as Wang et
al[11], Yu[12] and Wen et al[13]. In this article, we investigate the problem of op-
timal designs based on some common optimality criteria for a random intercept
model with heteroscedastic errors. In Section 2, we introduce the model with
necessary notations. Section 3 provides a lemma which makes it sure that we can
confine the search of optimal designs at extreme settings of the design region if
the optimality criteria satisfy an assumption. Simple expressions of these optimal
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designs are given in this section. Section 4 introduces some examples. Proof of
Lemma 1 is given in Appendix.

2 The Random Intercept Model with Heteroscedastic Errors

We investigate a linear regression model on the unit interval with a random
intercept and heteroscedastic errors. It is assumed that there are individuals
with observations each, and the jth observation of ith individual is described by

yij = µi + xijβ + e(xij), i = 1, ..., n; j = 1, ...,mi. (1)

Where, xij ∈ [0, 1] is the experimental setting; µi denotes the ith individual effect
with unknown mean µ and known variance σ2

µ; β is the unknown slope parameter;
observational errors e(xij) are assumed to be heteroscedastic with zero mean and
variance σ2/λ(xij), here σ2 is known and λ(xij) is a positive real-valued contin-
uous function defined on [0,1]. We assume that

COV (µi, µi′) = 0, i ̸= i′

COV (µi, e(xi′j)) = 0, ∀i, i′;
COV (e(xij), e(xi′j′)) = 0, (i, j) ̸= (i′, j′).

For the ith individual, denote

Yi =

 yi1
...

yimi

 , Xi =

 xi1
...

ximi

 , e(xi) =

 e(xi1)
...

e(ximi)

 , Fi = (1mi , Xi)

Here 1mi is a vector of length mi with all entries equal one. Then the model (1)
can be expressed by

Yi = Fi

(
µ
β

)
+ 1mi(µi − µ) + e(xi) , Fiθ + 1mi(µi − µ) + e(xi), i = 1, . . . , n.

By the assumptions we have (µi − µ) ∼ (0, σ2
µ) and

Vi , COV (Yi) = σ2diag{1/λ(xi1), . . . 1/λ(ximi)}+σ2
µ1mi1

T
mi

, σ2(Di+d1mi1
T
mi

).

Here Di = diag{1/λ(xi1), . . . 1/λ(ximi)} and d = σ2
µ/σ

2. For all n individuals,
the vector of all observations can be expressed by

Y =

 Y1
...
Yn

 =

 F1
...
Fn

 θ +

 1m1 0
. . .

0 1mn


 µ1 − µ

...
µn − µ

+

 e(x1)
...

e(xn)


(2)
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The design matrix for random intercepts is block diagonal, e.g., 1m1 0
. . .

0 1mn

 .

Consequently, the covariance matrix of Y is COV (Y ) = diag{V1, . . . , Vn}. The
best linear unbiased estimate of θ is given by

θ̂ =

( n∑
i=1

F T
i V −1

i Fi

)−1 n∑
i=1

F T
i V −1

i Yi. (3)

And we can get

COV (θ̂) =

( n∑
i=1

F T
i V −1

i Fi

)−1

.

3 Optimal Designs

In this section, we investigate the optimal designs based on D-, G-, A-, I- and Ds-
optimality criteria for the models described in previous section. The D-optimal
design minimizes the generalized variance of parameter estimates, the G-optimal
design minimizes the maximum variance of the predicted value of the response
over the design region, the A-optimal design minimizes the total variance of the
parameter estimates, the I-optimal design minimizes the integrated mean squared
error and the interest of Ds-optimal design is in estimating the slope.

In some practical situations like human or animal pharmaceutics studies or
medical diagnostics there are often restrictions, e.g., technical implementations,
which force the experiment to be performed with identical regimes for all individ-
uals. This means that for each individual the number mi of repeated measure-
ments equals m and experimental settings xij = xj are identical across all the
individuals. So we only consider identical designs in the following, i.e., mi = m,
xi = x1 and hence, Fi = F1, Vi = V for all i. Then the best linear unbiased
estimate of θ can be written as

θ̂ =
(
nF T

1 V −1
1 F1

)−1
F T
1 V −1

1

n∑
i=1

Yi.

Here

V −1
1 =

1

σ2

(
D1 + d1m1Tm

)−1

=
1

σ2

(
D−1

1 − dD−1
1 1m1TmD−1

1

1 + d1TmD−1
1 1m

)
=

1

σ2

(
diag{λ(xj)} −

dD−1
1 1m1TmD−1

1

1 + d
∑n

j=1 λ(xj)

)
.
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Without loss of generality, we assume σ2 = 1 in the followings. Furthermore, we
will consider approximate designs. For any approximate design ξ of the following
form

ξ =

(
x1, . . . , xp
ω1, . . . , ωp

)
, 2 < p < m,

p∑
j=1

ωj = 1. (4)

Denote

νk =

∫ 1

0
xkλ(x)dξ(x) =

p∑
j=1

ωjx
k
jλ(xj), k = 0, 1, 2.

Then the information matrix corresponding to the design ξ of the form (4) can
be expressed by

M(ξ) =
mn

1 + γν0

(
ν0 ν1
ν1 ν2 + γ(ν0ν2 − ν21)

)
. (5)

Here we note γ = md.
For regression model without any random effects, optimal designs are obtained

at extreme settings of the design region and Schwabe et al[6] discussed optimal
designs of random intercept models. We can’t use the conclusions in Schwabe et
al[6] directly in the random intercept model with heteroscedastic errors, but we
have the following lemma.

Lemma 1 In the model (2), assume that mi = m, (i = 1, . . . , n) and λ(x) satis-
fies the following condition

1

λ(x)
≥ 1− x

λ0
+

x

λ(1)
, x ∈ [0, 1]. (6)

Where λ0 = λ(0) and λ1 = λ(1). Then for any approximate design ξ of the form
(4), there exists an approximate design of the form

ξ∗ =

(
0, 1

1− ω, ω

)
, 0 < ω < 1.

Such that M(ξ∗) ≥ M(ξ).

The proof of Lemma 1 can be found in the Appendix.
The criteria, Φ(·), considered in this paper are functions of the information

matrices which are required to satisfy the following assumptions:
A1 Φ(·), is a real-valued function defined on the whole set M of 2×2 symmetric
non-negative definite matrices, Φ : M → (−∞,∞];
A2 Φ(·) is monotone (the Loewner order (e.g., Pukelsheim[14], p.101)) on M
in the sense that M1,M2 ∈ M,M∞ ≥ M∈ ⇒ ⊕(M∞) ≤ ⊕(M∈).
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These assumptions are satisfied for most of the common criteria including the
D-, G-, A-, I- and Ds-optimality. So, by majorization we can confine the search of
optimal designs at extreme settings x = 0 and x = 1 if λ(x) satisfies the condition
(6) in Lemma 1. Therefore, in what follows we only consider approximate designs
ξ of the form

ξ =

(
0 1

1− ω ω

)
. (7)

For approximate designs of the form (7), we have

ν0 = λ1ω + λ0(1− ω), ν1 = ν2 = λ1ω.

First, we consider the D-optimality Φ(M(ξ)) =
∣∣M−1(ξ)

∣∣. Note that

|M(ξ)| , |M(ω)| = (mn)2λ0λ1ω(1− ω)

1 + γ[ωλ1 + (1− ω)λ0]
.

It is easy to verify that |M(ω)| is maximized at ω =
√
1 + γλ0/(

√
1 + γλ0 +

√
1 + γλ1)

and hence
∣∣M−1(ω)

∣∣ is minimized. Therefore we have

Theorem 1 For the model (2) with mi = m (i = 1, . . . , n) and λ(x) satisfying
(6) the D-optimal design is

ξ∗D =

(
0, 1

1− ωD, ωD

)
, ωD =

√
1 + γλ0√

1 + γλ0 +
√
1 + γλ1

For the Ds-optimality, note that the covariance matrix of θ̂ can be calculated by

M−1(ω) =
1

mn(ν0 − ν2)

(
1 + γ(ν0 − ν1) −1

−1 ν0
ν1

)
=

1

mn

(
1

λ0(1−ω) + γ − 1
λ0(1−ω)

− 1
λ0(1−ω)

1
λ0(1−ω) +

1
λ1(ω)

)
The variance of the estimate for β is given by

COV (β̂) = [M−1(ω)]22 =
1

mn
[

1

λ0(1− ω)
+

1

λ1ω
].

The variance of β̂ is minimized at ω =
√
λ0/(

√
λ0 +

√
λ1). Therefore we have

Theorem 2 For the model (2) with mi = m (i = 1, . . . , n), and λ(x) satisfying
(6) the Ds-optimal design is

ξ∗Ds
=

(
0, 1

1− ωDs , ωDs

)
, ωDs =

√
λ0√

λ0 +
√
λ1

.
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Consider the G-optimality, then Φ(M(ω)) = max
x∈[0,1]

d(ω, x). Here d(ω, x) is the

variance of the predicted value of the response, which is given by

d(x, ω) =
(
1 x

)
M−1(ω)

(
1
x

)
=

1

mn

{[ 1

λ0(1− ω)
+

1

λ1ω

]
x2 − 2x

λ0(1− ω)
+

1

λ0(1− ω)
+ γ

}
.

As d(ω, x) is a polynomial of degree 2 with positive leading term, its maximum is
attained either x = 0 or x = 1 or both, i.e.,max d(ω, x) = max

x∈[0,1]
{d(0, ω), d(1, ω)} .

Note that

d(0, ω) =
1

mn

{
1

λ0(1− ω)
+ γ

}
is strictly increasing in ω,

d(1, ω) =
1

mn

{
1

λ1(ω)
+ γ

}
is strictly decreasing in ω.

Thus min
ω∈[0,1]

max
x∈[0,1]

d(x, ω) is attained when d(0, ω) = d(1, ω), i.e.,

1

λ0(1− ω)
=

1

λ1(ω)
.

So we have

Theorem 3 For the model (2) with mi = m (i = 1, . . . , n), and λ(x) satisfying
(6) the G-optimal design is

ξG
∗ =

(
0, 1

1− ωG, ωG

)
, ωG =

λ0

λ0 + λ1
.

For the I-optimality,

Φ(M(ω)) =

∫ 1

0
d(x, ω)dx =

1

mn

[
γ +

1

3λ0(1− ω)
+

1

3λ1ω

]
.

Which is minimized at ω =
√
λ0/(

√
λ0 +

√
λ1) = ωDs . So we have

Theorem 4 For the model (2) with mi = m (i = 1, . . . , n), and λ(x) satisfying
(6) the I-optimal design is

ξ∗I =

(
0, 1

1− ωI , ωI

)
, ωI =

√
λ0√

λ0 +
√
λ1

.
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For the A-optimality

Φ(M(ω)) = tr
(
M−1(ω)

)
=

1

mn

[ 1

λ1ω
+

2

λ0(1− ω)
+ γ
]
.

It is easy to verify that tr
(
M−1(ω)

)
is minimized at ω =

√
λ0√

λ0+
√
2λ1

.Therefore we

have

Theorem 5 For the model (2) with mi = m (i = 1, . . . , n), and λ(x) satisfying
(6) the A-optimal design is

ξA
∗ =

(
0, 1

1− ωA, ωA

)
, ωI =

√
λ0√

λ0 +
√
2λ1

.

From above discussion, we observe that the G-, Ds-, I- and A-optimal designs
only depend on the variances at extreme settings; the D-optimal design depends
repeated times m and variance proportion d and error variances at the extreme
settings. Note that the particular shape of λ(x) is immaterial for the results, but
only its values at 0 and 1, as long as condition (6) is satisfied.

Specially, when heteroscedastic structure satisfies λ0 = λ1 = max
x∈[0,1]

λ(x) , the

optimal designs discussed above are independent of the variance ratio d. These
optimal designs are the same as the corresponding optimal designs in the linear
regression model without any random effects, i.e.,

ωD = ωG = ωI = ωDs =
1

2
, ωA =

√
2− 1.

4 Examples

In this section, we consider three random intercept models with the following
heteroscedastic errors

λ(x) = x2 + 1, λ(x) =
1

1 + x
, λ(x) =

x4 + 1

x2 + 1
.

It is easy to verify that these three λ(x) satisfy the condition (6). These het-
eroscedastic structures are also considered in Chang[15] for D-optimal designs in
weighted polynomial regression models.

We will give the optimal designs for the three models in terms for the result-
s given in Section 3. We also compare the D- and G-optimal designs for the
three models with the equireplicated design ω0 = 0.5 which is simultaneously D-
and G-optimal for the fixed effects only model (d = 0) in terms of the D- and
G-efficiency which are defined as following

EffD(ω0) =

(
|M(ω0)|
|M(ω)|

) 1
2

, EffD(ω0) =

max
x∈[0,1]

d(x, ωG)

max
x∈[0,1]

d(x, ω0)
(8)
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Example 1 For the model (2) with mi = m(i = 1, . . . , n), and λ(x) = x2 + 1
, from the theorems in Section 3, we obtain the D-, G-, A-, I- and Ds-optimal
proportions as follows:

ωD =

√
1 + γ√

1 + γ +
√
1 + 2γ

, ωG = ωA =
1

3
, ωI = ωDs =

√
2− 1.

The D- and G-efficiencies defined by (8) of the equireplicated design ω0 = 0.5 are
as follows:

EffD(ω0) =

√
1 + 2γ +

√
1 + γ√

4 + 6γ
, EffD(ω0) =

γ + 1.5

γ + 2
.

It is clear that EffD(ω0) decreases strictly in γ and ultimately tends to (
√
2 +

1)/
√
6 , and EffD(ω0) increases strictly in γ and ultimately tends to one. Fig.1

shows the plots of these two efficiencies.

Fig.1 The efficiencies of EffD(ω0) and EffG(ω0) with different λ

Example 2 For the model (2) with mi = m(i = 1, . . . , n),and λ(x) = 1
1+x , the

D-, G-, A-, I- and Ds-optimal proportions as follows:

ωD =

√
2 + 2γ√

+γ +
√
2 + 2γ

, ωG =
2

3
, ωA =

1

2
, ωI = ωDs = 2−

√
2.

The D- and G-efficiencies defined by (8) of the equireplicated design ω0 = 0.5 are
as follows:

EffD(ω0) =

√
2 + 2γ +

√
2 + γ√

8 + 6γ
, EffD(ω0) =

γ + 3

γ + 4
.

It is clear that EffD(ω0) decreases strictly in γ and ultimately tends to (
√
2 +

1)/
√
6 = 0.9856, and EffD(ω0) increases strictly in γ and ultimately tends to

one. Fig.2 shows the plots of these two efficiencies.
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Fig.2 The efficiencies of EffD(ω0) and EffG(ω0) with different λ

Example 3 For the model (2) with mi = m (i = 1, . . . , n), and λ(x) = x4+1
x2+1

,
the D-, G-, A-, I- and Ds-optimal proportions as follows:

ωD = ωG = ωI = ωDs =
1

2
, ωA =

√
2− 1.

That is, the D-, G-, I- and Ds-optimal designs are all the equireplicated designs.

Appendix

Proof of Lemma 1 From Liski et al[16], we get

M−1(ξ) = M−1
0 (ξ) +

(
d
n 0
0 0

)
Here M0(ξ) is the corresponding generalized information matrix when there are
no individual intercepts, i.e.,

M0(ξ) = mn

(
ν0 ν1
ν1 ν2

)
.

Let the proportion ω in ξ∗ be of the form ω = ν1/λ1. It follows that

M0(ξ
∗) = mn

(
ν∗0 ν∗1
ν∗1 ν∗2

)
,

and

M0(ξ
∗)−M0(ξ) = mn

(
ν∗0 − ν0 0

0 ν∗2 − ν2

)
.

Here ν∗0 = λ1ω + λ0(1− ω) and ν∗2 = ν∗1 = λ1ω . Since

1

λ(x)
≥ 1− x

λ0
+

x

λ1
≥ x

λ1
,
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so λ1 ≥ xλ(x). It implies 0 < ω < 1.

[
M0(ξ

∗)−M0(ξ)
]
11

= mn

[
λ1ω + λ0(1− ω)−

p∑
j=1

ωjλ(xj)

]

= mn

p∑
j=1

ωj

[
λ(xj)xj(λ1 − λ0)− λ1λ(xj) + λ1λ0

]

Condition (6) implies

λ(x)x(λ1 − λ0)− λ1λ(x) + λ1λ0 ≥ 0.

So we obtain [
M0(ξ

∗)−M0(ξ)
]
11

≥ 0

By ν∗2 = ν∗1 = ν1 ≥ ν2 , we have[
M0(ξ

∗)−M0(ξ)
]
22

≥ 0

So we get M0(ξ
∗) ≥ M0(ξ) and hence M(ξ∗) ≥ M0(ξ).
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