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Abstract: Closed and open market models, in which the supply and demand functions are
restored by their price elasticities, are studied. For the closed market model criteria on the
existence of equilibrium is obtained as the corollary of existence theorems for the solutions to
systems of linear equations and inequalities. The results of the covering maps theory, namely
existence theorems of a coincidence point, are applied to obtain sufficient conditions on the
existence of an equilibrium in open market model and to develop search algorithm of an
equilibrium in this model. Numerical experiments illustrating the obtained results are conducted.
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1. INTRODUCTION

The concept of equilibrium plays an important role in the research of market models.
Basically it is a situation on the market in which none of the participants is interested in
the change of their state.

Let us explain the meaning of equilibrium. Assume that the market consists of the
producers and the consumers. The producers tend to maximize their own income by
manufacturing some goods. The consumers spend their budget to purchase these goods
satisfying their needs. The total volume of goods produced is called the supply. The total
volume of goods needed is called the demand.

It is obvious that insufficient amount of goods on the market can lead to unfavorable
consequences such as hunger, epidemic or even death depending on the market described.
Therefore, there must be enough goods on the market to satisfy the needs of the consumers.
On the other hand, if some goods produced is not sold to the consumers, the producers suffer
an obvious income loss. Hence, they must produce enough goods to satisfy the needs of the
consumers, but not more than this required amount. From these considerations we obtain that
the amount of goods produced must be equal to the amount of goods needed. In other words,
the value of the supply must be equal to the value of the demand. This situation on the market
is called an equilibrium.

The concept of equilibrium allows us to determine the best prices for the producers and
the consumers to set in the modeled region. Indeed, with these prices (which are called
equilibrium prices) producers obtain maximal profit since they sell all the goods produced,
and consumers obtain the goods needed in the full amount. However, the mathematical
approach to this concept remained poor due to the state of the progress of mathematics at
the time.
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The advancement in the theory of covering mappings and coincidence points (see, e.g.,
[1], [2]) makes the deep research into the equilibrium theory possible. This mathematical
field allows us to make a research on the equilibrium even in the nonlinear market models.
For example, in [5]– [7] theorems on the existence of coincidence points for mappings of
metric spaces are applied to obtain sufficient conditions on the existence of an equilibrium
in the market models. In [3], [4], [7] the mappings of supply and demand are determined as
solutions of extremal problems.

The supply function can also be obtained as the realization of some production model
(see, e.g., [5], [13]). Here we restore the supply and demand function using the concept
of elasticitiy. Elasticities are the values that connect supply and demand volumes with
parameters obtained from the statistical data (e.g., prices, income, transport costs etc.). That
allows us to determine the supply and demand functions that describe real market of some
region. Using equilibrium theory, we can improve the economical situation in the region.

In this paper, we investigate the existence of equilibrium in open and closed market
models. Here, we used price elasticity coefficients of goods presented on the market to obtain
the explicit forms of the supply and demand functions. For these functions, we obtained a
criteria for the existence of equilibrium in the closed market model. Also for the open market
model we obtained sufficient conditions using corollaries of coincidence points theorems. We
also developed a search algorithm of an equilibrium for the open market model and conducted
a numerical experiment. This algorithm is based on pattern search method and illustrate the
effectiveness of the obtained sufficient conditions. This method is chosen due to its simplicity
and visibility. The obtained results show that equilibrium is found in the case when the model
satisfies the sufficient conditions with moderate precision.

2. MARKET MODELS

This section provides sample equations, figures, and tables.

2.1. Closed Market Model
Consider a market of n goods with uniform prices set:

p = (p1, . . . , pn), pi ∈ [c1i, c2i],

where vectors c1, c2 set the natural restrictions on these prices.
Suppose that we have n× n matrices E = (Eij)i,j=1,n, Ẽ = (Ẽij)i,j=1,n (Eij, Ẽij ∈ R for

all i, j = 1, n, vectors c̄1 = (c11, ..., c1n), c̄2 = (c21, ..., c2n) ∈ Rn
+ with 0 < c1i < c2i for all

i = 1, n, a vector p̄∗ = (p∗1, ..., p
∗
n) ∈ Rn

+ such that c1i ≤ p∗i ≤ c2i for all i = 1, n, and vectors
D̄∗ = (D∗1, ..., D

∗
n), S̄∗ = (S∗1 , ..., S

∗
n) ∈ Rn

+.
We call

σc = (E , Ẽ , D̄∗, S̄∗, p̄∗, c̄1, c̄2) (2.1)

a closed market model (the goods presented on the market are manufactured by the producers
only). The set of all σc is denoted by Σc.

The parameters of the model have the following sense. Elements of E are the price
elasticities of demand:

Eij =
∂Di

∂pj

pj
Di

, i, j = 1, n. (2.2)

Here pi is the price of the ith good, Di = Di(p1, ..., pn) is a total demand on the ith good, Eij

is the elasticity of demand on the ith good for the price of the jth good, i, j = 1, n.
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Elements of Ẽ are the price elasticities of supply:

Ẽij =
∂Si

∂pj

pj
Si

, i, j = 1, n. (2.3)

Here Si = (Si(p1, ..., pn) is a total supply of the ith good, Ẽij is the elasticity of supply on
the ith good for the price of the jth good, i, j = 1, n.

Components of the vectors c̄1 and c̄2 generate natural conditions on the prices of the
goods:

c1i ≤ pi ≤ c2i, i = 1, n.

Component of the vector D̄∗ = D̄(p∗1, ..., p
∗
n) is the demand on the corresponding good

and component of the vector S̄∗ = S̄(p∗1, ..., p
∗
n) is the supply of the corresponding good for

the prices set p̄∗ = (p∗1, ..., p
∗
n).

Parameters (E , Ẽ , D̄∗, S̄∗, p̄∗, c̄1, c̄2) uniquely define the function of demand

D : [c11; c21]× ...× [c1n; c2n]→ Rn
+,

D(p1, ..., pn) = (D1(p1, ..., pn), ..., Dn(p1, ..., pn))
(2.4)

and the function of supply

S : [c11; c21]× ...× [c1n; c2n]→ Rn
+,

S(p1, ..., pn) = (S1(p1, ..., pn), ..., Sn(p1, ..., pn))
(2.5)

Solving the system of partial differential equations (2.2) we obtain the explicit form of
the demand function:

Di(p1, ..., pn) = D∗i

n∏
j=1

(p∗j)
−Eijp

Eij

j . (2.6)

Similarly, solving the system of partial differential equations (2.3) we get the explicit form
of the supply function:

Si(p1, ..., pn) = S∗i

n∏
j=1

(p∗j)
−Ẽijp

Ẽij

j . (2.7)

Definition 2.1:
A vector p̄ ∈ [c11, c21]× ...× [c1n, c2n] is called an equilibrium price vector (an equilibrium),
in the model σc if D(p̄) = S(p̄).

2.2. Open Market Model

Suppose that we have n× n matrices E = (Eij)i,j=1,n, Ẽ = (Ẽij)i,j=1,n (Eij, Ẽij ∈ R for
all i, j = 1, n, vectors c̄1 = (c11, ..., c1n), c̄2 = (c21, ..., c2n) ∈ Rn

+ with 0 < c1i < c2i for
all i = 1, n, a vector p̄∗ = (p∗1, ..., p

∗
n) ∈ Rn

+ such that c1i ≤ p∗i ≤ c2i for all i = 1, n, and
vectors D̄∗ = (D∗1, ..., D

∗
n), S̄∗ = (S∗1 , ..., S

∗
n) ∈ Rn

+. Moreover, we suppose that a vector
ā = (a1, ..., an) ∈ Rn

+, such that there exists at least one number i = 1, n : ai > 0, is given.
We call

σo = (E , Ẽ , D̄∗, S̄∗, p̄∗, c̄1, c̄2, ā) (2.8)
an open market model (at least one kind of the goods is imported externally). The set of all
σo is denoted by Σo.

The parameters E , Ẽ , D̄∗, S̄∗, p̄∗, c̄1, c̄2 of the model (2.8) have the same sense as the ones
for the model (2.1). The component of vector āwith the number i = 1, n equals to the volume
of imported ith good.
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The parameters (E , Ẽ , D̄∗, S̄∗, p̄∗, c̄1, c̄2, ā) uniquely define the demand function (2.4) and
supply function (2.5). These functions are defined by (2.6) and (2.7) respectively.
Definition 2.2:
A vector p̄ ∈ [c11, c21]× ...× [c1n, c2n] is called an equilibrium price vector (an equilibrium),
in the model σo if D(p̄) = S(p̄) + ā.

3. EQUILIBRIUM IN MARKET MODELS

The following theorems (criteria on the existense of an equilibrium) are extenstions of the
results obtained in [8] for the closed market model.
Theorem 3.1:
In closed market model σC ∈ ΣC there exists an equilibrium vector iff for any vectors
λ̄ = (λ1, . . . , λn) ∈ Rn

+ and x̄ = (x1, . . . , xn) ∈ Rn the following conditions hold:
n∑

i,j=1

λiaijxj +
n∑

i=1

λibi +
n∑

i=1

λixi = 0,

n∑
i=1

λi ln
c1i
c2i
≤ 0

with

aij = Ẽij − Eij, i, j = 1, n,

bi = ln
D∗i
S∗i

+
n∑

k=1

(Ẽik − Eik) ln p∗k, i = 1, n.

Proof
follows from Alexandrov theorem and Fan Ky theorem on the consistency of linear inequality
system (see, e.g., [9]) and the fact that for closed market model σc ∈ Σc the condition on the
existence of an equilibrium is equivalent to the condition on the existence of the solution to
the following system of equations (which is linear by ln pj, j = 1, n):

n∑
j=1

(Ẽij − Eij) ln pj = ln
D∗i
S∗i

+
n∑

j=1

(Ẽij − Eij) ln p∗j , i = 1, n,

satisfying inequalities:

c1j ≤ pj ≤ c2j ∀j = 1, n.

The following Theorem is another criteria on the existence of equilibrium. Its conditions
(unlike Theorem 3.1) can be easily verified. To do that, one must simply calculate the finite
number of determinants.
Theorem 3.2:
For closed market model σC ∈ ΣC there exists an equilibrium vector iff there exist such
natural numbers ik ≤ n, jl ≤ n, k, l = 1, r with r = rang

(
Ẽ − E

)
and square matrix A =

{aikjl}, aikjl = Ẽikjl − Eikjl with rang r such that the following conditions hold:
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detA 6= 0,

det

 A

bi1
...
bir

aij1 · · · aijr bi

 = 0 ∀i = 1, n,

det

 A

bi1
...
bir

δij1 · · · δijr ln c1i

 ≤ 0, det

 A

bi1
...
bir

δij1 · · · δijr ln c2i

 ≥ 0 ∀i = 1, n

with

bi = ln
D∗i
S∗i

+
n∑

k=1

(Ẽik − Eik) ln p∗k, i = 1, n.

and δij is Kronecker delta.

Proof
The vector p̄ = (p1, ..., pn) is an equilibrium prices vector in model σc iff it is the solution to
the following system of equations and inequalities

n∑
j=1

(Ẽij − Eij) ln pj = ln
D∗i
S∗i

+
n∑

j=1

(Ẽij − Eij) ln p∗j ,

pi ≥ c1i,
pi ≤ c2i, i = 1, n.

(3.9)

The system (3.9) is consistent iff the following system is consistent
n∑

j=1

aijxi = bi,

xi ≥ C1i,
xi ≤ C2i,

i = 1, n. (3.10)

Here
C1i = ln c1i, i = 1, n;C2i = ln c2i, i = 1, n.

Applying Theorem 1.3 from [10] to the system of linear equations and inequalities (3.10)
we obtain the conditions of the Theorem.

3.1. Equilibrium in Open Market Models
Let us introduce the following notation:

ᾱ(σ) =

[
max
i=1,n

((
S∗i

n∏
j=1

(p∗j)
−Ẽij min

{
c
|Ẽij |
1j , c

−|Ẽij |
2j

})−1
×

n∑
k=1

c2k − c1k
2

c2k|Ẽ−1ki |

)]−1
,

β̄(σ) = max
i=1,n

((
D∗i

n∏
j=1

(p∗j)
−Eij max

{
c
|Eij |
2j , c

−|Eij |
1j

})
×

n∑
k=1

ck2 − c1k
2c1k

|Eik|

)
,
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γ̄(σ) = max
i=1,n
|Si(c̃) + ai −Di(c̃)| ,

where E−1ij is the element of the inverse matrix E−1 to Ẽ , c̃ = c1+c2
2

.

Theorem 3.3:
Let the parameters of the open market model σo ∈ Σo satisfy the conditions:

• β̄(σ) < ᾱ(σ);
• γ̄(σ) < ᾱ(σ)− β̄(σ).

Then there exists an equilibrium prices vector p̄ ∈ Rn
+ with c̄1 ≤ p̄ ≤ c̄2.

To prove this Theorem, we need the following definitions and results from the theory of
covering maps. Let us formulate them. Let (X, ρX) and (Y, ρY ) be the metric spaces and Ψ
and Φ be the maps from X to Y . By BX(x, r) denote a closed ball with the center at point x
and radius r in the space X . Analogously we define BY (x, r).
Definition 3.1:
(see [11]). A map Ψ : X → Y is called α-covering if

Ψ(BX(x, r)) ⊇ BY (Ψ(x), αr)∀x ∈ X, ∀r > 0.

Definition 3.2:
(see [11]). A map Ψ is called metrically κ-regular if ∀x0 ∈ X, y ∈ Y ∃ ∈ X : Ψ(x) = y and

ρX(x, x0) ≤ κρY (y,Ψ(x0)).

Proposition 3.1:
A map Ψ is α-covering iff Ψ is 1/α-regular.

Note that the maps Ψ and Φ are, obviously, surjective. It is easy to show that from the
properties of metric regularity we can obtain the following Proposition.
Proposition 3.2:
Let σo ∈ Σo, S,D : Rn

+ → Rn be such that S is α-covering and D is Lipschitz continuous
with Lipschitz constant β, ∃p∗, p∗∗ ∈ Rn

+ : S(p∗) = D(p∗), S(p∗∗) = D(p∗). If S(p∗) =
S(p∗∗), then p∗ = p∗∗.

Proof
Indeed, if S is α-covering, then S is 1/α-regular and

ρX(p∗, p∗∗) ≤ 1

α
ρY (S(p∗), S(p∗∗)) = 0,

which leads to p∗ = p∗∗.

Theorem 3.4:
(see Theorem 1 from [11]) Let the space X be complete, x0 ∈ X,α > 0, R > 0. Let the map
Ψ : X → Y be closed and α-covering on BX(x0, R). Then for any nonnegative β < α and
any map Φ : BX(x0, R)→ Y satisfying Lipschitz condition with the constant β and such that

ρY (Ψ(x0),Φ(x0)) ≤ (α− β)R,

there exists a coincidence point ξ ∈ X for the maps Ψ,Φ, i.e., Ψ(ξ) = Φ(ξ), such that

ρY (x0, ξ) ≤
ρY (Ψ(x0),Φ(x0))

α− β
.
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Proof
Proof of Theorem 3.3. Introduce the following notation. By cov(S|M) denote the supremum
of all α > 0 such that S is α-covering on M . By lip(D|M) denote the infimum of all β ≥ 0
such that D satisfies Lipschitz condition with a constant β. Then

lip(D|M) = sup
p∈intM

∥∥∥∥∂D∂p (p)

∥∥∥∥ .
In spaces Rn

+,Rn define the norms by

‖x‖1 = 2 max
j=1,n

|xj|
c2j − c1j

∀x = (x1, ..., xn) ∈ Rn,

‖y‖2 = max
j=1,n

|yj|∀y = (y1, ..., yn) ∈ Rn.

Let X = Rn
+, Y = Rn. Put M = BX(c̃, 1). It is obvious that M = [c11, c21]× ...× [c1n, c2n].

Consider the metric spaces (X, ρY ) and (Y, ρY ) with the metrics ρX , ρY defined by the norms
‖ · ‖1, ‖ · ‖2 correspondingly. It is obvious that Rn

+ is not complete, but we only need that
BX(c̃, 1) is complete.

Let us estimate lip(D|M). To do that, estimate
∥∥∥∂D

∂p
(p)
∥∥∥ first. From (2.2) it follows that∥∥∥∥∂D∂p (p)

∥∥∥∥ =
D∗iEik

pk

n∏
j=1

(p∗j)
−Eijp

Eij

j

Therefore, ∥∥∥∥dDdp
∥∥∥∥ = max

‖x‖=1

∥∥∥∥dDdp x
∥∥∥∥ = max

‖x‖=1
max
i=1,n

n∑
k=1

∣∣∣∣∂Di

∂pk
xk

∣∣∣∣ ≤
≤ max
‖x‖=1

max
i=1,n

n∑
k=1

D∗i |Eik|
pk

|xk|
n∏

j=1

(p∗j)
−Eijp

Eij

j ≤

≤ max
i=1,n

(
n∏

j=1

(p∗j)
−Eijp

Eij

j D∗i

)
n∑

k=1

c2k − c1k
2pk

|Eik| ≤

≤ max
i=1,n

D∗i

(
n∏

j=1

(p∗j)
−Eij max

{
c
Eij

2j , c
Eij

1j

})
×

×
n∑

k=1

ck2 − c1k
2c1k

|Eik| = β̄(σ).

Now we estimate cov(S|M). According to Proposition 3.1, if the map S is α-covering, the
inverse map S−1 is 1/α-Lipschitz continuous. We obtain the estimate using this proposition.
Firstly we find (∂S/∂p)−1. By (2.3) we have

∂Si

∂pk
(p) =

ẼikS
∗
i

pk

n∏
j=1

(p∗j)
−Ẽijp

Ẽij

j
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Therefore,

det
∂S(p)

∂p
=

n∏
i=1

(
S∗i p

−1
i

n∏
j=1

(p∗j)
−Ẽijp

Ẽij

j

)
det Ẽ .

By Sik, Ẽik denote a cofactor to element ∂S/∂pk, Ẽik of ∂S/∂p, Ẽ correspondingly. Thus:

Sik =

 n∏
m=1
m 6=k

p−1m

 n∏
l=1
l 6=i

(
S∗l

n∏
j=1

(p∗j)
−Ẽljp

Ẽlj

j

)
Ẽik.

Hence, the element of inverse matrix (∂S/∂p)−1:(
∂S(p)

∂p

)−1
ki

=
Ẽ−1ki

p−1k S∗i
n∏

j=1

(p∗j)
−Ẽijp

Ẽij

j

,

where Ẽ−1ki is the element of inverse matrix to Ẽ .
Now we estimate the Lipschitz constant of (∂D/∂p)−1:∥∥∥∥∥

(
∂S(p)

∂p

)−1∥∥∥∥∥ = max
‖x‖1=1

max
i=1,n

n∑
k=1

∥∥∥∥∥
(
∂Si(p)

∂pk

)−1∥∥∥∥∥ ≤
≤ max
‖x‖1=1

max
i=1,n

n∑
k=1

pk

∣∣∣Ẽ−1ki xk

∣∣∣
S∗i

n∏
j=1

(p∗j)
−Ẽij min

{
c
Ẽij

1j , c
Ẽij

2j

} ≤

≤ max
i=1,n

(
S∗i

n∏
j=1

(p∗j)
−Ẽij min

{
c
Ẽij

1j , c
Ẽij

2j

})−1
×

×
n∑

k=1

∣∣∣Ẽ−1ki

∣∣∣ c2k − c1k
2

c2k =
1

ᾱ(σ)
.

By the conditions of Theorem and inequalities cov(S|M) ≥ ᾱ(σ), lip(D|M) ≤ β̄(σ)
there exist positive numbers α, β such that β̄(σ) < β < α < ᾱ(σ), S is α-covering on M,
D is β-Lipschitz continuous on M. Since ρY (S(c̃+ a,D(c̃)) = γ̄(σ), from Condition 2 of the
Theorem it follows that ρY (S(c̃+ a,D(c̃)) < α− β. Therefore, there exists a vector p̄ ∈ X
such that D(p̄) = S(p̄) + a and

ρY (p̄, c̃) ≤ ρY (S(c̃) + a,D(c̃))

α− β
.

From the last inequality it follows that p ∈ intM , since M = BX(c̃, 1) and ρy(S(c̃) +
a,D(c̃)) < α− β. Hence, c1j < pj < c2j, j = 1, n.

Theorem 3.5:
Let the following conditions be satisfied for the model σo ∈ Σo:
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• ᾱ(σ) > 2β̄(σ);
• ∃p̃ = (p̃1, . . . , p̃n) ∈ Rn

+: S(p̃1, . . . , p̃n) = D(p∗1, . . . , p
∗
n), where (p∗1, . . . , p

∗
n) is an

equilibrium in model σo.

Then in the model σo there exists an equilibrium prices vector not equal (p∗1, . . . , p
∗
n).

Proof
follows from Theorem 1 in [12].

The results similar to Theorems 3.3–3.5 for dynamic market models may be obtained,
applying the results of [13]– [16] besides existence theorems for coincidence points. In such
models the supply and demand functions depend not only on prices on the goods, but on price
change rates. In turn, the question of the existence for an equilibrium can be considered as
the question of existence for the solution of a system of differential equations.

4. ITERATION PROCESS

Define the norms in the spaces Rn
+ and Rn:

‖x‖X = 2 max
j=1,n

|xj|
c2j − c1j

∀x = (x1, ..., xn) ∈ Rn,

‖y‖Y = max
j=1,n

|yj| ∀y = (y1, ..., yn) ∈ Rn,

and consider metric spaces (Rn
+, ρX), (Rn, ρY ) with the metrics ρX and ρY generated by the

norms ‖ · ‖X and ‖ · ‖Y correspondingly. Fix an arbitrary δ > 0. From Definition (3.1) we
obtain that

ρY (S(x′), D(x)) ≤ δρY (S(x), D(x)), (4.11)

ρX(x′, x) ≤ α−1ρY (S(x), D(x)). (4.12)
Based on these inequalities we can construct the following iteration process. Let S,D : X →
Y , S be α-covering and D be Lipschitz continuous with the constant β. Fix an arbitrary
p0 ∈ X and a sequence of nonnegative numbers {δi}:

β + α lim
i→∞

δi < α. (4.13)

Then there exists a sequence {pi}, i = 0, 1, ... such that

ρY (S(pi+1), D(pi)) ≤ δiρY (S(pi), D(pi)), (4.14)

ρX(pi+1, pi) ≤ α−1ρY (S(pi), D(pi)). (4.15)
Theorem 4.1 (A. Arutyunov, see [1]):
Let the space X be complete, S : X → Y be α-covering, gphS = {(x, y) ∈ X × Y : y =
S(x)} be closed and D : X → Y satisfy Lipschitz condition with a constant β < α and,
moreover,

β + α lim
i→∞

δi < α. (4.16)

Then ∀p0 ∈ X there exists a sequence {pi} satisfying (4.14), (4.15) ∀i, and any such
sequence converges to some coincidence point ξ = ξ(x0) with

ρX(ξ, p0) ≤ α−1

(
1 +

∞∑
j=1

i∏
j=1

(
δi +

β

α

))
ρY (S(p0), D(p0)).
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We construct search algorithm on the base of iteration process (4.14), (4.15) and Theorem
4.1. The search of a new point on every step of this iteration process is based on direct search
method. Namely, we search the new point of the iteration process in the form:

pi+1 = pi + h = (p1i + h1, ..., pni + hn), (4.17)

where h = (h1, ..., hn) is the step that needs to be defined on every iteration.
The search radius, i.e., the maximal value of every coordinate of the step, can be found

using (4.15). Indeed, from (4.15) we obtain that:

max
i=1,n

|hi|
ci1 − ci2

6
α−1

2
max
i=1,n
|Si(p)−Di(p)|,

where S(p) = (S1(p), ..., Sn(p)), D(p) = (D1(p), ..., Dn(p)). Then:

|hi|
ci1 − ci2

6
α−1

2
max
i=1,n
|Si(p)−Di(p)|.

Hence we obtain the estimate for the search radius:

|hi| 6
ci1 − ci2

2α
max
i=1,n
|Si(p)−Di(p)|. (4.18)

Next we must define the elements of the sequence {δi}. From (4.16) it follows that:

lim
i→∞

δi < 1− β

α
. (4.19)

Here we put:

δi = δ = 1− β

α
− ε, (4.20)

where ε > 0 is an arbitrary small positive number (process error). Constructed sequence
obviously satisfies (4.19).

Now we describe the step of the iteration process. Let pi be the point obtained on ith
iteration. Define the search radius by considering an equality in (4.18) and put

p̃i+1 = (p1i + h1, p2i, ..., pni),

i.e., take the initial point with ¡¡incremented¿¿ first coordinate. For this point we check the
condition (4.14). If it is satisfied, we put pi+1 = p̃i+1 but we continue the search process by
decreasing h1. If we find another point satisfying (4.14), we compare it with the previous one
by the value at ρ2(S(·), D(pi)) and take the one with the minimal value. Then we decrease
h1 and continue the search while h1 > ε.

After we complete the search by the first coordinate in positive direction we put

p̃i+1 = (p1i − h1, p2i, ..., pni),

and conduct this search for this point. Once we finish this search (i.e. h1 < ε), we
¡¡increment¿¿ the second coordinate and conduct this search for it etc. When we complete
the search for the last coordinate we finish the iteration and obtain the point pi+1.

Numerical experiments show that on the first step of the iteration process δi chosen above
can violate this process. Condition (4.19) allows us to redefine δi to satisfy (4.14), from which
we obtain that

max
p∈Uh(pi)

ρY (S(p), D(pi)) ≤ δiρY (S(pi), D(pi)),
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where Uh(pi) = {x ∈ Rn
+ : |pij − xj| ≤ hj, j = 1, n}. From the last inequality we get the

lower estimate for δi:

δi ≥ (ρY (S(pk), D(pk)))−1 max
p∈Uh(pk)

ρY (S(p), D(pk)).

It is possible to define δi as shown above on each iteration but this can significantly
decrease the iteration process.

5. CONCLUSION

The open and closed market models are studied. The existence of an equilibrium is
investigated. For the closed market model we obtained necessary and sufficient conditions
for the existence of an equilibrium price vector. To do that, we used corollaries of consistence
theorems for the systems of linear equations and inequalities. These conditions can be easily
verified numerically. For the open market model we obtained sufficient existence conditions.
To do that, we used corollaries of the theorems on coincidence points for covering and
Lipschitz continuous mappings. These conditions can be also verified numerically. Also we
obtained the conditions for the uniqueness and nonuniqueness of equilibrium in the open
and closed market models. They are easily obtained as corollaries from coincidence points
theorems. All these results can be applied to investigate the power of the set of equilibrium
price vectors and to find them numerically.

ACKNOWLEDGEMENTS

This paper was written with the financial support of RFBR (grant no. 19-01-00080, 20-
01-00610). Theorem 3.3 is obtained by the first author under financial support of Russian
Science Foundation (Project No. 20-11-20131).

REFERENCES

1. Arutyunov, A.V. (2014) Coincidence points of two maps, Funct. Anal. Its. Appl., 48,
72–75.

2. Arutyunov, A.V., Zhukovskiy, S.E. (2010) Existence and properties of inverse mappings,
Proc. Steklov Inst. Math., 271, 12–22.

3. Arutyunov, A.V., Pavlova, N.G., Shananin, A.A. (2018) New conditions for the
existence of equilibrium prices, Yugoslav Journal of Operations Research, 28(1), 59–
77.

4. Arutyunov, A.V., Zhukovskiy, S.E., Pavlova, N.G. (2013) Equilibrium price as a
coincidence point of two mappings, Comput. Math. Math. Phys., 53(2), 158–169.

5. De la Sen, M., Ibeas, A., Alonso-Quesada, S. (2021) On the Reachability of a Feedback
Controlled Leontief-Type Singular Model Involving Scheduled Production, Recycling
and Non-Renewable Resources, Mathematics, 9, 2175.

6. Pavlova, N.G. (2020) Applications of the Theory of Covering Maps to the Study of
Dynamic Models of Economic Processes with Continuous Time, Mathematical Analysis
With Applications (CONCORD-90, Ekaterinburg, Russia, 2018), Springer Proc. in
Math. & Stat., 318, Springer, 123–129.

7. Pavlova, N., Zhukovskaya, Z., Zhukovskiy, S. (2020) Equilibrium in continuous
dynamic market models, Proceedings of 2020 15th International Conference on
Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy’s Conference),
STAB 2020, 9140586.

Copyright © 2021 ASSA. Adv Syst Sci Appl (2021)



EQUILIBRIUM IN MARKET MODELS WITH KNOWN ELASTICITIES 141

8. Kotyukov, A., Pavlova, N. (2021) Equilibrium in Market Models, 14th International
Conference Management of large-scale system development (MLSD), 2021, 1–5, doi:
10.1109/MLSD52249.2021.9600139

9. Chernikov, S.N. (1964) Fundamental theorems in the theory of linear inequalities,
Sibirsk. Mat. Zh., 5(5), 1181–1190, [in Russian].

10. Chernikov, S.N. (1966) Lineynie neravenstva, Itogi nauki. Ser. Mat. Algebra. Topol.
Geom., [in Russian].

11. Arutyunov, A., Avakov, E., Gel’man, B., Dmitruk, A., Obukhovskii, V. (2009) Locally
covering maps in metric spaces and coincidence points, J. Fixed Points Theory and
Applications, 5(1), 5–16.

12. Arutyunov, A.V., Gel’man, B.D. (2015) On the structure of the set of coincidence points,
Sb. Math., 206(3), 370–388.

13. Pavlova, N.G. (2019) Study of the Continuous-Time Open Dynamic Leontief Model as
a Linear Dynamical Control System, Differ. Equ., 55(1), 113–119.

14. Pavlova, N.G. (2018) Necessary conditions for closedness of the technology set in
dynamical Leontief model, Proc. 11th Int. Conf.: Management of Large-Scale System
Development (MLSD), Moscow: IEEE, 2018.

15. Arutyunov, A.V., Aseev, S.M. (1995) State constraints in optimal control. The
degeneracy phenomenon, Systems and Control Letters, 26(4), 267–273.

16. Arutyunov, A.V., Karamzin, D.Y. (2016) Non-degenerate necessary optimality
conditions for the optimal control problem with equality-type state constaints, Journal
of Global Optimization, 64(4), 623–647.

Copyright © 2021 ASSA. Adv Syst Sci Appl (2021)



142 A. ARUTYUNOV, A. KOTYUKOV, N. PAVLOVA

A
PP

E
N

D
IX

.N
U

M
E

R
IC

A
L

E
X

PR
E

R
IM

E
N

T
R

E
SU

LT
S

Ta
bl

e
5.

1.
N

um
er

ic
al

re
su

lts
(n

=
1)

.

a
E

Ẽ
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