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Abstract: Information spreading among nodes of directed random networks by means of
the linear preferential attachment (PA) schemes and the well-known SPREAD algorithm is
considered. The novelty of the paper is that schemes of the linear preferential attachment proposed
in Wan et al. (2020) for the network evolution are also used here for the information spreading.
The SPREAD algorithm proposed for undirected random graphs is adapted to directed graphs.
Moreover, we deal with non-homogeneous directed networks consisting of nodes whose in-
and out-degrees have different power law distributions that is realistic for practice and we find
communities in a network that spread the information faster. We compare the minimum number
of evolution steps K∗ required for the preferential attachment schemes and the well-known
algorithm SPREAD to spread a message among a fixed number of nodes. The evolution of the
network in time starts from a seed set of nodes. We study the impact of the seed network and
parameters of the preferential attachment on K∗ for simulated graphs. Real temporal graphs are
also investigated in the same way. The PA may be a better spreader than the SPREAD algorithm.
This is valid for the sets of the PA parameters with dominating proportions of created new edges
from existing nodes to newly appending ones or between the existing nodes only. It is shown both
for simulated and real graphs that the communities with the smallest tail indices of the out-degrees
and PageRanks may spread the message faster than other communities.

Keywords: non-homogeneous directed network, information spreading time, linear preferential
attachment, leading community, tail index

1. INTRODUCTION

The evolution of networks is arising in numerous applications: citation networks [1], the
web-page popularity by PageRank during evolutionary changes [2], or the evolution of the
network [3].

Information spreading, as a message delivery model in the whole network (the full
spreading) [4] or in a part of the network (the partial spreading) [5], has an application for
the parallel grid calculations in the computation network. In [6] the selection of a leading
community in a network and the comparison of the spreading time by the latter and other
communities are observed by an example of homogeneous geometric graphs.

Following [4] we consider nodes with asynchronous clocks. By the proposed model nodes
of the network may spread their messages among other nodes by clicks of a global clock. The
latter clicks are modelled as Poisson process and the inter-arrival times between clicks are
therefore exponentially distributed. Thus, the spreading time required to spread messages may
be calculated as a sum of a random number of exponentially distributed random variables.
Generally, the clicks can be generated by another random process with another distribution
of the inter-click times. In this paper we use the Poisson model and interpret the spreading
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rate in terms of a minimum number of clicks (or steps) required to spread the information
among a part of nodes of the network.

In order to evolve the network starting from a seed set of nodes containing at least one
node, we use a linear preferential attachment (PA) schemes proposed in [3]. We consider
the PA as a spreading model additionally to its evolution function and compare it with the
algorithm SPREAD proposed for spreading purposes in [4].

We aim to consider non-homogeneous networks containing subgraphs with stationary
distributed in- and out-degrees of nodes. To this end, we partition the network into
communities and use these communities as such subgraphs. A community is a set of highly
connected nodes which are weak connected with nodes outside the community. Then we
aim to find leading communities that may spread the information faster than the rest of the
network.

On each evolution step, a configuration of the evolving network may change due to newly
appended directed edges that may change the distribution of the in- and out-degrees of nodes.
Apart of the in-degrees, we consider PageRanks as influence indices of the nodes.

Summarizing, the following novelties are implemented. Firstly, the information spreading
is studied in a directed evolving graph where a probability to create new edges is provided by
the linear PA schemes. The SPREAD algorithm proposed in [4, 5] for undirected stationary
graphs is modified for directed graphs. Regarding the PA schemes, the probability to
create newly appended edges may depend on the in- or (and) out-degrees and specific PA
parameters. Secondly, a basic graph for the spreading and evolution is non-homogeneous as
it is made of subgraphs with different distributions of node characteristics. This may lead to a
different nodes’ ability to spread information for different sub-graphs of the network. Finally,
the impact of the heaviness of the distribution tail on the spreading rate is demonstrated on a
range of real graphs.

The paper is organized as follows. In Section 2 related works and a necessary
methodology are provided. In Section 3 we investigate simulated graphs regarding the
spreading capacity of stationary parts of the network. In Section 4 the impact of a seed
network on the spreading rate is studied for a real graph. A set of real graphs are compared
in Section 5. The exposition is finalized with some conclusions.

2. PRELIMINARIES

2.1. Information spreading
The SPREAD algorithm proposed in [4] models a possible information spreading in
undirected graphs. Let G = (V,E) be the undirected graph with a set of nodes V and edges
E. Considering an asynchronous time model (there are not quite synchronized clocks in all
nodes), a node may initiate a communication by ticks of a global clock which are modelled
as a Poisson process of rate n = |V |, [4, 5]. Let k ≥ 0 denote the index of a tick, on which at
most one node can receive messages by communicating with another node. On a tick one of n
nodes of the graph is chosen uniformly. Then this node i chooses a node j uniformly among
it neighbors with probability Pij = 1/Dmax, where Dmax = maxi∈V Di, Di is the degree of
node i.
In [4, 5] nodes share with each other all information they have. Here, we consider the case
when only a single message is spreading in the network. In Algorithm 1 we slightly change
the SPREAD with this respect.

To apply the SPREAD algorithm in directed graphs it is plausible to assume that the node
i may share its message with node j, if there is a directed edge (i→ j) from i to j. Thus, we
use Pij = 1/Oi, where Oi is the out-degree of the node i.
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Algorithm 1 The SPREAD

• At the tick k a node i is uniformly chosen in the graph, and it initiates a communication.
• The node i chooses a node j uniformly among its neighbors without the message with

probability Pij = 1/Oi and sends its single message to the node j.

2.2. Preferential attachment
Now we consider the information spreading in directed graphs. Let us recall the linear PA
model that is proposed and studied in [3, 7]. It starts with an initial directed graph G(k0)
with at least one node and k0 ∈ N edges. For the non-negative parameters α, β, γ such that
α + β + γ = 1 holds, and specific parameters ∆in,∆out, the model constructs a growing
sequence of directed random graphs G(k) = (V (k), E(k)) depending on the step k. A graph
G(k) is generated from G(k − 1) by adding a directed edge. Furthermore, N(k), Ik(w) and
Ok(w) denote the number of nodes, in- and out- degrees of node w in the graph G(k) with
k edges. The following three scenarios of the edge creation, which are called α−, β− and
γ− schemes, respectively, are proposed in [3, 7]. To select schemes, one has to generate an
i.i.d. sequence of trinomial random variables with values 1, 2 and 3 and the corresponding
probabilities α, β and γ, see Algorithm 2.

Algorithm 2 The linear preferential attachment schemes

• By the α− scheme we append a new node wnew and create an edge (wnew → w) with
probability α, where the existing node w ∈ V (k − 1) is chosen with probability

P (choose w ∈ V (k − 1)) =
Ik−1(w) + ∆in

k − 1 + ∆inN(k − 1)
.

• By the β − scheme the existing nodes w1, w2 ∈ V (k − 1) are chosen independently
with probability

P (choose w1, w2 ∈ V (k − 1)) =
Ok−1(w1) + ∆out

k − 1 + ∆outN(k − 1)
· Ik−1(w2) + ∆in

k − 1 + ∆inN(k − 1)

and a new edge (w1 → w2) is appended with probability β.
• By the γ − scheme the existing node w ∈ V (k − 1) is chosen with probability

P (choose w ∈ V (k − 1)) =
Ok−1(w) + ∆out

k − 1 + ∆outN(k − 1)
,

and an edge (w → wnew) is appended with probability γ.

This algorithm implies that N(k) = N(k − 1) for β-scheme and N(k) = N(k − 1) + 1
for the others. These scenarios realize a ’rich-get-richer’ mechanism, when a node with a
large number of in-/out- edges can likely increase them with a high probability. As mentioned
in [3], such model can create multiple edges between pairs of nodes and self loops.

The parameters ∆in and ∆out may be estimated by the semi-parametric extreme value
method (EV) based on the maximum-likelihood method or by the Snapshot (SN) method
proposed in [8]. The latter is summarized in Algorithm 3. The snapshot graph G(n) =
(N(n), E(n)) represents a point in time when the data about the graph are available.
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Algorithm 3 Snapshot method

1. Let us estimate β̂SN = 1−N(n)/v, where v = |E(n)|. We obtain ∆̂0
in and ∆̂0

out by
solving the equations

∞∑
l=1

N in
>l

v

l

l + ∆̂0
in

(1 + ∆̂0
in(1− β̂SN)) =

N in
0

v
+ β̂SN

1− N in
0

n

∆̂0
in

1+(1−β̂SN )∆̂0
in

,

∞∑
l=1

N out
>l

v

l

l + ∆̂0
out

(1 + ∆̂0
out(1− β̂SN)) =

Nout
0

v
+ β̂SN

1− Nout
0

n

∆̂0
out

1+(1−β̂SN )∆̂0
out

,

where N in
l and N out

l are the number of nodes with in- and out-degree equal to l, and
thus, N in

>l =
∑
l′>l

N in
l′ , N out

>l =
∑
l′>l

N out
l′ are the number of nodes with in- and out-degree

larger than l.
2. Estimate α̂0 and γ̂0 by

α̂0 =

N in
0

v
+ β̂SN

1− N in
0

v

∆̂0
in

1+(1−β̂SN )∆̂0
in

− β̂SN ,

γ̂0 =

Nout
0

v
+ β̂SN

1− Nout
0

v

∆̂0
out

1+(1−β̂SN )∆̂0
out

− β̂SN .

3. Re-normalize the probabilities (α̂SN , β̂SN , γ̂SN) = ( α̂
0(1−β̂SN )
α̂0+γ̂0

, β̂SN , γ̂
0(1−β̂SN )
α̂0+γ̂0

). Obtain
∆̂SN
in and ∆̂SN

out by solving equations

∞∑
l=0

N in
>l/v

l + ∆̂SN
in

− 1− α̂SN − β̂SN

∆̂SN
in

− (α̂SN + β̂SN)(1− β̂SN)

1 + (1− β̂SN)∆̂SN
in

= 0,

∞∑
l=0

N out
>l /v

l + ∆̂SN
out

− 1− γ̂SN − β̂SN

∆̂SN
out

− (γ̂SN + β̂SN)(1− β̂SN)

1 + (1− β̂SN)∆̂SN
out

= 0.

2.3. Tail index
Let {Xn}n≥1 be a stationary sequence of independent identically distributed (i.i.d) random
variables (r.v.s) with distribution function (df) F (x). The parameter αTI is called the tail
index (TI). It may be estimated with the Hill’s estimator [9]

α̂H(k) =

(
1

k

k∑
i=1

log(
X(n−i+1)

X(n−k)

)

)−1

, (2.1)

where X(1) ≤ X(2) ≤ ... ≤ X(n) are the order statistics corresponding to the sample and
the parameter k is a number of the largest order statistics. α̂H(k) is derived assuming
that the distribution tail is regularly varying with the tail index αTI , i.e. F (x) = P{X1 >
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x} = x−αTI`(x), where `(x) is a slowly varying function. The optimal value of k may be
obtained by a smoothing method of the asymptotic mean squared error of the Hill’s estimator
(SAMSEE) [9]. The confidence interval around the optimal TI value is obtained by the
bootstrap procedure with the 95% quantile.

2.4. Test of stationarity
The inhomogeneity is one of the problems of the statistical analysis of graphs. This means
that the heaviness of the power law tail distributions of node characteristics, like in- and out-
degrees and PageRanks may be different within the graph or its communities. To our best
knowledge, there are no stationarity tests for graphs since there is no numeration of nodes in
the graphs. Such a numeration may be determined by random walks used in graphs as sample
tools. At the same time, there are stationarity tests for random sequences. One of the simplest
ways to solve the problem is to use a number of random walks within the graph and to test
the stationarity of the obtained sequences of the gathered nodes.
We use the stationarity test statistic

V/S = Vn/ŝ
2
n,q, Vn =

1

n2

 n∑
k=1

(S∗k)
2 − 1

n

(
n∑
k=1

S∗k

)2
 , ŝ2

n,q = q−1

q∑
i,j=1

γ̂i−j, (2.2)

S∗k =
∑k

j=1(Xj −Xn), γ̂j = n−1
∑n−j

i=1 (Xi −Xn)(Xi+j −Xn), 0 ≤ j < n, where the
bandwidth q = qn satisfies q →∞, q/n→ 0 proposed in [10] for stochastic processes with
the stationary distributed short range dependent noise. The null hypothesis of stationarity
is rejected, if V/S > cρ, where cρ is a quantile of the asymptotic distribution function of
the Kolmogorov’s statistic FK(π

√
x). cρ ∈ {0.190, 0.153} holds for significant level ρ ∈

{5, 10}%, respectively.

2.5. A node’s PageRank
By Google’s definition [11] the PageRank is determined as the rank of node (Web page) i by

Ri =
∑
j→i

c

Oj

Rj + (1− c)qi, i = 1, n, (2.3)

where the sum is taken over all pages with incoming links to node i (j → i implies that node
j is linked to node i, i.e. (j, i) ∈ E). The number of such pages constitutes the in-degree of
the node i. Oj denotes the out-degree of the node j, i.e. the number of its outgoing links.
c ∈ (0, 1) is a damping factor, i.e. a probability to browse a web-page connected with the
current one that is set by Google as c = 0.85. qi ≥ 0 is a personalization probability of node
i. The PageRank is a numeric measure of inter-relations between nodes that reflects the local
network structure. To estimate the PageRank we use the iterative formula

R̂
(n,0)
i = 1, R̂

(n,k)
i =

∑
j→i

c

Dj

R̂
(n,k−1)
j + (1− c), k ∈ N, (2.4)

proposed in [12] for a given uniform personalization vector qi = 1/n, 1 ≤ i ≤ n = |V |.
The iteration (2.4) is proceeding until the difference between two consecutive iterations
|R(n,k)

i −R(n,k−1)
i | will be small enough which is sufficient for a moderate number of

iterations k.
In [13], it is proved that PageRanks of nodes in a directed graph received by the PA are

power law distributed. The tail of the latter distribution is heavier than the tail of the limiting
in-degree distribution.
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3. SIMULATION GRAPHS

Let us describe the information spreading mechanism by means of the PA. Let the initial
directed graph G(k0) with N0 nodes and k0 edges be a seed set of nodes having a message
to be spread. At global Poissonian clock ticks, we do a step of the PA (Section 2.2) with
predefined parameters α, β, γ,∆in,∆out. The latter parameters may be estimated by in-
and out-degrees data sets as proposed in Section 3.3 in [3]. A newly appended edge may
increase the number of nodes receiving the message. The message can be delivered from
the node i to the node j, if the directed edge (i→ j) is created from the node i to the node
j which has not this message. This is possible only if the edge is created by the β− or
γ− schemes. The α−scheme provides edges with the opposite direction, namely, from the
newly appearing node without the message to the existing node. Indeed, the message can be
transmitted from the node having this message, only. At the kth clock tick we receive a graph
G(k) = (V (k), E(k)) with |E(k)| = k + k0 edges and N(k) ≤ N0 + k nodes.

The PA schemes in [3] may generate multiple edges and self loops for some nodes. As
a result, messages may get a stuck in these nodes and the corresponding spreading time
increases.

We compare an ability to spread the information by the PA schemes and by the SPREAD
algorithm given in Section 2.1. The graph is first simulated by the PA and the SPREAD is
operating in the prepared graph.

We use the following parameters for the PA. The α, β and γ are taken within the interval
[0.04, 0.96] with the step 0.04, such that α + β + γ = 1, and ∆in = ∆out = 1 holds. 100
simulated graphs are provided for the each set of the parameters. The graphs evolve starting
from the initial triangle, that is a three nodes connected to each other, i.e. k0 = 3, N0 = 3
hold. At least one of the nodes has a message to spread. Selecting this triple of nodes within
one of the communities of the network, we aim to find, what community may spread the
message faster.

Let us assume that the number of steps k is limited as k ≤ K ′. We define the number
of clock ticks required to disseminate the message from an initial node to n nodes with
probability not less than 1− δ as

K∗(n, δ) = inf{0 < k ≤ K ′ : Pr(|S(k)| = n) > 1− δ}, δ ∈ (0, 1).

Here, S(k) denotes the number of nodes which received the message at step k. Let us take K ′
equal to 5000. Then S(K∗) < n means that K ′ steps of the evolution are likely not enough
to disseminate the message to n nodes. The delivery delay is not less than

∑K′

i=1 τi since
the inter-arrival times {τi} between the evolution steps are exponential distributed and the
message cannot be spread if the corresponding edge is created by the α− scheme.
Results of the comparison of the PA and the SPREAD algorithms for n = 100 nodes are
presented in Fig. 3.1.

Fig. 3.1 (left) shows the average 〈K∗〉 against the average 〈q(K∗)〉 over 100 simulated
graphs, where q(k) = |S(k)|

N(k)
is a proportion of nodes that received the message in the graph

G(k). The q(k) that is close to zero means a small part of nodes received the message at the
tick k. q(k) = 1 means that all nodes in the graph have received the message. In the top line
of Fig. 3.1, we obtain for the PA that the spreading rate depends on the β value for the same γ.
The β value near 0 corresponds to the information spreading mostly to newly appearing nodes
by the γ−schema. The β value near 1 means the information is delivered mostly between
existed nodes by the β−schema. These situations may need the same tick number for the
spreading. For the SPREAD, values of the β and γ affect the number of ticks. The β value
near 1 corresponds to the large connections between nodes in some sets, which create the
information ”stucking” in nodes. However, for the larger γ 〈K∗〉 becomes less dependent on
the β. In Fig. 3.1 (middle) we show the proportion of the {S(K∗) < n} events for the α, β, γ
values. For the PA, these events are extremely rare except the case of the value γ ≤ 0.04. This
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Fig. 3.1. The average clock ticks 〈K∗〉 against the average 〈q(K∗)〉 (left); the parameter β against the probability
of S(K∗) < n event (middle); 〈K∗〉 against β. 100 simulations with the same parameters are taken for the PA
schemes (top line) and the SPREAD algorithm (bottom line). In the left figures, the point sizes are proportional

to the value of β ∈ [0.04, 0.96], in middle and right figures to the value of γ ∈ [0.04, 0.96].

is the opposite to the SPREAD, where the increase of the β value causes the increase of the
{S(K∗) < n} event probability. In Fig. 3.1 (right) we show 〈K∗〉 for the α, β, γ values. For
the PA and the SPREAD, we receive the same result that the decrease of the β value allows to
spread the message quicker. This corresponds to a graph with a less number of edges between
the nodes, in which the information may spread quicker. As a result, we notice that the choice
of the set α, β, γ can make the spreading by the PA more effective than by the SPREAD.

Fig. 3.2 shows the impact of the parameters β and γ on log(K∗PA/K
∗
SPREAD) as an

averaging over 100 resamples. Let us recall that α is calculated as α = 1− β − γ. We
define the parameter sets corresponding toK∗PA = K∗SPREAD,K∗PA > K∗SPREAD andK∗PA <
K∗SPREAD. It can be seen, that the PA can spread a message better if γ > 0.51 or β > 0.6
holds. The options when γ + β > 1 were not considered because α + β + γ = 1 holds.

4. INVESTIGATION OF REAL GRAPHS

Here, we study the impact of a seed network having the message on K∗(n, δ) by real data.
We investigate the graph obtained by the Berkeley-Stanford dataset with 685230 nodes and
7600595 edges [14], which represents Web pages from berkely.edu and stanford.edu domains
that are connected in a union network by directed edges as hyperlinks between them. Within
this network we select a small part and partition it into communities. Each of the latter
communities may be used as the seed network. Starting from the seed network we apply the
PA schemes to evolve the graph. Using the obtained evolved graph we apply the SPREAD
algorithm and compare its capacity with the PA with regard to the spreading rate.

The underlying directed graph G = (V,E) is partitioned into communities {Ci}5
i=1,⋃5

i=1Ci = V , Ci
⋂
Cj = ∅, i 6= j, by means of the directed Louvain’s algorithm in such

a way that the graph modularity is maximized [15]. The modularity is a dependence measure
of the graph that is determined by the identified communities. The modularity is large when
communities are made of highly connected nodes.

We calculate the PageRank of each node of the underlying graph by the iterative formula
(2.4). The result of the graph partitioning into communities is shown in Fig. 4.3. Since some
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Fig. 3.2. The dependence of log(K∗
PA/K

∗
SPREAD) with the minimum number of steps K∗

PA and K∗
SPREAD

for the PA and SPREAD algorithms, respectively, required to propagate a single message to n = 100 new nodes
regarding the PA-parameters of the graph evolution. The red line indicates the case K∗

PA = K∗
SPREAD, to the

left of the line is K∗
PA > K∗

SPREAD, to the right of the line is K∗
PA < K∗

SPREAD.

communities are highly connected, we may combine such communities together and consider
C1 ∪ C3 ∪ C5 and C2 ∪ C4. However, the PageRanks of the latter combined communities
may be non-stationary distributed.

Fig. 4.3. Communities {Ci}5i=1 built by the Berkeley-Stanford data, where the point sizes are proportional to
the node PageRanks.

We aim to study the impact of the heaviness of tails of the node characteristics, namely,
the in- and out-degrees and PageRanks on the spreading rate. The in- and out-degrees are
known to be power law distributed [1]. The PageRanks are proved to be regularly varying
distributed [16]. Hence, the TIs of node characteristics of each community and their mergers
may be estimated by the Hill’s estimator (2.1). Indeed, this requires their stationarity that,
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|C| V/Sin V/Sout V/SPR

C1 266 0.0579 0.1040 0.0764
C2 266 0.0580 0.1058 0.0828
C3 135 0.0773 0.0827 0.0774
C4 86 0.0605 0.0632 0.0652
C5 85 0.0439 0.0757 0.0457

Table 4.1. The V/S statistics (2.2) averaged over 100 random sequences and calculated by the in- and out-
degrees and PageRanks of the communities {Ci}5i=1 and denoted by V/Sin, V/Sout and V/SPR, respectively.

Fig. 4.4. Empirical distribution functions Fn(x) of PageRanks of communities {Ci}5i=1 and their mergers
C2 ∪ C4 and C1 ∪ C3 ∪ C5.

in practice, cannot be precisely fulfilled due to the inhomogeneous data. The finding of
homogeneous communities is an unsolved problem that is out of scope of this paper.

In Table 4.1, the V/S statistics (2.2) and the sample sizes of the communities denoted
as |C| are shown. We use 100 sequences of PageRanks which correspond to possible
numerations of nodes in the graph built by random walks. The latter are formed by uniform
selection of each next node among nearest neighbors of a node. Random walks cover all
nodes in the communites. The values in Table 4.1 do not contradict the null hypothesis of
stationarity, but one cannot insist on the stationarity.

|C| α̂in α̂out α̂PR

C1 266 0.895 (0.616, 1.175) 1.141 (1.035, 1.247) 0.474 (0.403, 0.544)
C2 266 0.899 (0.629, 1.169) 1.141 (1.035, 1.247) 0.485 (0.444, 0.526)
C3 135 1.117 (1.039, 1.195) 5.434 (5.351, 5.518) 0.667 (0.549, 0.786)
C4 86 0.387 (0.2, 0.576) 3.712 (3.43, 4.009) 0.706 (0.3, 1.112)
C5 85 0.425 (0.27, 0.58) 3.719 (3.427, 4.011) 1.798 (1.497, 2.099)

C1 ∪ C3 ∪ C5 486 0.885 (0.669, 1.101) 3.236 (3.16, 3.312) 0.592 (0.523, 0.661)
C2 ∪ C4 352 0.76 (0.474, 1.045) 1.48 (1.445, 1.515) 0.54 (0.478, 0.602)

Table 4.2. The TI estimates of the node in- and out-degrees and PageRanks of the communities {Ci}5i=1,
C1 ∪ C3 ∪ C5 and C2 ∪ C4 denoted as α̂in, α̂out and α̂PR, respectively, with their bootstrap confidence

intervals in brackets.

In Table 4.2, the TIs with their bootstrap confidence intervals are shown. The TIs are
estimated by the Hill’s estimator (2.1) where the number of the largest order statistics k is
calculated by the SAMSEE method [9].

Empirical distribution functions Fn(x) of PageRanks for communities and their mergers
are shown in Fig. 4.4. They are in agreement with Table 4.2. One can see that the heaviness
of tail of the merges is determined by the dominating community in the merger, namely,
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the community with the smallest TI. Really, the PageRank distribution and the TI α̂PR of the
communityC1 are close to those ones ofC1 ∪ C3 ∪ C5. The same is valid for the communities
C2 and the C2 ∪ C4.

Moreover, C1 and C2 have close values of the TIs despite they are weak connected and
the smallest TIs of the out-degrees and PageRanks. One may expect that the nodes of these
communities can be the best spreaders.

Using the communities {Ci}5
i=1 as seed networks for further evolution, we provide

50 simulations of the evolved graphs by the PA schemes. We check how the SPREAD
algorithm and the PA schemes spread one message from each node in {Ci}5

i=1 to
the first arbitrary 100 nodes. We examine values of K∗ for the parameters (α, β, γ) ∈
{(0.4, 0.2, 0.4), (0.3, 0.1, 0.6)} and ∆in = ∆out = 1 of the PA schemes. The number of the
PA steps is upper bounded by K ′ = 35 · 104. The resulted triples (minK∗, 〈K∗〉,maxK∗)
with the minimum, average and maximum ofK∗ over 50 simulations of the application of the
SPREAD algorithm and the PA schemes to each node of communities {Ci}5

i=1 are presented
in Table 4.3.

(α, β, γ)
Algorithm Community (0.4, 0.2, 0.4) (0.3, 0.1, 0.6)

C1 (18866, 128739.0, 232350) (31675, 158485.4, 322566)
C2 (46166, 127821.3, 263166) (27075, 148624.7, 312100)

SPREAD C3 (44242, 128236.4, 214050) (37766, 149498.0, 305433)
C4 (62450, 120647 .3 , 233325) (44366, 140530 .3 , 250233 )
C5 (57900, 125888.5, 189200 ) (82966, 159207.1, 332700)
C1 (2808, 47019.0, 184560) (4804, 54782.3, 166520)
C2 (3048, 46940.4, 190466) (3907, 55853.6, 161633)

PA C3 (3061, 32599 .5 , 103911 ) (6461, 41223 .9 , 92542 )
C4 (3960, 39293.6, 116357) (6149, 44848.1, 141400)
C5 (2885, 42192.8, 117966) (7470, 48430.5, 130366)

SPREAD C1 ∪ C3 ∪ C5 (18866, 128100.8, 232350 ) (31675, 156110.2, 332700)
C2 ∪ C4 (46166, 126068 .6 , 263166) (27075, 146630 .1 , 312100 )

PA C1 ∪ C3 ∪ C5 (2808, 42169 .5 , 184560) (4804, 49905 .2 , 166520)
C2 ∪ C4 (4804, 54782.3, 166520) (3907, 53164.7, 161633 )

Table 4.3. The triples (minK∗, 〈K∗〉,maxK∗) corresponding to graphs generated by the PA schemes with two
sets of parameters where the minimum values of minK∗ are marked by bold, the minimum values of 〈K∗〉 and

maxK∗ by italic.

Conclusions from Table 4.3 are the following. The communities C1 or C2 have the
smallest values of minimum K∗ for each set of parameters and each spreading algorithm.
Both of them have the lowest TIs αout and αPR, see Table 4.2. Since the TI of the out-degrees
is smaller than 2, the out-degrees have an infinite variance. The nodes with such large numbers
of outgoing links are in fact the best spreaders. The minimum averages and maximum values
of K∗ relate to C3 and C4 with lighter distribution tails due to the relatively larger TIs.

5. COMPARISON OF SPREADING MODELS FOR REAL GRAPHS

Here, we investigate the effectiveness of the SPREAD and the PA spreading models (see,
Sections 2.1 and 2.2) for real graphs. The temporal graphs (i.e. networks where edges have
timestamps†) provided in [17] were used as an example. Among them there are graphs
of messages and comments from websites (sx-mathoverflow, sx-askubuntu, CollegeMsg),

†For instance, a directed edge (u, v, t) means that person u sent an e-mail to person v at time t.
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graphs of bitcoin transactions (soc-sign-bitcoin-otc, soc-sign-bitcoin-alpha) and graphs of e-
mail communication (email-Eu, email-Eu-Dept1 and others). Their description can be found
in Table 5.4.

Name Number of Number of Description
nodes temporal edges

sx-mathoverflow 24818 506550 Comments, questions,
(M-Overlow) and answers on Math Overflow
sx-askubuntu 159316 964437 Comments, questions,

(AskUb) and answers on Ask Ubuntu
email-Eu 986 332334 E-mails between users

(EU) at a research institution
email-Eu-Dept1 (Eu-Dept1) 309 61046
email-Eu-Dept2 (Eu-Dept2) 162 46772
email-Eu-Dept3 (Eu-Dept3) 89 12216
email-Eu-Dept4 (Eu-Dept4) 142 48141

CollegeMsg 1899 20296 Messages on a Facebook
(ColMsg) -like platform at UC-Irvine

soc-sign-bitcoin-otc 5881 35592 Bitcoin OTC web of
(Bit-otc) trust network

soc-sign-bitcoin-alpha 3783 24186 Bitcoin Alpha web of
(Bit-alpha) trust network

Table 5.4. Temporal Networks from [17] with their description.

The size of some graphs makes it computationally difficult to model the information
spreading by the PA and SPREAD directly. Therefore, we conducted our evolutionary
simulations starting from a single node to spread one message to 100 new nodes.

For each real graph the parameters of the PA model are evaluated by means of the
Snapshot method (see, Algorithm 3) and denoted as (α̂SN , β̂SN , γ̂SN , ∆̂SN

in , ∆̂
SN
out ). The

effectiveness of both the SPREAD and PA algorithms is compared for different values of
the latter parameters. The results are presented in Fig. 5.5, left, where ∆̂SN

in and ∆̂SN
out are

found to be close to 1 for all graphs. Moreover, we estimate the TIs of the in- and out-degrees
of nodes of all real graphs which are presented in Fig. 5.5, right.

Fig. 5.5. The minimum log(K∗
PA/K

∗
SPREAD) for each graph achieved for the Snapshot estimates β̂SN and

γ̂SN of the PA parameters, where the red line indicates the case K∗
PA = K∗

SPREAD, the area to the left of
the line corresponds to K∗

PA > K∗
SPREAD, and to the right of the line to K∗

PA < K∗
SPREAD, the condition

α̂SN + β̂SN + γ̂SN = 1 is fulfilled for the area to the left of the dotted line (left); the TIs of the in-degrees α̂in
and out-degrees α̂out for the real networks (right).

For most of the investigated graphs the PA delivers messages faster, with the exception of
the bitcoin graphs (soc-sign-bitcoin-otc and soc-sign-bitcoin-alpha). The TIs of the in-degrees
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of the latter graphs are less than 1, α̂in < 1. This implies that their in-degrees have an infinite
variance according to the properties of the power law distribution. The PageRanks may have
an even smaller TI due to [13]. Such likely large in-degrees appear in the bitcoin graphs due
to the dominating effect of the α− scheme. That is a consequence of the small values of β
and γ for these graphs, see Fig. 5.5, left. Since the α− scheme creates a new edge directed
from the newly appending node to a node existed before, it cannot increase the number of
nodes receiving the message at the evolution step. This shows the impact of the heaviness of
tail of the node influence indices on the spreading rate.

6. CONCLUSIONS

The novelties of this paper are that the linear PA schemes are applied for the information
spreading purpose, the SPREAD algorithm is reconsidered for directed graphs and both
the PA and the SPREAD are applied to non-homogeneous graphs. A message from one
node is spreading to a fixed number of nodes in the network. The information spreading
is investigated both for simulated (Section 3) and real (Section 4) non-homogeneous graphs.
The nodes in the latter graphs may have different distributions of their in- and out-degrees. We
compare the PA and the SPREAD algorithm on directed graphs, which may contain cycles
and multiple edges generated by the PA with different sets of parameters.

Considering the simulated graphs which are assumed to be homogeneous, one may
conclude that the PA may be the better spreader than the SPREAD algorithm for such sets of
its parameters (α, β, γ) where α is sufficiently small. The rest of the parameters (∆in,∆out)
were taken equal to 1.

Regarding the real non-homogeneous graphs consisting of the interconnected
communities of nodes with different tail indices of the in- and out-degrees and PageRanks,
we found that some nodes in the community with the smallest tail index of the out-degrees
and PageRanks may spread the message faster than other nodes.

We have classified the real temporal graphs in Section 5 by the number of steps required
to disseminate a message from one node to a fixed number of nodes. It was found that the PA
is a better spreader than the SPREAD tool for most of the considered graphs for which the PA
α-scheme is not significant. The latter conclusion is plausible since the α-scheme creates new
edges directed from the new nodes to the existing ones that cannot be useful for information
spreading.
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