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Abstract: The first stage of any creative activity consists in generating a set of hypotheses and 
testing them. Generally, the time, required for testing a hypothesis is random and depends on its 
complexity (the prior probability of testing per unit time) and on acquired experience, determined 
by the set of hypotheses, successfully tested before. The problem is to choose an optimal 
schedule of testing, i.e. minimizing the sum of expected testing times, which are essentially 
nonlinear past-sequence-dependent and take into account learning and deterioration effects. For 
this aim, the general model of creative activity is formulated and the corresponding problem of 
optimal scheduling is stated; the classification of subproblems is introduced. Analysis of related 
works demonstrates the absence of methods to find computationally “simple” solution of the 
problem in hand. The used method of analytical proof of certain monotonic schedule optimality 
consists in reordering of two adjacent hypothesis, violating monotonicity. Main result is a set (for 
different subproblems) of sufficient conditions, under which the monotonic “simple-to-complex” 
schedule is optimal: the hypotheses are arranged in ascending order of their complexity. 

Keywords: schedule theory, past-sequence-dependent scheduling problem, time-dependent 
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1. INTRODUCTION 
In the Introduction the structure of creative activity is analyzed (subsection 1.1), then a 
model of the first phase of creative activity is formulated (subsection 1.2) and the problem of 
optimal scheduling is stated (subsection 1.3). Parallelly the motivation is exposed, as well as 
the main known results (related works) are discussed. 

1.1. Structure of Creative Activity 
Activity is a dynamic interaction of a human with the reality in which this human represents a 
subject (actor) purposefully influencing an object (subject matter) [0]. Activity is a form of 
human actions aimed at cognizing and transforming the surrounding world, humans 
themselves, and the conditions of their existence. Creative activity is an activity that 
produces an a priori uncertain demand for the results of an a priori unknown activity with a 
technology created during the new activity. Three phases of the life cycle of creative activity 
(subject matter) were identified in the paper [2]: 
1) the discovery of a new subject matter and the accumulation of basic knowledge (the 
generation of hypotheses and their testing); 
2) mastering the subject matter; 
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3) mass productive use. 
As was shown therein, creativity is concentrated in goal-setting. For scientific or art 
activities, it is concentrated in the generation and testing of hypotheses [3, 4]. 
A reasonable approach to the second phase involves the mathematical models of experience 
[5]. The third phase can be described using structural and algorithmic models [0] and 
optimization models [6]. For reflecting the first phase, mathematical models for choosing an 
optimal schedule to test hypotheses will be suggested below. 

1.2. A Model of the First Phase of Creative Activity 
Consider a subject mastering K types of activity: a subject acquires K knowledge elements or 
tests K hypotheses on a single subject matter, choosing an appropriate schedule to do it 
himself. Let any schedule be admissible. Having chosen a schedule, the subject begins to test 
the hypotheses one by one (for the sake of convenience, in ascending order of their 
numbers.) The hypothesis testing process is not interrupted and runs as follows. By the end 
of a next discrete-time instant (step), the hypothesis can either have been already tested or 
not. The process continues until the hypothesis is tested. Hypothesis k is characterized by the 
initial level of mastering (“initial knowledge”)  and the prior probability of testing per 
unit time (one step)  This probability conditionally characterizes the complexity of 
testing. (For example, the complexity of testing can be inversely proportional to the 
probability of testing and vice versa.) Assume that testing of hypothesis k begins at step 0. 
According to [5], the learning level of hypothesis k (the probability that this hypothesis is 
tested) has the following form: 

, .     (1) 
The learning level can be described either by the expected test time of hypothesis k (see 
below) or the time Tk(ε, L(0), wk) when the probability that hypothesis k is still untested will 
not exceed ε > 0: 

, .    (2) 

Clearly,  is a strictly monotonically decreasing and concave function of 
 and a strictly monotonically decreasing and convex function of wk. 

We denote by  the initial knowledge vector and by  
the vector of the prior probabilities of testing. 
Consider the strictly sequential testing of hypotheses: testing of a next hypothesis begins 
immediately after the completed testing of the previous one. 
Regardless of the schedule of testing, the total time to master the subject matter sequentially 
is given by 

Tseq(L(0), w, ε) = .     (3) 

The aggregate learning level has the following form: 

,  (4) 

where ,  (see (2)), and . 

Let the initial values of all learning levels be 0. Under this assumption, we compare the time 
(3) with the time of mastering the subject matter by randomly choosing the hypothesis tested 
at each step; for details, see the models of mastering experience in [5]. In this case, the 
learning level takes the form 
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.      (5) 

As is known [5], under the same prior probabilities of testing and arbitrary distributions 
p = , the expected learning level (5) achieves maximum for the uniform 
distribution. Therefore, assume that the “uniform random” testing strategy is used, and the 

prior probabilities of testing are the same and equal to w. Then , 

and the time when the probability that hypothesis k is still untested will not exceed ε > 0 is 

. Under the assumptions introduced above, the sequential test time (3) of all 

hypotheses is . Obviously, : the sequential testing strategy faster 

covers the subject matter than the uniform random testing strategy. 
 

1.3. An Optimal Schedule to Test Independent Hypotheses: 
Problem Statement and Known Results 
We formulate the problem of an optimal schedule to test hypotheses. Let the subject tests the 
hypotheses in ascending order of their numbers: from 1 to K. For each hypothesis , 
we define the set of its “predecessors”  and the function of sets 

, where  is a continuous function. Suppose that the 

probability of testing depends on the complexity of the hypotheses already tested by the 
subject. Two cases will be considered below: the multiplicative and additive dependencies on 
the sum of the prior probabilities of testing for the already tested hypotheses. The problem is 
to find an appropriate schedule to test all hypotheses in the minimum total time. 
This problem belongs to the class of scheduling theory problems [7, 8] with a single 
machine, several jobs/tasks, and the deterioration and learning effects: the time to execute a 
job or set up the machine depends on the previous trajectory (history). In scheduling 
problems, such setup times are called past-sequence-dependent (p-s-d) or generally time-
dependent [9]. 
The papers [10, 11] considered models with the deterioration effect (in terms of this work, 
the negative effect of the history, see Figure 1) in which the job execution time increases 
linearly with the time of beginning. Sufficient conditions were established under which an 
optimal schedule (by some criterion, e.g., the minimum time for completing all jobs, the 
minimum weighted delays, etc.) arranges the jobs in descending or ascending order of their 
characteristics (the minimum initial execution times, the linear dependence coefficients, 
etc.). In addition to linear constraints, scheduling theory deals with other, quite specific (!) 
constraints and dependencies (power [12], exponential [13, 14]). We will also consider a 
particular case of the multiplicative (7), (13) or additive (10), (14) effect of the history on the 
test times of hypotheses. 
The publications [15, 16, 17] were first to consider the learning effect in scheduling theory 
(in terms of this work, the positive effect of the history, see Figure 1). Within the models 
suggested therein, the job execution time decreases linearly with the number of preceding 
jobs. As was shown, the corresponding problem is generally an NP-complete problem. 
Particular polynomially solvable cases were presented. A V-shaped schedule turns out to be 
optimal in several models: the jobs are arranged first in descending order and then in the 
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ascending one [18]. Clearly, monotonic schedules are special cases of V-shaped ones [19]. 
The model [20] includes both effects (deterioration and learning) simultaneously. 
Some papers consider more complicated setup, but under certain assumptions: coupled tasks 
[21, 22], scenario-dependent processing times [23], a set of linearly [24] or quadratic 
deteriorating jobs, position-and-resource-dependent processing times [25], etc. 
A more general approach is treating the problem of an optimal schedule to test hypotheses as 
a complex modification of the traveling salesman problem. The traveling salesman problem 
[26] with complex precedence constraints and the dependence of times on the sequence of 
the graph vertices and other graph properties is called the megalopolis visit problem. For this 
problem, dynamic programming-based solution schemes are constructed and tested in 
computational experiments [27]. Megalopolis visit problems are more general than 
scheduling problems with deterioration and learning. But as the latter, they don’t give 
analytical solution to the problem of optimal hypotheses testing schedule even for the 
simplest cases. 
The rest content of the paper is organized as follows. Brief Section 2 introduces a 
classification of the problems of an optimal schedule to test hypotheses. The main results are 
presented in Section 3 - sufficient conditions are established under which the monotonic 
“simple-to-complex” schedule is optimal. The Discussion section contains some possible 
prospects for applying discrete optimization methods to creative activity modeling. 

2. PROBLEMS OF AN OPTIMAL SCHEDULE TO TEST HYPOTHESES: 
A CLASSIFICATION 
We return to the problem of an optimal schedule to test hypotheses. Let us introduce a binary 
classification system for particular cases of this problem (Figure 1). 
Sixteen options are possible: 
- The set of already tested hypotheses affects the initial level of mastering or the probability 
of testing for a current hypothesis. 
- This effect is positive, increasing the initial level of mastering or the probability of testing 
(the subject gains experience), or negative, decreasing the characteristics mentioned (the 
subject “gets tired” or overloads own cognitive capabilities). 
- The dependence is multiplicative or additive (see the discussion above). 
- The optimality criterion is the expected test time t* of a hypothesis or the time tε when the 
probability that the hypothesis is still untested will not exceed a given threshold ε. 
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Fig. 1. Problems of an optimal schedule to test hypotheses: a binary classification 

 
Figure 1 shows the numbers of the propositions below corresponding to different particular 
cases (the corresponding rectangles are shaded). Note that Propositions 1–6 are proved using 
the same logic. Each of these propositions claims that under certain assumptions, the optimal 
schedule is a monotonic sequence of the hypotheses by the prior probabilities of testing 
(from the largest to smallest probability, or vice versa). The proof considers an arbitrary 
schedule of hypotheses under the assumption that a pair of “adjacent” hypotheses breaks the 
monotonicity. Then the test times in the original and reverse schedule are compared; it is 
shown that interchanging these two hypotheses will reduce the total test time of the pair. 
Since the test times of the hypotheses with lower numbers do not change, like the initial 
conditions to test the hypotheses with higher numbers, the interchange will reduce the total 
test time of all hypotheses. This fact proves the optimality of their corresponding monotonic 
schedule. The main results are presented in the next section. 

3. MAIN RESULTS: OPTIMAL SCHEDULES 
In the multiplicative case, the learning level (unlike (1)) depends on the schedule of testing 
as follows: 

, .    (6) 
Then 

Ts(L(0), w, ε) = .    (7) 

The corresponding optimization problem is to minimize the time (7) of mastering the subject 
matter by choosing an appropriate schedule to test the hypotheses. Generally speaking, this is 
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a combinatorial problem: there exist K! admissible schedules. Fortunately, within definite 
assumptions, a simple analytical solution can be found in some cases. 

Let . We introduce the following assumption. 

A.1. The initial values of all learning levels are the same: . For all 
hypotheses, the previous experience has the same effect on the probabilities of testing, 

described by  = , , where  is a smooth and strictly 

monotonically increasing function. 
 
Consider two auxiliary lemmas. 
 

Lemma 1: 
If  is a continuous, strictly monotonically increasing and concave function, 

then for any positive numbers x, y, and z such that y < z, we have . 

Lemma 2: 
If  is a smooth, strictly monotonically increasing and convex function, then: 
a) For any positive numbers x, y, and z such that q(x) < y < z, we have 

. 

b) For any positive numbers x, y, and z such that y < z < q(x), we have 

, 

where  q(x) is the solution of the differential equation 

.      (8) 

 
The proofs of all statements are given in the Appendix. 
The assertions of Lemma 2 are immediate from the properties of smooth and convex 
functions. 
 

Proposition 1: 
Under Assumption A.1, let  be a smooth, strictly monotonically increasing and 

convex function, and let j be the number of a hypothesis such that . Then 
interchanging hypotheses j and j + 1 will reduce the total time (7) of mastering the subject 
matter sequentially. 
 
Quite expectedly, Lemma 1 can be used to establish a result similar to Proposition 1 for 
concave monotonic functions . 
Now consider the additive case in which the learning level (unlike (1)) depends on the 
schedule of testing as follows: 
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We introduce another assumption. 
 
A.2. The initial values of all learning levels are the same: , where L0 can be 
interpreted as a characteristic of the subject matter. For all hypotheses, the previous 
experience has the same effect on the probabilities of testing, described by  = , 

, where  is a continuous and strictly monotonically 

increasing function satisfying 
     (11) 

for any positive numbers x, y, and z such that y < z. 
 
Some examples of the functions obeying Assumption А.2 are: 

- the linear function ; 

- the quadratic function ; 
- any strictly monotonically increasing and strictly convex function  such that the 

derivative . 

 
Proposition 2: 
Under Assumption A.2, let j be the number of a hypothesis such that . Then 

interchanging hypotheses j and j + 1 will reduce the total time (10) of mastering the subject 
matter sequentially. 

 
Corollary 1: 
Consider the model (9), (10) of mastering the subject matter sequentially under 

Assumption A.2. In terms of the minimum total time of mastering, the optimal schedule 
arranges the hypotheses in descending order of the prior probabilities of testing (in 
ascending order of their “complexities”). 
 
In the models described above, an optimality criterion is the time to reach the learning level 
1 – ε. An alternative approach involves the expected test time of hypothesis k: 

τk(Lk(0), wk) = (1 – Lk(0)) / wk, .    (12) 
Clearly, τk(Lk(0), wk) is a linear decreasing function of  and a strictly monotonically 
decreasing and convex function of wk. 
In the multiplicative case, the total expected time of mastering the subject matter sequentially 
is given by 

τseq(L(0), w) = .     (13) 

We introduce another assumption similar to Assumption A.1: 
 
А.3. For all hypotheses, the previous experience has the same effect on the probabilities of 

testing, described by  = , , where  is a smooth and 

strictly monotonically increasing function. 
 
The following analog of Propositions 1 and 2 holds. 
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Proposition 3: 
Under Assumption A.3, let j be the number of a hypothesis such that 

 and . Then interchanging hypotheses j and j + 1 will reduce 

the total time (13) of mastering the subject matter sequentially. 
 

Corollary 2: 
Consider the model (6), (13) of mastering the subject matter sequentially under 

Assumption A.3. In terms of the minimum total time of mastering, the optimal schedule 
arranges the hypotheses in descending order of the prior probabilities of testing (in 
ascending order of their “complexities”) if it coincides with the ordering of the prior 
probabilities of testing normalized by 1 minus the initial learning level. 
 
In the additive case, the total expected time of mastering the subject matter sequentially is 
given by 

τseq(L(0), w) = .     (14) 

The following analog of Proposition 3 holds. 
 

Proposition 4: 
Under Assumption A.2, let j be the number of a hypothesis such that . Then 

interchanging hypotheses j and j + 1 will reduce the total time (14) of mastering the subject 
matter sequentially. 
 

Corollary 3: 
Consider the model (6), (14) of mastering the subject matter sequentially under 

Assumption A.2. In terms of the minimum total time of mastering, the optimal schedule 
arranges the hypotheses in descending order of the prior probabilities of testing (in 
ascending order of their “complexities”). 
 
Now we study the case of a continuous and strictly monotonically decreasing function . 
The following counterpart of Proposition 4 holds. 
 

Proposition 5: 
Let the initial values of all learning levels be the same: . For all hypotheses, 

let the previous experience have the same effect on the probabilities of testing, described by 
 = , , where  is a continuous and strictly 

monotonically decreasing function. Also, let j be the number of a hypothesis such that 
. Then interchanging hypotheses j and j + 1 will reduce the total time (13) of 

mastering the subject matter sequentially. 
Corollary 4: 
Consider the multiplicative case with a continuous and strictly monotonically 

decreasing function . In terms of the minimum total time of mastering the subject matter 
sequentially, the optimal schedule arranges the hypotheses in ascending order of the prior 
probabilities of testing (in descending order of their “complexities”). 
 
We finally examine the case in which the initial learning level depends on the schedule to 
test the hypotheses: 
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τk( , wk) = (1 – ) / wk, ,   (15) 
where  is a continuous and strictly monotonically increasing function. The 
total expected time of mastering the subject matter sequentially is given by 

τseq(w) = .      (16) 

We introduce the following assumption. 
 
А.4. For all hypotheses, let the previous experience have the same effect on the initial value 
of the learning level, described by  = , , where  is a 
continuous and strictly monotonically increasing function. 
 
In the case under consideration, the following analog of Propositions 1–4 holds. 
 

Proposition 6: 
Under Assumption A.4, let j be the number of a hypothesis such that . Then 

interchanging hypotheses j and j + 1 will reduce the total time (16) of mastering the subject 
matter sequentially. 
 

Corollary 5: 
Consider the model (6), (15) of mastering the subject matter sequentially under 

Assumption A.4. In terms of the minimum total time of mastering, the optimal schedule 
arranges the hypotheses in descending order of the prior probabilities of testing (in 
ascending order of their “complexities”). 

4. CONCLUSION: DISCRETE OPTIMIZATION PROBLEMS IN CREATIVE 
ACTIVITY MODELING 
Thus, in terms of the expected total time to test the independent hypotheses or the total time 
to reach a given learning level, the optimal schedule in several cases is a simple rule: the 
hypotheses are arranged in descending order of the prior probabilities of testing (the 
monotonic “simple-to-complex” schedule). 
Now we present general sufficient conditions for the optimality of the “simple-to-complex” 
schedule. Let  be the test time of hypothesis , where the function  
is continuous and decreasing in both variables, and for any x, y, and z such that 
t(x, y) + t(x + y, z) > t(x, z) + t(x + z, y). As is easily checked in the case , 
interchanging hypotheses j and j + 1 will reduce the total time of their testing. Attempts to 
weaken these sufficient conditions and give them in a practically interpretable form seem a 
promising line of further research. Another area of interest is studying optimal schedules to 
test interdependent hypotheses. 
Graph theory and discrete optimization offer a rich apparatus to formulate and solve 
optimization problems for hypothesis testing and creative activity modeling. Here are some 
illustrative examples. 
Let the subject area be described by a graph containing K vertices. Graph vertices correspond 
to hypotheses to be tested. Hypothesis k is characterized by a pair of nonnegative numbers 
(ck, dk): the first number reflects the cost to test it, whereas the second one reflects its 
contribution to the experience of mastering the subject area. Assume that the experience is 
additive: under the sequential testing of all hypotheses in ascending order of their numbers, 
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when the subject starts testing hypothesis k, the experience is , and the total cost 

of the already tested hypotheses is . We define the complexity of each hypothesis 

as . (The complexity depends on the schedule to test all hypotheses.) Note 
that with such a definition, the complexity can be negative. We define the complexity of each 
schedule to test all hypotheses (each Hamilton circuit ρ = (i1, i2, …, ik, …, iK) in the graph) as 
the maximum value among the complexities to test different hypotheses in this schedule: 

. 

The problem is to find a schedule to test all hypotheses (a Hamilton circuit) of minimum 
complexity: . Under the assumptions introduced above, this combinatorial 

problem has a simple analytical solution (see general results in [0]): 
– Take the hypotheses satisfying , arrange them in ascending order of the cost сk, and 
include them in the schedule (Hamilton circuit). 
– Add the other hypotheses ( ) to this sequence in descending order of the contribution 
dk. 
In other words, we should first test the hypotheses whose cost is less than the contribution to 
the experience, arranging them from simple to complex. Then we should proceed to the 
hypotheses whose contribution to the experience is smaller than the cost, arranging them in 
descending order of the contribution. 
Of course, the assumptions about the “additive” complexity of the experience are strong 
enough. On the other hand, these assumptions allow obtaining a simple analytical solution 
with a practical interpretation. 
Generally speaking, discrete optimization and graph theory provide a wide field for different 
problems of optimal hypothesis testing (author is grateful to Prof. Vladimir Burkov for some 
ideas and discussion); for example, the following formulations are possible based on the 
well-known results [7, 0]: 
• The knapsack problem with the synergistic effect: adding two items to the knapsack 
(including two topics in the research plan, or deciding to test two hypotheses) reduces their 
total weight (the total time to deal with them). It is required to develop a research plan that 
maximizes the accumulated experience (the amount of scientific knowledge) under cost 
constraints (labor-intensiveness). 
• The editor problem: for example, two researchers test a given set of hypotheses (a 
theoretician and a programmer). The theoretician develops a testing method, whereas the 
programmer develops testing software. After that, the theoretician conducts computational 
experiments based on this software. It is required to determine a schedule to test hypotheses 
that minimizes the total test time. 
• The assignment problem: there are n hypotheses (scientific problems) and m researchers, 
where . The competencies of all researchers to solve these problems (to test the 
corresponding hypotheses) are known. It is required to assign one researcher to each 
hypothesis so that the total (or maximum) test time for all hypotheses achieves minimum. 
(The test time depends on the researcher’s competence.) 
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APPENDIX 

Proof of Lemma 1. Assume on the contrary that . Since the function 

 is concave, . Hence,  

, which finally implies  due to the strict 

monotonicity of the function . This contradiction completes the proof. 
 

Proof of Proposition 1. First, note that interchanging hypotheses j and j + 1 will not 
modify the sets Nl for all l from 1 to  j – 1 and from j + 2 to K. Therefore, it will not change 
the test times of all hypotheses except j and j + 1. This fact is essential for the other 
propositions. 
We compare the total test times of hypotheses j and j + 1: 

 and . 
The first sum is equal to 

Tj, j+1 = . 

The second sum is equal to 

Tj+1, j = . 

Assume on the contrary that Tj+1, j ≥ Tj, j+1. In view of , we obtain 

 ≤ . 

We rewrite this inequality as 

 ≤ . 

Since , the left-hand side is strictly positive. Hence, the right-hand side has the 
same property: 

 > 0. 

As the denominator is strictly positive, the numerator is such as well: 

 > 1. 

Therefore, , which contradicts item a) of Lemma 2. 
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The first sum is equal to 

Tj, j+1 = . 

The second sum is equal to 

Tj+1, j = . 

Assume on the contrary that Tj+1, j ≥ Tj, j+1. In view of , we obtain 

 ≤ 

. 

We rewrite this inequality as 

 ≤ 

. 

Since , the left-hand side is strictly positive. Hence, the right-hand side has the 
same property: 

 > 0. 

As the denominator is strictly positive, the numerator is such as well: 

 > 1. 

Therefore, , which contradicts condition (11) of 
Assumption A.2. 
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 +  -  -  ≥ 0. 

Due to Assumption A.3 and , we can estimate the denominator of the second term 
as: 

 +  > 0, 

 > 0, 

 > 0. 

Since , the numerator of the first factor is strictly negative whereas the denominator 
is strictly positive. By Assumption А.3, the numerator and denominator of the second factor 
are strictly positive. This contradiction completes the proof. 
 

Proof of Proposition 4. We compare the total expected test times of hypotheses j and 
j + 1:  and . 
The first sum is equal to 

Tj, j+1 =  + . 

The second sum is equal to 

Tj+1, j =  + . 

Assume on the contrary that Tj+1, j ≥ Tj, j+1. Then Tj+1, j - Tj, j+1 ≥ 0, and 

 - +  -  ≥ 0. 

Trivial transformations, particularly cancelation by the strictly positive value , yield 

 -  ≥ 0. 

The denominators of both fractions are strictly positive as the products of strictly positive 
values. Since , the numerator of the first fraction is strictly negative. Hence, this 
fraction has the same property as well. The numerator of the second fraction is nonnegative 
due to condition (11) of Assumption A.2. Therefore, the entire difference of these strictly 
negative and nonnegative values is strictly negative. This contradiction completes the proof. 
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Assume on the contrary that Tj+1, j ≥ Tj, j+1. Then Tj+1, j - Tj, j+1 ≥ 0, and 

 +  -  -  ≥ 0. 

Since  and the function  is decreasing, we cancel by the strictly positive value 

 and estimate the denominator of the second term as: 

 -  > 0, 

 > 0, 

 > 0. 

Since , the numerator and denominator of the first factor are strictly positive. Since 
 and the function  is strictly decreasing, the numerator of the second factor is 

strictly negative whereas the denominator of the second factor is strictly positive. This 
contradiction completes the proof. 
 

Proof of Proposition 6. We compare the total expected test times of hypotheses j and 
j + 1:  and . 
The first sum is equal to 

Tj, j+1 =  + , 

The second sum is equal to 

Tj+1, j =  + . 

Assume on the contrary that Tj+1, j ≥ Tj, j+1. Then Tj+1, j - Tj, j+1 ≥ 0, and 

 +  -  -  ≥ 0. 

 +  ≥ 0. 

Since  and the function  is strictly monotonic, we have the estimate 

 +  <  < 0. 

This contradiction completes the proof. 
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