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Abstract: Japanese encephalitis is caused by flavivirus, which can affect both humans and
animals. A Japanese encephalitis disease model is proposed and analyzed to investigate the
transmission dynamics of Japanese encephalitis with saturated incident rate and saturated
treatment function. Assume that the infected pig populations are growing logistically in the
environment. The basic reproduction number (R0) of the model is obtained using the next-
generation matrix method. The sensitivity analysis is performed to identify the key parameters
that affect the basic reproduction number, which can be regulated to control the transmission
dynamics of the disease. The model is extended to optimal control model incorporating three time-
dependent inputs for the control of transmission route by using Pontryagin’s maximum principle.
This study is significant as Japanese encephalitis disease poses serious challenges for public health
in past few years. Numerical simulation is performed to support our analytical findings.

Keywords: japanese encephalitis, basic reproduction number, sensitivity, optimal control,
simulation

1. INTRODUCTION

The Japanese encephalitis is primarily a mosquito-borne rural disease, which is transmitted
to human through the bite of an infected Culex species mosquitoes. Japanese encephalitis
virus (JEV) is a flavivitus of the family of flaviviridae like the viruses of the Yellow fever,
West Nile, and Dengue. The virus is transmitted in an enzootic cycle among mosquitoes and
vertebrate amplifying hosts, primarily domestic pigs and/or water birds (Wild Heron) [1, 2].
Most impotently there is no such type of evidence for human to human transmission. The
first case of JEV disease was recorded in 1871 in Japan [3]. The clinical cases of Japanese
encephalitis globally estimated every year nearly 68,000, with approximately 13,600 to
20,400 deaths. The Japanese encephalitis primarily affects children less than 15 years of age.
The fatality rate varies between 20%− 40%, but it may reach 58% and over. The incubation
period for Japanese encephalitis is between 4–14 days [1, 3]. The primary symptoms of the
disease includes fever, chills, headache, and vomiting. Other symptoms like neurological
symptoms, drowsiness, dizziness, confusion, abdominal pain and diarrhea might develop
over the next few days [5]. There is no specific medicine for treatment, but patients should
be hospitalized for supporting care. During the infected period of Japanese encephalitis,
people should drink plenty of fluids and rest sufficiently. The vaccine is available to control
Japanese encephalitis virus disease but it does not protect 100 %. Japanese encephalitis
virus has been identified most common in rural areas in southeast Asia, Eastern Asia,
Southeastern Asia, and Pascific Island. The disease is investigated globally in the following
territories : Australia, Bangladesh, Bruni, Burma, Cambodia, China, Guam, India, Indonesia,
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Japan, Laos, Malaysia, Nepal, North Korea, Pakistan, Phillipines, Russia, Saipan, Singapore,
South Korea, Sri Lanka, Taiwan, Thailand, Timor-Leste, Vietnam. The main vector of
Japanese encephalitis is C. Annulirostris. In Indian condition many other secondary vectors
have reported including Anopheles subpictus, A. peditaeniatys, C.epidesmus, C.gelidus,
C.whitmorei, C. pseudovishnui, M. uniform and Mansonia indiana. Pigs are considered
to be principal amplifying host in India. The transmission is possible between May and
September. The first case of Japanese encephalitis disease was diagnosed in 1955 in Tamil
Nadu in India [4]. Consequently, several major out-breaks have been listed from different
parts of the country, mostly in rural areas of Assam, Bihir, Harayana,Karnataka, Tamil Nadu,
Uttar Pradesh. In India, 1,500 to 4000 JEV cases are reported every year [3]. According to
National health mission in Assam most of the upper Assam districts, including Dibrugarh,
Golaghat, Jorhat, Lakhimpur and lower Assam district of Kamrup have been badly affected
every year by the Japanese encephalitis mosquito-borne disease.

Several mathematical models have been studied and analyzed the dynamics of Japanese
encephalitis transmission [3-13] as yet. In [3], authors discussed the current knowledge of the
epidemiology and the parthenogenesis of this deadly disease have been summarized. In [4],
authors deals with application of various control strategies to Japanese encephalitis among
human, pig and mosquito. In [5], authors proposed a mathematical model for the spread of
Japanese encephalitis with emphasis on the environmental effects on the aquatic phase of
mosquitoes. In [6], authors proposed a mathematical model with impact of vaccination on
of JE with standard incidence rate of mosquitoes, pigs and humans. In [7], authors has been
studied stability and bifurcation analysis of Japanese encephalitis model with/without effect
of some control parameters. In [8] authors developed a mathematical model and analysis
the spread of Japanese encephalitis with environmental effects. In [9] authors build an SIRS
epidemic model of Japanese encephalitis and discussed analytically. In [10], authors have
formulated a deterministic model with saturated treatment function and found that north
east states of India need better treatment and awareness about the disease. In [11], author
contracted a mathematical model with saturated incidence function and analysis optimal
control theory. In [12], author discussed different causes of backward bifurcations in some
epidemiological models. In [13] authors formulated a mathematical model and regulate
important parameters in the spread of the disease through the sensitivity analysis.

In this paper, we have constructed a Japanese encephalitis mathematical model by
considering standard incidence type interaction with saturated incident and saturated
treatment. As India is a developing countries, so treatment may not available for all if the
number of infectives are very large. So in the present study we have incorporated the saturated
treatment as discussed in [10]. The remaining part of the paper is organized as follows:
Section 2 describes the model and established biological feasible region; Section 3 presents
basic reproduction number; Section 4 deals with data; Section 5 deals with sensitivity analysis
of basic reproduction number R0; Section 6 describes optimal control problem; section 7
demonstrates the numerical simulation of optimal control and finally Section 8 concludes the
paper.

2. THE MODEL FORMULATION

The model consists six different compartments such as Susceptible humans (Sh), Infected
humans (Ih) and Recovered humans (Rh), Susceptible Japanese encephalitis mosquitoes
(Sj), Infected Japanese encephalitis mosquitoes (Ij), and Infected pigs (Ip). Many epidemic
models has been used bilinear incident rate to prevent and control the spread of the infectious
disease. Here we introduced saturated incident rate in the proposed model as saturated
incident rate is more suitable than bilinear incident rate. Based on following assumption the
system of differential equations formulated.
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•
β1ShIj
1 + kIh

is the saturated incident rate, which tends to a saturated level when Ih gets

large, β1Ij measures the infection force when disease is entering a fully susceptible
population [14].

• β1ShIj is known as bilinear incidence rate and
1

1 + kIh
measures the inhibition effect

from the behavioral change of susceptible individuals when their number increases or
from the crowding effect of the infective individuals [9, 14, 15].

•
1

1 + kIh
is the incidence rate which is more reasonable than the β1ShIj (bilinear

incidence rate), [10].
• Assume that through treatment the infected individuals recover at a saturated function

h(Ih) =
γhIh

1 + αIh
, where γh is recovery rate. When α = 0, the saturated treatment

function becomes linear [14, 16–18].
• The model is a non-linear standard incidence type interaction between human and

mosquitoes.
• The individuates are recruited in the region at a constant rate Λh and they join the

susceptible class.
• The susceptible individuals become infected when the mosquito bites and join the

infected human class at the rate of β1.
• Infected individuals get treatment and recover from encephalitis with recovery rate γh

and join recover class.
• The susceptible Japanese encephalitis mosquitoes becomes infected and join infected

mosquitoes class at the rate β2.
• Susceptible mosquitoes bite the infected pigs and becomes infected at the rate β3.
• The infected pig population are growing logistically.

Keeping in view the above facts, the mathematical model is framed as follows:

dSh

dt
= Λh − β1Sh

(
Ij

1 + kIh

)
− µhSh + δhRh

dIh
dt

= β1Sh

(
Ij

1 + kIh

)
− γhIh

1 + αIh
− (µh + µ1)Ih

dRh

dt
=

γhIh
1 + αIh

− (δh + µh)Rh

dSj

dt
= Λj − β2Sj

Ih
Nh

− β3SjIp − µjSj

dIj
dt

= β2Sj
Ih
Nh

+ β3SjIp − µjIj

dIp
dt

= rIp

(
1− Ip

K

)
− µpIp

(2.1)

2.1. Positivity and Boundedness
Here, we shall show that the positivity and boundedness of the population. From the system
(1), we have

dSh

dt

∣∣∣
Sh=0

= Λh + δhRh > 0,
dIh
dt

∣∣∣
Ih=0

= β1ShIj ≥ 0,
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Table 2.1. Description of biological parameters

Parameter Description Value
Λh Rate of recruitment of human population 20
Λj Rate of recruitment of vector(mosquito) 40
β1 Transmission probability interaction between Sh and Ij 0.00256
β2 Transmission probability interaction between Sj and Ih .031
β3 Transmission probability interaction between Sj and Ip 0.013
α A positive constant 0.02
γh Recovery rate of human population 0.005
δh Rate at which recovered human become susceptible due to loos of immunity 0.05
µh Natural mortality rate of human population 0.0421
µ1 Mortality rate of human due to infection 0.0326
µj Natural mortality rate of vector 0.112
µp Natural mortality rate of pigs 0.51
r The growth rate coefficient of infected pigs 2
K Carrying capacity of mosquito population 10

dRh

dt

∣∣∣
Rh=0

=
γhIh

1 + αIh
≥ 0,

dSj

dt

∣∣∣
Sj=0

= Λj > 0,

dIj
dt

∣∣∣
Ij=0

= β2Sj
Ih
Nh

+ β3SjIp ≥ 0,

dIp
dt

∣∣∣
Ip=0
≥ 0

Here, all the rates are non-negative, so if we start in the interior of the non-negative bounding
R6, we shall always remain in this cone keeping mind of the fact that direction of the vector
field is inward on all the bounding planes. We note the change rate of the total population
Nh = Sh + Ih +Rh and Nj = Sj + Ij are given by the following differential equations :

dNh

dt
= Λh − µhNh − µ1Ih,

dNj

dt
= Λj − µjNj.

This gives lim sup
t→∞

Nh ≤
Λh

µh

, lim sup
t→∞

Nj ≤
Λj

µj

. Therefore, all Sh(t), Ih(t), Rh(t) are

bounded by
Λh

µh

and the solutions Sj(t), Ij(t) are bounded by
Λj

µj

. Hence, the biological

feasible region of the proposed system (1) is given by the following positively invariant
region:

Ω = (Sh, Ih, Rh, Sj, Ij, Ip) ∈ R6
+ : (Sh + Ih +Rh) ≤ Λh

µh

, (Sj + Ij) ≤
Λj

µj

.
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3. BASIC REPRODUCTION NUMBER

The disease-free equilibrium for the system (2) as follows E0=(N0
h , I

0
h, R

0
h, N

0
j , I

0
j , I

0
p ) =(

Λh

µh

, 0, 0,
Λj

µj

, 0, 0

)
.

The reproduction number R0 gives the average number of infected individuals generated
by the one in a fully susceptible population and for our model, it is given by the above
expression of R0. Mathematically, R0 is a threshold parameter for the stability of a disease-
free equilibrium and is related to the highest and final size of an epidemic. To find the basic

reproduction number R0, we consider
(
dIh
dt
,
dRh

dt
,
dIj
dt
,
dIp
dt

)
and using the next-generation

matrix method as described in [19, 20]. The matrix F and V as follows:

F =


β1(Nh − Ih −Rh)

Ij
1 + kIh

0

β2(Nj − Ij)
Ih
Nh

+ β3(Nj − Ij)Ip
0

 ,

V =



γhIh
1 + αIh

+ (µh + µ1)Ih

− γhIh
1 + αIh

+ (δh + µh)Rh

µjIj

−rIp
(

1− Ip
K

)
+ µpIp


Now the matrix F ( Jacobian of F at disease-free equlibrium E0) and V (Jacobian of V at
disease-free equilibrium E0) are obtain as

F =


0 0 β1N

0
h 0

0 0 0 0

β2
N0

j

N0
h

0 0 β3N
0
j

0 0 0 0


and

V =

 γh + µh + µ1 0 0 0
−γh µh + µp 0 0

0 0 µj 0
0 0 0 −r + µp


The largest eigenvalue of FV −1 is called the basic reproduction number R0 and is obtained
as follows:

FV −1 =


0 0

β1N
0
h

µj

0

0 0 0 0

β2
N0

j

N0
h(γh + µh + µ1)

0 0
β3N

0
j

µp − r
0 0 0 0

 ,



SENSITIVITY AND OPTIMAL CONTROL ANALYSIS OF JAPANESE 153

2005 2010 2015 2020
0

200

400

600

800

Po
pu

la
tio

ns

Years

 Cases
 Deaths

Fig. 4.1. Trend of Japanese Encephalitis cases in Assam, India during 2004-2019

The spectral radius of the matrix FV −1 is called the basic reproduction number R0 and is
obtained as follows:

R0 =

√
β1β2Λj

µ2
j(γh + µh + µ1)

The quantity R0 is knownas basic reproduction number, the expected number of secondary
cases produced in completely susceptible population, by a typical infective individual,

4. DATA SCENARIO

In India, approximately 597,542,000 people are live in Japanese encephalitis region, and
every year 1,500 to 4,000 japanese encephalitis cases are reported. Here, from 2004 to 2019
annual reported cases of japanese encephalitis are using for graphical representation. For
this study, we consider two states of India which are Assam and Uttar Pradesh as these are
Japanese Encephalitis infected states of India. The total reported cases from 2004 to 2019
in Assam and Uttar Pradesh are 7,325 and 33,572, which are demonstrated in Figure 1 and
2 respectively. In Uttar Pradesh highest number of cases were reported in 2006 and lowest
number of cases were reported in 2019. In Assam highest number of cases were reported in
2014 and lowest number of cases were reported in 2005.
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Fig. 4.2. Trend of Japanese Encephalitis cases in Uttar Pradesh, India during 2004-2019

5. SENSITIVITY ANALYSIS OFR0

To visualize the effect of the parameters involved in the expression of basic reproduction
number R0, we calculated the normalized forward sensitivity indices of R0 to those
parameters [21]. We keep the parameters at the same values as in Table 1. The normalized
forward sensitivity index of a variable to a parameter is determined by the ratio of the relative
change in the variable to the relative change in the parameter [13]. The sensitivity indices
of R0 with respect to the parameters of interest are depicted in Figure 3, 4 and 5. The
figure shows that when the parameters β1, β2, and Λj increase, keeping the other parameters
constant, the value ofR0 increases as these parameters have positive indices. Instead, increase
in the values of parameters γh, µh, µ1, and µj leads to decrease in the values of R0 as they
have negative indices. It is noted that the sensitivity index of R0 is 0.5 for the parameters
β1, β2,Λj . It means that 0.5% increase in the values of any of these parameters, keeping other
parameters fixed, will result in 0.5% increment in the value of R0. Precisely, lower values of
R0 are of crucial importance as they increase the chances of disease eradication. Therefore,it
is imperative to prevent an increase in the parameters having positive sensitivity indices
whereas increasing the values of parameters having negative indices is instead preferred.Thus,
any prevention measure aiming at reducing the former parameters and increasing the latter
must be taken into serious consideration. If such variable is differentiable with respect to the
parameter, then the sensitivity index is defined using partial derivatives, [13]. The normalized
forward sensitivity index of R0, which is differentiable with respect to a given parameter P,
is defined by

Y R0
P =

P

R0

∂R0

∂P
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Fig. 5.3. Normalized forward sensitivity indices of R0 with respect to model parameters. Parameter values :
β1 = 0.00256, β2 = 0.031, γh = 0.245, µh = 0.0421, µ1 = 0.0326, µj = 0.112,Λj = 40

The above formula can be used to compute the analytical expression for the sensitivity of
R0 to each parameter that it includes. Plotted contour plot of some key parameters on R0.
If we increase or decrease the value of β1 and β2, and then the value of R0 will increase or
decrease, respectively, which is shown in Figure 4(a). Also, we can conclude that increasing
the value of Λj will increase the value of the R0, but if we increase the value of µj , it will
decrease the value of the R0, which is the death rate of the mosquito, and this is the one
of the best control policy to reduce the disease infection from the population, manifest in
Figure 4(b). Similarly other significant changes ofR0 are shown in Figures 4(c) and 5(a,b,c)
based respective parameters. So, the correct estimation of these parameters is very important
to predict transmission of this disease.

6. OPTIMAL CONTROL PROBLEM

In this section, three different types of control intervention viz., u1(t), u2(t), u3(t)
are incorporated into the model system (1) and extended to optimal control problem.
There interventions are implementing either pharmaceutical(treatment) or non-
pharmaceutical(effect of information). The main goal this research is to investigate the
best control strategies with minimum cost of implementation as well as financial loss
generated. However, the vaccination and effective medicines are the most useful strategies to
prevent contagious transmission. The details of each intervention are described as follows:

• Control variable u1(t): The force of Japanese Encephalitis infections is reduce by (1-
u1(t)), where u1(t) measures effect due to the use of electronic devices, insecticide-
treated bed nets, and mosquito repulsive lotions are used to reduce transmission between
mosquitoes and human. If one can reduce between mosquitoes to human transmission
rate, then it will be helpful in controlling the mosquito-borne disease. Hence, we
consider u1(t) as a control intervention to reduce human-mosquito interaction.

• Control variable u2(t): The control variable u2(t) is the pig vaccination lowered the
mosquito infection rate. Pig vaccination is associated with a reduction in human cases.
In this an effective intervention but requires considerable amount of money. Thus, our
main objective is to minimize the disease effect in pig population with minimum cost.

• Control variable u3(t): The control variable u3(t) is the use of effective medicines for
the treatment measure of infectious humans, proper vaccination and insecticide to the
Japanese Encephalitis infection causing species [22]. η is the modification parameter
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Fig. 5.4. Contour plots of the basic reproduction numberR0 with respect to (a) β1 and β2 (b) Λj and µj , (c) γh
and µ1
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in control u3(t). In this an effective intervention but requires considerable amount of
money. Thus, our main objective is to minimize the disease effect in human population
with minimum cost.

Based on different health care restriction , it is essential to impose some bounds on
controls as 0 ≤ u1(t), u2(t), u3(t) ≤ 1. If u1(t), u2(t), and u3(t) are equal to zero, then there
is no effort being placed in these controls at time t and if they are equal to one then the
maximum effort is applied. Keeping the view of the above assumptions, the optimal control
model is formulated as follows:

dSh

dt
= Λh − (1− u1(t))β1Sh

(
Ij

1 + kIh

)
− µhSh + δhRh

dIh
dt

= (1− u1(t))β1Sh

(
Ij

1 + kIh

)
− ηu3(t)γhIh

1 + αIh
− (µh + µ1)Ih

dRh

dt
=
ηu3(t)γhIh

1 + αIh
− (δh + µh)Rh

dSj

dt
= Λj − (1− u1(t))β2Sj

Ih
Nh

− (1− u2(t))β3SjIp − µjSj

dIj
dt

= (1− u1(t))β2Sj
Ih
Nh

+ (1− u2(t))β3SjIp − µjIj

dIp
dt

= rIp

(
1− Ip

K

)
− µpIp

(6.2)

Consider u1(t) = u1, u2(t) = u2, and u3(t) = u3 for further analysis.

6.1. Cost Construction and Characterization of Optima Controls
This particular section devotes into two parts which include determination of the total
cost generated due to applied controls as well as diseases itself. Whereas the second part
determines the analytical forms of the controls.

6.1.1. Total Cost Determination Here, the total cost is determined for the applied control
interventions and disease as well, which need to be minimized.

• Cost due to disease: The cumulative cost incurred due to the disease burden is modeled
as follows: ∫ T

0

(X1Ih +X2(Sj + Ij) +X3Ip)dt

This cost consists of various components such as cost due to loss of manpower,
opportunity loss and other related wealth loss.

• Cost incurred in insecticide-treated bed nets: The total cost involved in reducing the
transmission between human to mosquito is given as∫ T

0

Y1u
2
1dt.

• Cost incurred intreatment and vaccination for pig population: The total cost
involved in reducing pig infection is defined as∫ T

0

Y2u
2
2dt.



SENSITIVITY AND OPTIMAL CONTROL ANALYSIS OF JAPANESE 159

• Cost incurred in treatment for infected human population: The cumulative cost in
process of treating infected human is defined by∫ T

0

Y3u
2
3dt.

The cost functional corresponding to total cost incurred, for fixed time T , which need to be
minimized is given by

J(u1, u2, u3) =

∫ T

0

[
X1Ih +X2(Sj + Ij) +X3Ip +

1

2
(Y1u

2
1 + Y2u

2
2 + Y3u

2
3)

]
dt (6.3)

subject to the model system (2).
The parameterX1 ≥ 0,X2 ≥ 0, Y1 ≥ 0, Y2 ≥ 0, and Y3 ≥ 0, are the weight and balancing

constants, which measure the respective cost involvement over the interval [0, T ]. The term
Y1u1

2 denotes the cost associated with Insecticide-treated bed nets are a form of personal
protection that has been shown to reduce mosquito borne disease i.e. zika, dengue, malaria
etc. and death due to mosquito borne disease in endemic regions. But at the same time, the
execution of ITNs requires lot of money which is given by the term Y1u

1
1 [11]. Also, the total

cost incurred in process primarily includes the cost involved in awareness and educational
campaigns, cost of required manpower etc. The term Y2u2

2 signifies the cost associated with
pig vaccination to reduce the mosquito infection rate and the term Y3u3

2 represents the cost
associated with treatment for infected human population which primarily medical facilities,
Hospitals expenditure, manpower, human vaccination etc [21]. In order to find an optimal
control, u1∗,u2∗, and u3∗ such that

J(u1
∗, u2

∗, u3
∗) = min

(u1,u2,u3)∈U
J(u1, u2, u3), (6.4)

where U is the control set and is defined as
U = {(u1, u2, u3) : 0 ≤ u1, u2, u3 ≤ 1, t ∈ [0, T ]}

Here, all the controls are bounded and measurable.

6.1.2. Existence and Characterization of Optima Controls Here, we shall first establish the
existence of such control functions that minimises the cost functional J . The Lagrangian L
of this problem is defined as:

L(Ih, Sj, Ij, Ip, u1, u2, u3) = X1Ih +X2(Sj + Ij) +X3Ip +
1

2
Y1u1

2 +
1

2
Y2u

2
2 +

1

2
Y3u

2
3

Now, we shall use Pontryagin’s maximum principle [?] for necessary conditions for optimal
controls system (2). For that by choosing A = (Sh, Ih, Rh, Sj, Ij, Ip), U = (u1, u2, u3) and
λ = (λ1, λ2, λ3, λ4, λ5, λ6), the associated HamiltonianH can be written as

H(A,U , λ) = L(Ih, Sj, Ij, Ip, u1, u2, u3) + λ1
dSh

dt
+ λ2

dIh
dt

+ λ3
dRh

dt
+ λ4

dSj

dt
+ λ5

dIj
dt

+ λ6
dIp
dt

(6.5)

Since u∗1,u
∗
2, u∗3 are solutions to the control problem (2), there exists the adjoint variables

λ1, λ2, λ3, λ4, λ5, λ6 satisfying the following conditions.
dx

dt
=
∂H(t, x, u∗1, u

∗
2, u
∗
3, λ1, λ2, λ3.λ4, λ5, λ6)

∂λ

0 =
∂H(t, x, u∗1, u

∗
2, u
∗
3, λ1, λ2, λ3.λ4, λ5, λ6)

∂u
dλ

dt
= −∂H(t, x, u∗1, u

∗
2, u
∗
3, λ1, λ2, λ3.λ4, λ5, λ6)

∂x

(6.6)
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Theorem 6.1:
For the objective functional (3) and the control set (6) subject to control system (2) there
exists an optimal control u∗ = (u1

∗, u2
∗, u3

∗) ∈ U such that

J(u1
∗, u2

∗, u3
∗) = min

U
J(u1, u2, u3).

Proof
To establish this result, we follow the Theorem 4.1 mentioned in [23] for the existence
of optimal controls. As, we have discussed above that all the state variables (population)
are bounded for each bounded controls coming from the control set U . Furthermore,
Lipschitz condition with respect to state variables is satisfied by the right hand part
of the model system (2). The control variable set U is also convex and closed by the
definition and the model system (2) is linear in control variables. The integrand of the

function L = X1Ih +X2(Sj + Ij) +X3Ip +
1

2
Y1u1

2 +
1

2
Y2u

2
2 +

1

2
Y3u

2
3 is convex on the

control set U due to quadratic nature of control variables. Moreover, L = X1Ih +X2(Sj +

Ij) +X3Ip +
1

2
Y1u1

2 +
1

2
Y2u

2
2 +

1

2
Y3u

2
3 ≥

1

2
Y1u1

2 +
1

2
Y2u

2
2 +

1

2
Y3u

2
3. Now consider c1 =

min(X1, X2, X3) > 0 and g(u1, u2, u3) = c1(u1
2 + u2

2 + u3
2). Thus, L ≥ g(u1, u2, u3)

holds true and g is continuous. Also, g satisfies the condition |(u1, u2, u3)|−1g(u1, u2, u3)→
∞ whenever |(u1, u2, u3)| → ∞. Thus, all the conditions for the existence of controls are
fulfilled (for more details one can follow [23, 24]. Hence the result.

Theorem 6.2:
Let u∗1, u

∗
2, u
∗
3 be optimal control functions and S∗h, I

∗
h, R

∗
h,S∗j , I

∗
j ,I∗p are the corresponding

state variable of the optimal control problem (2) - (3). Then there exists adjoint variables
λ = (λi)

T ∈ R6, i = 1, 2, 3, 4, 5, 6, which satisfies the following equations :

dλ1
dt

= µhλ1 + (1− u1)β1(
Ij

1 + kIh
)(λ1 − λ2)− (1− u1)β2

SjIh
N2

h

(λ4 − λ5)
dλ2
dt

= −X1 + (1− u1)
β1ShIjk

(1 + kIh)2
(λ2 − λ3) +

ηu3γh
(1 + αI2h)

(λ2 − λ3) + (µh + µ1)λ2

dλ3
dt

= δh(λ3 − λ1) + µhλ3
dλ4
dt

= −X2 + µjλ4 + (1− u1)β2
Ih
Nh

(λ4 − λ5) + (1− u2)β3Ip(λ4 − λ5)
dλ5
dt

= −X2 + (1− u1)β1Sh(
1

1 + kIh
)(λ1 − λ2) + µjλ5

dλ6
dt

= −X3 + (µp + r − 2rIp
k

)λ6

(6.7)

with transversality conditions

λ1(T ) = λ2(T ) = λ3(T ) = λ4(T ) = λ5(T ) = λ6(T ) = 0 (6.8)

Proof
Let u∗1, u

∗
2, u
∗
3 be the optimal control functions and S∗h, I

∗
h, R

∗
h,S∗j , I

∗
j , I

∗
p are the corresponding

state variables. Then, Pontryagin’s Maximum Principle ensures the existence of the
following adjoint variable λi(i = 1, 2, 3, 4, 5, 6) ∈ R6, which satisfies the following
canonical equations:

dλ1
dt

= − ∂H
∂Sh

,
dλ2
dt

= −∂H
∂Ih

,
dλ3
dt

= − ∂H
∂Rh

,
dλ4
dt

= −∂H
∂Sj

,
dλ5
dt

= −∂H
∂Ij

,
dλ6
dt

= −∂H
∂Ip
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with transversality conditions (8), where H is the Hamiltonian defined as above. Thus, the
adjoint system (7) can be obtained,

In the following result, we shall state the analytical forms of the optimal controls.
Theorem 6.3:
The optimal controls (u1

∗, u2
∗, u3

∗) which minimizes J over the region U given by

u1
∗ = min{1,max(0, ũ1)}

u2
∗ = min{1,max(0, ũ2)}

u3
∗ = min{1,max(0, ũ3)}

where,

ũ1 =

β1

(
Sh + Ij
1 + kIh

)
(λ2 − λ1) +

β1ShIjk

(1 + kIh)2
(λ3 − λ2) + β2

Ih
Nh

(λ5 − λ4)

Y1

ũ2 =
β3Ip(λ5 − λ4)

Y2
(6.9)

ũ3 =

ηγh
(1 + αI2h)

(λ3 − λ2)

Y3

Proof
Using the optimal condition (6), we get (9), as follows

∂H
∂u1

= Y1u1 + β1

(
Sh + Ij
1 + kIh

)
(λ1 − λ2) +

β1ShIjk

(1 + kIh)2
(λ2 − λ3) + β2

Ih
Nh

(λ4 − λ5) = 0

This implies,

u1 =

β1

(
Sh + Ij
1 + kIh

)
(λ2 − λ1) +

β1ShIjk

(1 + kIh)2
(λ3 − λ2) + β2

Ih
Nh

(λ5 − λ4)

Y1
:= ũ1,

∂H
∂u2

= Y2u2 + β3Ip(λ4 − λ5) = 0

This implies,

u2 =
β3Ip(λ5 − λ4)

Y2
:= ũ2,

And,
∂H
∂u3

= Y3u3 +
ηγh

(1 + αI2h)
(λ2 − λ3) = 0

This implies,

u3 =

ηγh
(1 + αI2h)

(λ3 − λ2)

Y3
:= ũ3.

Moreover, lower and upper bounds of these control are 0 and 1 respectively. Thus, if
ũ1 > 1, ũ2 > 1, ũ3 > 1, then

u1 = u2 = u3 = 1.
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Also, ũ1 < 0, ũ2 < 0 , ũ3 < 0, then

u1 = u2 = u3 = 0.

Otherwise, we have
u1 = ũ1, u2 = ũ2, and u3 = ũ3

Hence, for these controls u∗1, u
∗
2, u

∗
3 we get optimum value of the function J .

7. SIMULATION OF OPTIMAL CONTROL

In this section, by using MATLAB software, the optimal control model is simulated. The
parameter values are remain same as esteemed in the Table 1. The weight constants for the
optimal control problem are taken as X1 = 1, X2 = 1, X3 = 1, Y1 = 45, Y4 = 65, Y5 = 75.
We solve the optimality system (2) by iterative method with the help of forward and backward
difference approximations [23]. We consider the time interval as [0, 200]. Profiles for optimal
control u1,u2 and u3 are shown, respectively, in Figures 6(a), 6(b), and 6(c). Finally, to see the
effects of optimal controls, the infected human and infected vectors are plotted against time
with and without optimal control in Figures 7(b). It is easy to notice that optimal control is
more effective in reducing the number of infectives. We consider different types of strategies
to see the impact of optimal control in the total number of human infectives. For this purpose,
we shall define the following control strategies:

• Strategy A: Employing control intervention (u1), only.
• Strategy B: Employing control intervention (u2) only.
• Strategy C: Employing control intervention (u2) only.
• Strategy D: Employing control intervention (u1, u2), (u1, u3), (u2, u3)
• Strategy E: Employing control intervention (u1, u2, u3)

7.1. Strategy A: Employing electronic devices, insecticide-treated bed nets, and mosquito
repulsive lotions (u1), only.

Here, only control measure u1(t) is used to optimize the objective function J , while control
intervention u2(t) = u3(t) = 0, were not employed. The influence of u1(t) is demonstrated
in Figure 6(a), to minimize the objective function, the optimal control u1(t) is maintained
at the maximum level. A single preventive measure can influence the spread of Japanese
Encephalitis in the population.

7.2. Strategy B: Increase pig vaccination to reduce the mosquito infection (u2) only.
Here, only control measure u2(t) is used to optimize the objective function J , while control
intervention u1(t) = u3(t) = 0, were not employed. In Figure 6(b), we present the plots of
population and the due to effects of pig vaccination are demonstrated to minimizing the cost
and reducing the number of Japanese Encephalitis infections in the population.

7.3. Strategy C: Use of effective medicines as treatment measure of infectious humans
(u3) only.

Here, only control measure u3(t) is used to optimize the objective function J , while control
intervention u2(t) = u3(t) = 0, were not employed. The influence of u3(t) is demonstrated
in Figure 6(c), to minimize the disease effect in human population with minimum cost.

7.4. Strategy D: Effective use of control intervention (u1, u2), (u1, u3), (u2, u3).
Here, double control interventions (u1(t), u2(t)) when u3(t) = 0, (u1(t), u3(t)) when u2(t) =
0, and (u2(t), u3(t)) when u1(t) = 0, are used to optimize the objective function J.
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The control intervention are demonstrated in Figure 6(d), 6(e) and 6(f). It is observed
that combination of two control intervention is most effective then using signal control
intervention. Significant number of Japanese Encephalitis infective cases reduce.

7.5. Strategy E: Employing all three control interventions (u1, u2, u3).
Here all three control interventions (u1(t), u2(t), u3(t)) are used to optimize the objective
function J . From Figure 7(a), it is easy to say that by combining all three optimal controls
u1(t), u2(t), and u3(t), the total number of infectious individuals decreases significantly.
The three optimal control application is the best control strategy to minimize the number of
infectives, and will definitely reduce the spread of JEV.

8. CONCLUSION

In this study, a non-linear mathematical model is formulated and analyzed for Japanese

encephalitis disease with saturated incident
(
β1ShIj
1 + kIh

)
and saturated treatment function(

γhIh
1 + αIh

)
. The basic reproduction number is computed by next generation matrix method.

Here, it is clearly identify that the parameter β1 is the most sensitive parameter which
transmitted Japanese encephalitis disease in human. The sensitivity analysis of the basic
reproduction and Japanese encephalitis infected cases are executed in order to determine the
relative importance of the model parameters to the disease prevalence. The results of the
numerical simulation is executed to support our mathematical findings and demonstrated
graphically. Also, we perform here trend of Japanese encephalitis cases of Assam and
Uttar Pradesh through line-graph. The infection rate is high in Assam and Uttar Pradesh
comparatively other part of the country(India). Three time-department optimal control
is incorporated in model system to eliminate the virus from the tropical region using
Pontryagin’s maximum principal. Adapting all three optimal control parameters are the best
control strategy to minimize the number of infectives, which will reduce the rate transmission
of the disease. It is noticed easily that use optimal control in the mode is more effective than
without optimal control in reducing the number of infectives in the considered period.
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Fig. 7.6. (a) Control profile of u1, when u2 = u3 = 0, (b) Control profile of u2, when u1 = u3 = 0, (c) Control
profile of u3, when u2 = u3 = 0, (d) Control profile of u1, u2, when u3 = 0,(e) Control profile of u1, u3, when

u2 = 0, (f) Control profile of u2, u3, when u1 = 0
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Fig. 7.7. (a) Control profile of u1, u2, and u3, (b) Variation of infected human populations against time with and
without optimal control.
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