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Abstract: Currently, coronavirus disease 2019 (COVID-19) continues to cause several new
cases and deaths, and further new variants of the virus responsible this disease appear.
The present paper proposes a new mathematical model to understand the mechanisms
of the spread of COVID-19 and better describe its dynamics. The modes of infection
spread of COVID-19 via asymptomatic and symptomatic individuals are modeled by
two general nonlinear incidence functions in order to include several types of incidence
rates existing in the literature. When a disease outbreak within a community, individuals
acquire information about this disease. Therefore, the proposed model take into account
the memory effect on the outbreaks of COVID-19. This effect is modeled by a fractional
order derivative in Caputo sense. The mathematical analysis of the proposed model is
rigorously investigated, including the computation of the basic reproduction number R0
and the stability of equilibria.
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1. INTRODUCTION

Coronavirus disease 2019 (COVID-19) is a infectious disease caused by a new
coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
World Health Organization (WHO) first learned of this new virus on 31 December
2019, following a report of a cluster of cases of viral pneumonia detected in Wuhan
City, Hubei Province of China. Due to rapid worldwide outbreak of COVID-19, the
WHO declared it a pandemic on 11 March 2020. Over 2.7 million new cases were
reported on 7 March 2021 with 116 166 652 cumulative cases, 60 323 new deaths and 2
582 528 cumulative deaths [18]. Since the appearance of the first case in Morocco on 2
March 2020 in the city of Casablanca, the disease has caused 8 716 deaths on 12 March
2021 according to new statistics given by Moroccan Ministry of Health (MMH) [13].
However, a total of 13 671 deaths was confirmed in Iraq on the same day [19]. The
outbreak COVID-19 impacted nearly every side of society worldwide. Therefore, the
pandemic has required a substantial response by public health authorities at every level
and considered aformidable global public health challenge.
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Despite the prevention measures, such as hand washing, social distancing, quarantine
of suspected cases, isolation of confirmed cases, the closure of schools and non-essential
businesses and services, and also the start of vaccination in some countries, COVID-19
continues to cause new cases and deaths, and new variants of SARS-CoV-2 appear.

In fact, the transmission or outbreaks of the COVID-19 consists of direct and
indirect contacts between infective and susceptible individuals, it seems that the several
mathematical models well described the COVID-19. However, attention must be paid
to the unique traits of COVID-19. These traits are (a) the presence of individuals who
exhibit infectious symptoms even during the incubation period, such as such as High
body temperature, body aches and pains, queasiness, or diarrhea typically (2 - 14) days
after infective to the virus, (b) There are asymptomatic individuals called a carrier,
who can move freely and transmit infection, which makes controlling the situation
complicated such that, approximately half of the COVID-19 patients (40− 50%) in one
study did not show any symptoms from above in (a). For example, there are several
reports that have investigated the possibility of asymptomatic carriers of COVID-19.
A report of Japanese travelers from Wuhan, China approximates the proportion of
carriers of disease but asymptomatic at 30 %. In addition, studies of every person in an
isolated Italian village revealed that 50-75 % of people were asymptomatic. A report of
a nursing home in the USA found 30 % of patients were asymptomatic on the day of
testing for COVID-19, with 4 % remaining asymptomatic upon follow-up a week later.
A report in hospitalized patients in Beijing found that 5 % of patients testing positive
for COVID-19 had asymptomatic infections see [3–5,10,15].

Recently, many mathematical models have been developed to describe the spread
of infectious diseases, such as hepatitis B, HIV transmission and Ebola virus disease.
For more information, we refer the reader to the recent book published by Hattaf and
Dutta about this subject in [7]. For COVID-19, Moussaoui and Zerga [14] proposed
a mathematical model that takes into account strategies against COVID-19 such as
wearing masks and respecting safety distances. A model for the dynamics of COVID-
19 with quarantine strategy and media coverage effect was presented by Mohsen et
al. in [12], while a mathematical model of COVID-19 pandemic involving the infective
immigrants was also studied in [11]. A fractional order model with bilinear incidence
rate was introduced in [2] to study transmission dynamics of COVID-19 in Japan 2020.
Modeling of the dynamics of COVID-19 inside the human body was presented in [9].

The main objective of this study is to develop a new mathematical model in order
to better describe the dynamics of the COVID-19 in human population by taking into
account the effects of memory and carrier, and also others aspects such as the non-
linearity of the incidence function, the death rate due to COVID-19 and the recovery
rates of the asymptomatic and symptomatic individuals. To do this, the structure of
this work is outlined as follows. The next section is devoted to the formulation of model,
the existence of equilibria and the computation of the basic reproduction number R0.
In Section 3, we use mathematical analysis to establish global stability results for the
proposed model. Some applications of our main results are presented in Section 4.
Eventually, the conclusion is given in Section 5.

2. MODEL FORMULATION AND EQUILIBRIA

In this section, we first construct a mathematical model that takes into account the
effects of memory and carrier. Then we divide the total population into four classes
S(t), C(t), I(t) and R(t) that represent susceptible, carrier (asymptomatic infected
individuals), infected and recovered individuals at time t, respectively. The dynamics
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of the four classes is governed by the following nonlinear system of FDEs:
DαS(t) = A− νS − Φ(S, C)C −Ψ(S, I)I,
DαC(t) = Φ(S, C)C +Ψ(S, I)I − (ν + d+ γ + r1)C,
DαI(t) = γC − (ν + d+ r2)I,
DαR(t) = r1C + r2I − νR,

(2.1)

where the susceptible individuals are recruited at a rate A and become infected
either by effective contact with carrier at rate Φ(S, C)C or by effective contact with
infected individuals at rate ψ(S, I)I. So, the term Φ(S, C)C + ψ(S, I)I denotes the
total asymptomatic infection rate of susceptible individuals. The natural death rate
in all classes is denoted by ν, while d is the death rate due to COVID-19. The rate of
transfer from the asymptomatic to symptomatic is denoted by γ. The parameters r1 and
r2 are recovery rates of the asymptomatic and symptomatic individuals, respectively.
Finally, Dα denotes the Caputo fractional derivative with α ∈ (0, 1] that describes the
memory effect. A schematic diagram of model (2.1) is shown in Figure 1.

Fig. 2.1. The diagram of model (2.1).

Obviously, the first three equations of (2.1) do not depend on the variable R, model
(2.1) can be rewrite by following format{

DαS(t) = A− νS − Φ(S, C)C −Ψ(S, I)I,
DαC(t) = Φ(S, C)C +Ψ(S, I)I − d1C,
DαI(t) = γC − d2I,

(2.2)

where d1 = ν + d+ γ + r1 and d2 = ν + d+ r2. Furthermore and according to [8], we
assume that the infection rate is the general incidences Φ and Ψ are continuously
differentiable in the interior of IR2

+ and satisfy the two following conditions:

(H1) Φ(0, C) = 0,
∂Φ

∂S
(S, C) > 0,

∂Φ

∂C
(S, C) ≤ 0 for all S, C ≥ 0.
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(H2) Ψ(0, I) = 0,
∂Ψ

∂S
(S, I) > 0,

∂Ψ

∂I
(S, I) ≤ 0 for all S, I ≥ 0.

Next, we study the existence of equilibria. Clearly, Ef (S0, 0, 0) is a disease-free
equilibrium of (2.2), where S0 = A

ν
. Hence, the basic reproduction number of (2.2)

can be calculated as follows

R0 =
d2Φ(S0, 0) + γg(S0, 0)

d1d2
, (2.3)

which can be rewritten as R01+R02, where

� R01 =
Φ(S0, 0)

d1
is the basic reproduction number for asymptomatic mode of

transmission.

� R02 =
γΨ(S0, 0)

d1d2
is the basic reproduction number for symptomatic mode of

transmission.

The second equilibrium point of (2.2) satisfies the following system of equations

A− νS − Φ(S, C)C −Ψ(S, I)I = 0, (2.4)
Φ(S, C)C +Ψ(S, I)I − d1C = 0, (2.5)

γC − d2I = 0. (2.6)

Hence, C =
A− νS
d1

, I =
γC
d2

=
γ(A− νS)

d1d2
and

d2Φ(S,
A− νS
d1

) + γΨ(S, γ(A− νS)
d1d2

) = d1d2.

Since C =
A− νS
d1

≥ 0, we have S ≤ A
ν
. Then there is no epidemiological

equilibrium when S >
A
ν
. The function h can be define on the closed interval [0, A

ν
]

by

h(S) = d2Φ(S,
A− νS
d1

) + γΨ(S, γ(A− νS)
d1d2

)− d1d2.

We have h(0) = −d1d2 < 0, h(
A
ν
) = d1d2(R0 − 1) and

h′(S) = d2

(
∂Φ

∂S
− ν

d1

∂Φ

∂C

)
+ γ

(
∂Ψ

∂S
− γν

d1d2

∂Ψ

∂I

)
> 0.

Therefore, the equation h(S) = 0 has a unique root S∗ ∈ (0,
A
ν
) when R0 > 1.

This implies that our model has a unique endemic equilibrium E∗(S∗, C∗, I∗) under
the condition R0 > 1.

Summarizing all the above cases in the following result.

Theorem 2.1:
Let R0 be defined by (2.3).
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(i) If R0 ≤ 1, then system (2.2) has only disease-free equilibrium of the form
Ef (S0, 0, 0), where S0 = A

ν
.

(ii) If R0 > 1, then system (2.2) has a unique endemic equilibrium E∗(S∗, C∗, I∗),

where S∗ ∈ (0, A
ν
), C∗ =

A− νS∗

d1
and I∗ =

γ(A− νS∗)

d1d2
. Also, the disease-free

equilibrium exists.

3. GLOBAL DYNAMICS

In this section, we analyze the stability of the disease-free equilibrium Ef and the
endemic equilibrium E∗.

Theorem 3.1:
The disease-free equilibrium Ef is globally asymptotically stable if R0 ≤ 1 and unstable
if R0 > 1.

Proof
We define the following Lyapunov functional

F(t) = C +
Ψ(S0, 0)

d2
I.

Then

DαF(t) = DαC +
Ψ(S0, 0)

d2
DαI

= Φ(S, C)C +Ψ(S, I)I − d1C +
Ψ(S0, 0)

d2
(γC − d2I).

Using A = νS0, we get

DαF(t) = d1

(
d2Φ(S, I) + γΨ(S0, 0)

d1d2
− 1

)
C +

(
Ψ(S, I)−Ψ(S0, 0)

)
I.

From the first equation of (2.2), we have

DαS ≤ A− νS,

which leads to

S(t) ≤ S(0)Eα(−νtα) +
A
ν
[1− Eα(−νtα)] ,

where Eα(z) =
∞∑
k=0

zα

Γ(αk + 1)
denotes the Mittag-Leffler function of one parameter α.

Then lim sup
t→∞

S(t) ≤ A
ν
, which involves that all omega limit points verify S(t) ≤ S0.

Thus, it suffices to consider solutions for which S(t) ≤ S0. According to the explicit
expression of R0 given in (2.3) and (H1)-(H2), we obtain

DαF(t) ≤ d1
(
R0 − 1

)
C.

Then DαF(t) ≤ 0 when R0 ≤ 1. Furthermore, DαF(t) = 0 if and only if S = S0, C = 0
and I = 0. Therefore, {Ef} is the largest invariant set in {(S, C, I) | DαF(t) = 0}. It
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follows from the LaSalle’s invariance principale [16] that Ef is globally asymptotically
stable when R0 ≤ 1.

On the other hand, the characteristic equation of model (2.2) at Ef is given by

(ν + λ)(α + ν + λ)Θ(λ) = 0, (3.7)

where
Θ(λ) = λ2 +

(
d1 + d1 − Φ(S0, 0)

)
λ+ d1d2(1−R0).

We have lim
λ→+∞

Θ(λ) = +∞ and Θ(0) = d1d2(1−R0) < 0 when R0 > 1. Then we

have the eigenvalue λ0 ∈ (0,+∞) such that Θ(λ0) = 0, which implies that the equation
(3.7) at Ef has at least one positive root if R0 > 1. Therefore, Ef is saddle (unstable)
whenever R0 > 1.

In the following, we assume that R0 > 1 and the incidence functions Φ and Ψ satisfy,
for all S, C, I > 0, the following assumption(

1− Φ(S, C)
Φ(S, C∗)

)(
Φ(S, C∗)

Φ(S, C)
− C

C∗

)
≤ 0,(

1− Φ(S∗, C∗)Ψ(S, I)
Φ(S, C∗)Ψ(S∗, I∗)

)(
Φ(S, C∗)Ψ(S∗, I∗)

Φ(S∗, C∗)Ψ(S, I)
− I

I∗

)
≤ 0.

(H4)

To establish the global dynamics of system (2.2) when R0 > 1, we need the following
Lemma.

Lemma 3.1:
Let k be a continuous function and u be a continuously differentiable function. For any
constant c and α ∈ (0, 1], the Caputo fractional derivative of the function K defined by

K(t) =

∫ u(t)

c

k(x)dx, (3.8)

satisfies the following property

DαK(t) = k(u(t))Dαu(t)− t−αv(0)

Γ(1− α)
− α

Γ(1− α)

∫ t

0

(t− τ)−α−1v(τ)dτ, (3.9)

where

v(τ) = k(u(t))
(
u(t)− u(τ)

)
+

∫ u(τ)

u(t)

k(x)dx.

In particular, we have DαK(t) = k(u(t))Dαu(t) when α = 1. Moreover,

(i) If k is a increasing function, then

DαK(u(t)) ≤ k(u(t))Dαu(t). (3.10)

(ii) If k is a decreasing function, then

DαK(u(t)) ≥ k(u(t))Dαu(t). (3.11)

Proof
By using the definition of the Caputo fractional derivative, we have

DαK(t)− k(u(t))Dαu(t) =
1

Γ(1− α)

∫ t

0

(t− τ)−αu′(τ)
(
k(u(τ))− k(u(t))

)
dτ.
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Clearly, v′(τ) = u′(τ)
(
k(u(τ))− k(u(t))

)
and v(t) = 0. Integrating by parts the last

integral, we get

DαK(t)− k(u(t))Dαu(t) =
1

Γ(1− α)

[
(t− τ)−αv(τ)

]τ=t

τ=0

− α

Γ(1− α)

∫ t

0

(t− τ)−α−1v(τ)dτ.

From L’Hopital’s rule, we have

lim
τ→t

(t− τ)−αv(τ) = lim
τ→t

v(τ)

(t− τ)α

= lim
τ→t

u′(τ)
(
k(u(τ))− k(u(t))

)
−α(t− τ)α−1

= lim
τ→t

− 1

α
(t− τ)1−αu′(τ)

(
k(u(τ))− k(u(t))

)
= 0.

Hence,

DαK(t) = k(u(t))Dαu(t)− t−αv(0)

Γ(1− α)
− α

Γ(1− α)

∫ t

0

(t− τ)−α−1v(τ)dτ.

Now let us consider the following function

ψc,k(τ) = k(c)
(
c− τ) +

∫ τ

c

k(x)dx.

It is obvious that ψ′
c,k(τ) = k(τ)− k(c). Assume that k is a increasing function. In

this case, the function ψc,k(τ) is decreasing on the interval (−∞, c] and increasing on
[c,+∞) with ψc,k(c) = 0. Then ψc,k(τ) has the global minimum at τ = c. Thus,

ψc,k(τ) ≥ 0, for all (c, τ) ∈ IR2.

Since v(τ) = ψu(t),k(u(τ)), we deduce that v(τ) ≥ 0 and then (i). By using the same
technique, we can easily prove (ii). By applying of the fundamental theorem of analysis,
we obtain

DαK(t) = k(u(t))Dαu(t), when α = 1. (3.12)

This completes the proof.

Remark 3.1:
Lemma 3.1 extends the lemma presented in [1] that allows to find Lyapunov candidate
functions for demonstrating the stability of many fractional order systems, and also the
elementary lemma given in [17] that estimates fractional derivatives of Volterra-type
Lyapunov functions in the sense Caputo for any monotone function. In fact, we have

1

2
Dαu2(t) = Dα

∫ u(t)

c

xdx ≤ u(t)Dαu(t), (3.13)

and

Dα
[
u(t)− u∗ − u∗ ln

u(t)

u∗
]
= Dαu(t)− u∗Dα

∫ u(t)

u∗

1

x
dx ≤

(
1− u∗

u(t)

)
Dαu(t). (3.14)

Copyright© 2022 ASSA. Adv Syst Sci Appl (2022)



DYNAMICS OF A GENERALIZED FRACTIONAL EPIDEMIC MODEL... 43

Theorem 3.2:
Assume that R0 > 1 and (H4) holds. Then the endemic equilibrium E∗ is globally
asymptotically stable.

Proof
We define a Lyapunov functional as follows

G(t) =S − S∗ −
∫ S

S∗

Φ(S∗, C∗)

Φ(X, C∗)
dX + C∗χ

(
C
C∗

)
+

Ψ(S∗, I∗)

d2
I∗χ

(
I
I∗

)
, (3.15)

where χ(x̂) = x̂− 1− ln x̂ for x̂ > 0.
Since S 7→ 1

Φ(X,C∗)
is a decreasing function, it follows from (ii) of Lemma 3.1 and

(3.14) that

DαG(t) ≤
(
1− Φ(S∗, C∗)

Φ(S, C∗)

)
DαS(t) +

(
1− C∗

C

)
DαC(t)

+
Ψ(S∗, I∗)

d2

(
1− I∗

I

)
DαI(t)

=

(
1− Φ(S∗, C∗)

Φ(S, C∗)

)(
A− νS − Φ(S, C)C −Ψ(S, I)I

)
+

(
1− C∗

C

)(
Φ(S, C)C +Ψ(S, I)I − d1C

)
+
Ψ(S∗, I∗)

d2

(
1− I∗

I

)(
γC − d2I

)
.

Since A = νS∗ + Φ(S∗, C∗)C∗ +Ψ(S∗, I∗)I∗, Φ(S∗, C∗)C∗ +Ψ(S∗, I∗)I∗ = d1C∗ and
γC∗ = d2I∗, we have

DαG(t) ≤ νS∗
(
1− S

S∗

)(
1− Φ(S∗, C∗)

Φ(S, C∗)

)
+Φ(S∗, C∗)C∗

(
2− Φ(S∗, C∗)

Φ(S, C∗)
+

Φ(S, C)C
Φ(S, C∗)C∗ − C

C∗

)
+Ψ(S∗, I∗)I∗

(
3− Φ(S∗, C∗)

Φ(S, C∗)
+

Φ(S∗, C∗)Ψ(S, I)I
Φ(S, C∗)Ψ(S∗, I∗)I∗ − I

I∗

− Ψ(S, I)IC∗

Ψ(S∗, I∗)I∗C
− I∗C

IC∗

)
.
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Hence,

DαG(t) ≤ νS∗
(
1− S

S∗

)(
1− Φ(S∗, C∗)

Φ(S, C∗)

)
+Φ(S∗, C∗)C∗

(
− 1− C

C∗ +
Φ(S, C∗)

Φ(S, C)
+

Φ(S, C)C
Φ(S, C∗)C∗

)
+Ψ(S∗, I∗)I∗

(
− 1− I

I∗ +
Φ(S, C∗)Ψ(S∗, I∗)

Φ(S∗, C∗)Ψ(S, I)
+

Φ(S∗, C∗)Ψ(S, I)I
Φ(S, C∗)Ψ(S∗, I∗)I∗

)
+Φ(S∗, C∗)C∗

(
3− Φ(S, C∗)

Φ(S, C)
− Φ(S∗, C∗)

Φ(S, C∗)
− Φ(S, C)

Φ(S∗, C∗)

)
+Ψ(S∗, I∗)I∗

(
4− Φ(S∗, C∗)

Φ(S, C∗)
− Φ(S, C∗)Ψ(S∗, I∗)

Φ(S∗, C∗)Ψ(S, I)
− Ψ(S, I)IC∗

Ψ(S∗, I∗)I∗C
− CI∗

C∗I

)
.

From above inequality, we get that

3− Φ(S, C∗)

Φ(S, C)
− Φ(S∗, C∗)

Φ(S, C∗)
− Φ(S, C)

Φ(S∗, C∗)
≤ 0,

and

4− Φ(S∗, C∗)

Φ(S, C∗)
− Φ(S, C∗)Ψ(S∗, I∗)

Φ(S∗, C∗)Ψ(S, I)
− Ψ(S, I)IC∗

Ψ(S∗, I∗)I∗C
− CI∗

C∗I
≤ 0.

The hypothesis (H1) leads to(
1− S

S∗

)(
1− Φ(S∗, C∗)

Φ(S, C∗)

)
≤ 0.

By (H4), we get

−1− C
C∗ +

Φ(S, C∗)

Φ(S, C)
+

Φ(S, C)C
Φ(S, C∗)C∗ =

(
1− Φ(S, C)

Φ(S, C∗)

)(
Φ(S, C∗)

Φ(S, C)
− C

C∗

)
≤ 0

and

−1− I
I∗ +

Φ(S, C∗)Ψ(S∗, I∗)

Φ(S∗, C∗)Ψ(S, I)
+

Φ(S∗, C∗)Ψ(S, I)I
Φ(S, C∗)Ψ(S∗, I∗)I∗

=

(
1− Φ(S∗, C∗)Ψ(S, I)

Φ(S, C∗)Ψ(S∗, I∗)

)(
Φ(S, C∗)Ψ(S∗, I∗)

Φ(S∗, C∗)Ψ(S, I)
− I

I∗

)
≤ 0.

Therefore, DαG(t) ≤ 0 with equality holds if and only if S = S∗, C = C∗ and I = I∗.
From LaSalle’s invariance principle, we conclude that E∗ is globally asymptotically
stable.

4. APPLICATIONS AND NUMERICAL SIMULATIONS

In this section, we first apply our above analytical results to the following fractional
COVID-19 model 

DαS(t) = A− νS − β1SC
1 + ϵ1C

− β2SI
1 + ϵ2I

,

DαC(t) =
β1SC
1 + ϵ1C

+
β2SI
1 + ϵ2I

− d1C,
DαI(t) = γC − d2I.

(4.16)
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where β1 and β2 are the infection rates caused by carrier and infected individuals,
respectively. The nonnegative constants ϵ1 and ϵ2 are the saturation rates.

Model (4.16) is a special case of system (2.2) with Φ(S, C) = β1S
1 + ϵ1C

and Ψ(S, I) =
β2S

1 + ϵ2I
. It easy that see the basic reproduction number R0 is given by

R0 =
A(d2β1 + γβ2)

νd1d2
. (4.17)

Evidently, the infected rates Φ and Ψ satisfy the conditions (H1)− (H3). According
to Theorems 3.1 and 3.2, we get the following result.

Corollary 4.1:

(i) When R0 ≤ 1, the disease-free equilibrium Ef of model (4.16) is globally
asymptotically stable.

(ii) When R0 > 1, the equilibrium Ef gets unstable and the endemic equilibrium E∗ of
model (4.16) is globally asymptotically stable.

The second application of our results concerns a fractional model proposed in 2020
by Das and Samanta [2] to study the transmission dynamics of COVID-19 in Japan.
This recent fractional model is a particular case of system (4.16), it suffices to take
ϵ1 = ϵ2 = 0 and r1 = r2 = d = 0. In [2], the authors just discussed the local stability
of the equilibria and calculated epidemic peak in Japan scenario. They proved that
the disease-free equilibrium is locally asymptotically stable if R0 < 1 and the endemic
equilibrium is locally asymptotically stable under R0 > 1 and others three conditions
(see, Theorem 2 [2]). By applying Corollary 4.1, we deduce that when R0 ≤ 1, the
disease-free equilibrium of model [2] is globally asymptotically stable. However, this
equilibrium becomes unstable and the endemic equilibrium is globally asymptotically
stable under only R0 > 1. This improve the asymptotic stability results presented
recently in [2].

For numerical simulations, we take the some parameters of model (4.16) accordingly
to the World Health Organization reports as well as adopted by many references as
stated in Table 4.1 below.

Parameter Definition Value
A Recruitment rate 50
β1 Transmission contact rate between S and C 1.2× 10−5

β2 Transmission contact rate between S and I Varied
γ Symptoms period 1/7 day−1

ϵ1 The measure of inhibition effect for carrier 0.04
ϵ2 The measure of inhibition effect for infected 0.01
ν Natural death rate 0.01 day−1

r1 Recovery rate from carrier 1/21 day−1

r2 Recovery rate from infected 1/15 day−1

d Death due to disease rate 0.1 day−1

Table 4.1. Parameter values of model (4.16).

For β2 = 5.5× 10−5, we have R0 = 0.9532 ≤ 1. Then model (4.16) has a disease-
free equilibrium Ef (5000, 0, 0, 0). By Corollary 4.1 (i), we know that Ef is globally
asymptotically stable. Figure 2 demonstrates this result.
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Fig. 4.2. Dynamics of the model (4.16) when R0 = 0.9532 ≤ 1.
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Fig. 4.3. Dynamics of the model (4.16) when R0 = 1.9489 > 1.

For β2 = 1.3× 10−4, we have R0 = 1.9489 > 1. Figure 3 shows that the trajectories
of model (4.16) converge to E∗(3670.8515, 35.1197, 43.4314) from different values of order
fractional derivative α. This confirms the global stability result given by Corollary 4.1
(ii).

5. CONCLUSION

In this work, we have presented a new fractional-order model of COVID-19 that takes
into modes of infection spread of COVID-19 due to the direct contact between the
susceptible individuals, with symptomatic and asymptomatic individuals. The incidence
of infection is described by general nonlinear functions. It is proved that the proposed
model has two steady states namely disease-free equilibrium and endemic equilibrium.
The stability analysis of the model shows that the disease-free equilibrium is globally
asymptotically stable if the basic reproduction numberR0 ≤ 1, which biologically means
that the COVID-19 is cleared. While the endemic equilibrium is globally asymptotically
stable when R0 > 1. In this case, the COVID-19 persists in the world and the infection
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becomes similar to many endemic viral diseases to date, such as influenza, AIDS and
viral hepatitis. On the other hand, we have established a new generalized lemma
to analyze the global stability of the endemic equilibrium. This lemma presents a
new property for Caputo fractional derivative when α ∈ (0, 1] and extends the results
presented in [1, 17] for any monotone function. Also, the new generalized lemma can
be an important tool to study the global dynamics of many fractional order systems
modeling infectious diseases such as COVID-19. Furthermore, the asymptotic stability
results of the recent model of COVID-19 in Japan [2] are improved.

Several countries around the world have started vaccination against COVID-19 in
order to reduce the prevalence of this dangerous disease. We will extend our model to
study the impact of vaccination on the propagation of COVID-19. Also, our model used
a fractional derivative with singular kernel. It will be more interesting to extend the
model by using a fractional derivative with non-singular kernel as in [6].
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