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Abstract: COVID-19 is an infectious disease caused by the SARS-CoV-2 virus, which spreads so
fast in the inhabitants. The virus is transmitted through direct contact with respiratory droplets of
an infected individuals through coughing and sneezing or indirect contact through contaminated
objects or surface. In this article, a non-linear mathematical model is proposed and analyzed
to manifest the impact of transmission dynamics of the COVID-19 pandemic based on Indian
condition by considering asymptomatic and symptomatic infections. It is assumed that the
transmission rates due to asymptomatic and symptomatic individuals are different. The basic
reproduction number of the model is computed and studied the stability of different equilibria
of the model in detail. The sensitivity analysis is presented to identify the key parameters that
influence the basic reproduction number, which can be regulated to control the transmission
dynamics of the disease. Also, this model is extended to the optimal control model and is analyzed
by using the Pontryagin’s Maximum Principal and solved numerically. It has been observed that
the optimal control model gives better result as compacted to the model without optimal control
model as it reduces the number of infectives significantly in a desired interval of time.
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1. INTRODUCTION

The ongoing COVID-19 outbreak has put mathematical models in the limelight. In 1960,
the human coronavirus was first identified and In 21st century, a large number of people in
this world have been affected by the three outbreaks such as SARS, MERS, and 2019-nCoV.
In 2003, the Severe Acute Respiratory Syndrome(SARS) outbreaks, especially in the
Chinese mainland, Hong Kong, Taiwan, and Canada of the World [1] and in 2012 and
2015, the Middle East Respiratory Syndrome(MERS) outbreak in Saudi Arabin [2] and
South Korea [3] respectively. Coronaviruses belonging to the family of Coronaviridae
and order of Nidovirales, enveloped, non-segmented, single-stranded positive-sense RNA
viruses [4]. All coronavirus are zoonotic. They start in animals and can then, following
mutation, recombination, and adaptation, be passed on to humans. In the human-to-human
transmission of COVID-19 can occurs via respiratory droplets directly (through droplets
from coughing or sneezing) or indirectly (touching surfaces or objects contaminated
with virus and touching their mouth, nose, eyes) [5]. The incubation period for the new
coronavirus from 2 to 14 days in human to human transmission [6]. The common symptoms
of COVID-19 are fever, cough, difficulty of breathing, and fatigue. At present, there are no
specific drugs for the disease to protect the people, only hygiene measures can reduce the
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rate of transmission. According CDC COVID-19 vaccination is a safer way to help build
protection measure. Covid vaccines can stop or reduce most of the people from getting
sick, but not everyone. Despite taking all recommended doses of vaccines and waits a
few weeks for immunity to build up, still there is a chance that people can get infected.
So far there is no evidence, however, that human coronaviruses can be transmitted by animals.

In December 2019, a new outbreak of pneumonia of unknown cause has been identified in
Wuhan city, the capital of China’s Hubei province [9]. This outbreak has some other potential
causes like influenza, avian influenza, adenovirus, and SARS, but there are no symptoms
like MERS [7]. Later on 7th January, 2020, the causative pathogen was identified as a Novel
Coronavirus (2019-nCoV) [8]. As the virus is very closely related to SARS and MERS, so
the name 2019-nCoV can distinguish the virus from both [9]. On 30th January 2020, the
World Health Organization (WHO) declared that the outbreak is a Public Health Emergency
of International Concern(PHEIC) [10] as it is Worldwide spread. As the number infective is
increasing rapidly and the epidemiological evidence of human-to-human (doorplates, direct
contact, etc.) transmission suggests that 2019-nCoV is more contagious than both SARS
and MERS [11–13]. On 11th February 2020, the World Health Organization announced
a new name of coronavirus disease as COVID-19 [14]. On 11th March 2020, the World
Health Organization officially declares the COVID-19 outbreak as a Pandemic as it spread
worldwide. The most affected countries in this world are the USA, India, Brazil, Italy, Spain,
France, UK, Germany, Iran, China, Belgium, Netherlands, etc. In this ongoing outbreak, in
the USA more than 43,107,628 people are infected and more than 694,619 people have died.
Presently more than 229,382,253 infected cases have been reported across 223 territories,
where more than 206,052,168 infected cases are recovered and more than 4,707,336 infected
cases have been died till 20th Sept 2021.

In India, the first Novel coronavirus case was reported on 30th January 2020 [15] in
the state of Kerala. Due to the crises of coronavirus pandemic, Prime Minister of India
declared 21 + 19 = 40 days nationwide lockdown from 25th of March to 3rd of May 2020 as
a preventive measure for the COVID-19 [16]. The Ministry of Health and Family Welfare of
India has suggested various precautionary measures to prevent the spread of viruses such as
washing hands frequently, physical/social distancing, wearing mask, avoiding touching face,
nose, and eyes [17, 18]. Apart from lockdown the government of India performing many
awareness programs about preventative measures through media and social networks (TV,
radio, newspaper, Facebook, Twitter, etc.). The effect of lockdown and social distancing
play an important role to reduce the coronavirus infection. In 2020, total number of infected
cases are recorded in India are 10,266,674 and January to September 2021, number infected
cases are 23,211,745. In 2021, also statewide or locality wise lockdown declared according
to basis of active cases in that particular state or region. On 20th September, 2021, more
than 33,478,419 infected COVID-19 cases have been reported in 32 states in India, while
32,715,105 cases are recovered and 445,165 many cases have been died. Most affected
states in India are Maharashtra, Karnataka, Kerla, Delhi, Gujarat, Rajasthan, Madhya
Pradesh, Uttar Pradesh, Tamil Nadu, Andhra Pradesh, Telangana, West Bengal, Jammu and
Kashmir. Among the cities in India, Mumbai, Bangalore and Delhi are the badly effected by
COVID-19 outbreak.

The primary aimed to study this model to study Indian conditions and will forecast future
pandemic by using information available. In [1] authors presented a deterministic model
and simplified from the SEIJR model, which is adapted to analyze the important parameters
of the model of SARS epidemic; In [19] authors constructed a SEQIJR model of epidemic
disease transmission which includes immunization and varying population size is studied;
In [20] authors studied a mathematical about early transmission dynamics of the infection
and evaluating the effectiveness of control measures; In [21] authours proposed and studied a
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model on the various impact of the intervention on the spread of COVID-19 in India; In [22]
authors discussed a data-driven analysis in the early phase of the outbreak. They estimated
the basic reproduction number of novel coronavirus (2019-nCoV) in China; In [23] authors
develop a mathematical model for the spread of the coronavirus disease 2019 (COVID-19);
In [24] authors developed a Bats-Hosts-Reservoir-People transmission network model
for simulating the potential transmission from the infection source to the human infection.
In [31] authors proposed a mathematical model and they focuses on the impacts of face mask,
hospitalization of symptomatic individuals and quarantine of asymptomatic individuals on
the transmission dynamics of COVID-19 pandemic in India.

This paper is organized as follows: In section 2 presents the model; In section 3 discussed
existence of equilibria and basic reproduction number; In section 4 presents the stability
analysis of the model; In section 5 deal with sensitivity analysis of basic reproduction number;
In Section 6 illustrate the effects of parameters on disease outbreak ; In Section 7 we extend
the model to optimal control model and analysis it. Demonstrates the numerical simulation
results of the optimal control model; Finally, Section 7 we conclude the paper.

2. THE MODEL

In this section, a dynamic model for COVID-19 pandemic is presented and discussed
based on India condition. The model divides the total population N(t) = S + E + Ia +
Is +H +R into six different compartments according to the nature of the disease such as
Susceptible individuals (S), Exposed individuals (E), Asymptomatic infective individuals
(Ia), Symptomatic infective individuals (Is), Hospitalized individuals (H) and Recovered
individuals (R). It is assumed that the total population is varying and homogeneously mixed
i.e., all people are equally likely to be infected by the infectious individuals if they come
into contact. The individuals are employed in the province at a constant rate Λ and join
the susceptible class. The Natural birth and deaths in the population are also considered in
the model. It is assumed that susceptible individuals after being exposed to the COVID-
19 infection can progress to asymptotic infective and symptomatic infective at the rates β.
Assume that an asymptomatic individual joins the symptomatic populations class at the rate
ρ. Further, both asymptomatic and symptomatic infectious individuals will progress to the
hospitalized or quarantine compartment with clinical symptoms of COVID-19 at the rate δ1

and δ2 respectively. Also, some asymptotic and symptomatic individuals may recover without
hospitalized or quarantine at the rates γ1 and γ2 respectively. Hospitalized individuals may
recover and after recovery, it progresses to recovered class at the rate γ3. However, the rates
of recovery may vary from one compartment to another. The natural mortality rate of each
Individuals class is µ. Due to critical illness of COVID-19 disease some of the symptomatic
and hospitalized individuals class have additional mortality rates µ1 and µ2, respectively. The
flow diagram of the model is given in Figure 1, and biological interpretations of parameters
are shown in Table 1. Keeping the above facts/assumptions in mind, a mathematical model
COVID-19 is proposed as follows:

dS

dt
= Λ− βaSIa − βsSIs − µS

dE

dt
= βaSIa + βsSIs − (κ+ µ)E

dIa
dt

= ξκE − (ρ+ γ1 + µ+ δ1)Ia

dIs
dt

= (1− ξ)κE + ρIa − (γ2 + µ1 + µ+ δ2)Is (1)
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dH

dt
= δ1Ia + δ2Is − (γ3 + µ2 + µ)H

dR

dt
= γ1Ia + γ2Is + γ3H − µR

Fig. 1. Flow diagram of the model.

Table 1. Biological interpretations of parameters

Parameter Biological interpretations
Λ : Rate of recruitment in the susceptible class,
βa : Rate of infection of susceptible with asymptomatic individuals
βs : Rate of infection of susceptible with symptomatic individuals
κ : Rate of incubation
ρ : Rate of progression from asymptomatic to symptomatic
ξ : Fraction of exposed individuals not showing symptoms
δ1 : Hospitalized/Quarantine rate of asymptomatic individuals
δ2 : Rate of hospitalized symptomatic individuals
γ1 : Recovery rate of asymptomatic individuals
γ2 : Recovery rate of symptomatic individuals
γ3 : Recovery rate of hospitalized individuals
µ : Natural mortality rate of human
µ1 : Disease related mortality rate for symptomatic individuals
µ2 : Disease related mortality rate for hospitalized individuals
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3. ANALYSIS OF THE MODEL SYSTEM

From the system (1), we have

dS

dt

∣∣∣
S=0

= Λ > 0,
dE

dt

∣∣∣
E=0

= βaSIa + βsSIs ≥ 0,
dIa
dt

∣∣∣
Ia=0

= ξκE ≥ 0

dIs
dt

∣∣∣
Is=0

= (1− ξ)κE + ρIa ≥ 0,
dH

dt

∣∣∣
H=0

= δ1Ia + δ2Is ≥ 0,
dR

dt

∣∣∣
R=0

= γ1Ia + γ2Is + γ3H ≥ 0

Here, all the rates are non-negative on the bounding planes. So, if we start in the interior of
the 6-dimensional closed hyperoctant R6

+, we will always remain there, in view of the fact
that the direction of the vector field is inward on all the bounding planes. Thus, non-negativity
of all the solutions of the model system (1) is guaranteed.

Further, from the model system (1), we note that the total human population N =
S1 + S2 + I +H +Q+R satisfies,

dN

dt
= Λ− µN − µ1Is − µ2H

This gives

lim sup
t→∞

N ≤ Λ

µ

Therefore, all the solutions S(t), E(t), Ia(t), Is(t), H(t), R(t) are bounded by
Λ

µ
. Hence, the

biologically feasible region for the system (1) is given by the following positively invariant
set:

Ω = {(S,E, Ia, Is, H,R) ∈ R6
+ : 0 ≤ S + E + Ia + Is +H +R ≤ Λ

µ
}

3.1. Basic Reproduction Number
The disease-free equilibrium for the model (1) as E0 = (S0, E0, I0

a , I
0
s , H

0, R0) =

(
Λ

µ
, 0, 0, 0, 0, 0).

We find the basic reproduction number R0 by using the next generation matrix method
[26]. The new infection terms of the matrix F and the transition terms of the matrix V of the
system (1) are respectively, as follows:

F =

 βaSIa + βsSIs
0
0
0

 ,

V =

 (κ+ µ)E
−ξκE + (ρ+ γ1 + δ1 + µ)Ia

−(1− ξ)κE − ρIa + (γ2 + δ2 + µ1 + µ)Is
−δ1Ia − δ2Is + (γ3 + µ2 + µ)H


Now, we find the matrices F (of new infection terms) and V (of the transition terms) as
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F =

 0 βaS βsS 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

V =

 κ+ µ 0 0 0
−ξκ ρ+ γ1 + δ1 + µ 0 0

−(1− ξ)κ −ρ γ2 + δ2 + µ1 + µ 0
0 −δ1 −δ2 γ3 + µ2 + µ


It follows that

FV −1 =

 m11 m12 m13 0
0 0 0 0
0 0 0 0
0 0 0 0


where,

m11 =
κξβaΛ

µ(κ+ µ)(ρ+ γ1 + δ1 + µ)
+

βsΛκ(ξρ+ (1− ξ)(ρ+ γ1 + δ1 + µ))

µ(κ+ µ)(ρ+ γ1 + δ1 + µ)(γ2 + δ2 + µ1 + µ)

m12 =
βaΛ

µ(ρ+ γ1 + δ1 + µ)
− ρβsΛ

µ(ρ+ γ1 + δ1 + µ)(γ2 + δ2 + µ1 + µ)
,

m13 =
βsΛ

µ(γ2 + δ2 + µ1 + µ)

The basic reproduction number is same as the spectral radius of the next-generation matrix
FV −1. Thus, from above, we obtain the expression for R0 as

R0 =
κΛ

µ(κ+ µ)(ρ+ γ1 + δa + µ)

[
ξβa +

βs{ξρ+ (1− ξ)(ρ+ γ1 + δ1 + µ)}
γ2 + δ2 + µ1 + µ

]
The quantity R0 is known as basic reproduction number, the expected number of secondary
cases produced in completely susceptible population, by a typical infective individual for the
system (1).

3.2. Existence of Endemic Equilibrium Point
The endemic equilibrium of the system (1) satisfies the following algebraic equations such as

dS

dt
= 0,

dE

dt
= 0,

dIa
dt

= 0,
dIs
dt

= 0,
dH

dt
= 0,

dR

dt
= 0

The system (1) realize a unique positive solution E1 = (S∗, E∗, I∗a , I
∗
s , H

∗, R∗)

S∗ =
κ+ µ

(βad1 + βsd2)
, E∗ =

Λ(βad1 + βsd2)− µ(κ+ µ)

(βad1 + βsd2)(κ+ µ)
,

I∗a =
ξκE∗

ρ+ γ1 + δ1 + µ
= d1E

∗, I∗s =
(1− ξ)κE∗ + ρd1E

∗

γ2 + δ2 + µ1 + µ
= d2E

∗,

H∗ =
(δ1d1 + δ2d2)E∗

γ3 + µ2 + µ
= d3E

∗, R∗ =
(γ1d1 + γ2d2 + γ3d3)E∗

µ

where,

d1 =
κξ

ρ+ γ1 + δ1 + µ
, d2 =

(1− ξ)κ+ ρd1

γ2 + δ2 + µ1 + µ
, d3 =

(δ1d1 + δ2d2)

γ3 + µ2 + µ
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4. STABILITY ANALYSIS OF THE MODEL

Theorem 4.1:
For model system (1), the disease-free equilibrium E0 is locally asymptotically stable if
R0 < 1 and unstable if R0 > 1.

4.1. Global stability of disease-free equilibrium
To prove the global stability of disease-free equilibrium, we are using the theorem by Castillo-
chavez et al. [25]

Theorem 4.2:
If the given mathematical model can be written in the form:

dX

dt
= F (X, Y ), and

dY

dt
= G(X, Y ), G(X, 0) = 0 (2)

where X = S , Y = (E, Ia, Is, H)T , denoting the number of uninfected and denoting
the number of Covid-19 infected people respectively. Then the disease-free equilibrium is
represented here by

E0 = (X0, 0) = (
Λ

µ
, 0)

For the global asymptotically stable, the condition (H1) and (H2) given below must be
satisfied.

H1 : for
dX

dt
= F (X0, 0),

H2 : G(X, Y ) = AY − Ĝ(X, Y ), Ĝ(X, Y ) ≥ 0,

Here A = DYG(X0, 0) is M-matrix (In M-matrix, all the off diagonal element of matrix are
non-negative) . If the given system of differential equation in mathematical model satisfies
the given condition in (2) then the point E0 = (X0, 0) is a global asymptotically stable
equilibrium of given mathematical model provided R0 < 1. And for the given mathematical
model, the result is shown in the next theorem, as given below.

Theorem 4.3:
The point E0 = (X0, 0) of the system (1) is global asymptotically stable (G.A.S.), provided
R0 < 1. and the condition given in (2) are satisfied.

Proof
By using theorem (2.1) to our model system (1), we get

F (X0, 0) = Λ− µS, G(X, Y ) = AY − Ĝ(X, Y )

where,

A = F − V =

 −(κ+ µ) βaS βsS 0
ξκ −(ρ+ γ1 + δ1 + µ) 0 0

(1− ξ)κ ρ −(γ2 + δ2 + µ1 + µ) 0
0 δ1 δ2 −(γ3 + µ2 + µ)


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then

G(X, Y ) = AY − Ĝ(X, Y ) = AY −


Ĝ1(X, Y )

Ĝ2(X, Y )

Ĝ3(X, Y )

Ĝ4(X, Y )

 =

(S0 − S)(βaIa + βsIs)
0
0
0


where

AY =

 −(κ+ µ)E + S0(βaIa + βsIs)
ξκE − (ρ+ γ1 + δ1 + µ)Ia

(1− ξ)κE + ρIa + (γ2 + δ2 + µ1 + µ)Is
δ1Ia + δ2Is + (γ3 + µ2 + µ)H


and

Ĝ(X, Y ) =

 (κ+ µ)E + S(βaIa + βsIs)
ξκE − (ρ+ γ1 + δ1 + µ)Ia

(1− ξ)κE + ρIa + (γ2 + δ2 + µ1 + µ)Is
δ1Ia + δ2Is + (γ3 + µ2 + µ)H


Here, we can easily see S0 ≥ S, hence G(X, Y ) ≥ 0 for all (X, Y ). Also by the defination
of M matrix we can say that the matrix A is M matrix. Hence, disease-free equilibrium (E0)
is global asymptotically stable.

4.2. Global stability of endemic equilibrium
Theorem 4.4:
The endemic equilibrium E1 = (S∗, E∗, I∗a , I

∗
s , H

∗, R∗) of the given mathematical model is
globally asymptotically stable.

Proof
For the global stability result, we will use the method discussed in Korobeinikov and Wake
[27], Li and Muldowney [28, 29]. Here we consider the following Lyapunov function:

L = C1

(
S − S∗ − S∗ln S

S∗

)
+ C2

(
E − E∗ − E∗ln E

E∗

)
+ C3

(
Ia − I∗a − I∗a ln

Ia
I∗a

)
+C4

(
Is − I∗s − I∗s ln

Is
I∗s

)
Then the time derivative of L is given by

dL

dt
= C1

(
1− S∗

S

)
dS

dt
+ C2

(
1− E∗

E

)
dE

dt
+ C3

(
1− I∗1

I1

)
dI1

dt
+ C4

(
1− I∗2

I2

)
dI2

dt

Now from the mathematical model we put the expressions for
dS

dt
,
dE

dt
,
dIa
dt
,
dIs
dt
, in the above

equation, which gives

dL

dt
= C1

(
1− S∗

S

)
{Λ− βaIaS − βsIsS − µS}

+ C2

(
1− E∗

E

)
{βaIaS + βsIsS − (κ+ µ)E}

+ C3

(
1− I∗a

Ia

)
{ξκE − ρIa − (γ1 + µ)Ia − δ1Ia}
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+ C4

(
1− I∗s

Is

)
{(1− ξ)κE + ρIa − (γ2 + µ1 + µ)Is − δ2Is} (3)

The mathematical model system satisfies the following relation at the equilibrium point.

Λ = βaI
∗
aS
∗ + βsI

∗
sS
∗ + µS∗, κ+ µ =

βaI
∗
aS
∗ + βsI

∗
sS
∗

E∗
,

ρ+ γ1 + δ1 + µ =
ξκE∗

I∗a
, γ2 + δ2 + µ1 + µ =

(1− ξ)κE∗ + ρI∗a
I∗s

Putting all the above expressions in (3) we get,

dL

dt
= C1

(
1− S∗

S

)
[βaI

∗
aS
∗ + βsI

∗
sS
∗ + µS∗ − βaIaS − βsIsS − µS]

+ C2

(
1− E∗

E

)[
βaIaS + βsIsS −

(
βaI

∗
aS
∗ + βsI

∗
sS
∗

E∗

)
E

]
+ C3

(
1− I∗a

Ia

)[
ξκE −

(
ξκE∗

I∗a

)
Ia

]
+ C4

(
1− I∗s

Is

)[
(1− ξ)κE + ρIa −

(
(1− ξ)κE∗ + ρI∗a

I∗s

)
Is

]
Then,

dL

dt
= −C1

(
(S∗ − S)2

S

)
µ+ C1

[(
1− S∗

S

)
{βaI∗aS∗ + βsI

∗
sS
∗ − β1IaS − β2IsS}

]
+ C2

(
1− E∗

E

)[
βaIaS + βsIsS −

(
βaI

∗
aS
∗ + βsI

∗
sS
∗

E∗

)
E

]
+ C3

(
1− I∗a

Ia

)[
ξκE −

(
ξκE∗

I∗a

)
Ia

]
+ C4

(
1− I∗s

Is

)[
(1− ξ)κE + ρIa −

(
(1− ξ)κE∗ + ρI∗a

I∗s

)
Is

]
dL

dt
= −C1

(
(S∗ − S)2

S

)
µ+ g(x1, x2, x3, x4)

where,
S

S∗
= x1,

E

E∗
= x2,

Ia
I∗a

= x3,
Is
I∗s

= x4,

βaS
∗I∗a = p, βsS

∗I∗s = q, ξκE∗ = r, (1− ξ)κE∗ = s

Now,

g(x1, x2, x3, x4) = C1(p+ q − px1x3 − qx1x4)− C1p
1

x1

− C1q
1

x1

+ C1px3 + C1qx4

+ C2(px1x2 + qx1x4 − ax2 − qx2)− C2p

(
x1x3

x2

)
− C2q

(
x1x4

x2

)
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+ C2(p+ q) + C3(rx2 − rx3 − r
x2

x3

+ r) + C4(sx2 − sx4 − s
x2

x4

+ s)

= x2(−C2p+ C3r + C4s) + x3(C1p− C3r) + x4(C1q − C4s)

+ x1x3(−C1p+ C2p) + x1x4(C1q + C2q) + C1(2p+ q)

+ C2(p+ q) + C3r − C3r

(
x2

x3

)
+ C4s− C4s

(
x2

x4

)
− C1(p+ q)

(
1

x1

)
− C2(px1x3 + qx1x4)

(
1

x2

)
To get the values of C1, C2, C3, C4 we take the coefficients of x1x3, x1x4, x2, x3, x4 equal to
zero and solve the algebraic equations in C1, C2, C3, C4. This gives

C1 = C2; C3 =
C1p

r
; C4 =

C1q

s

Choosing C1 = C2 = 1 and n = 1, we get

g(x1, x2, x3, x4) = p

(
3− 1

x1

− x1x3

x2

− x2

x3

)
+ q

(
3− 1

x1

− x1x4

x2

− x2

x4

)
Since the arithmetic mean is greater than or equal to geometric mean, we have

1

x1

+
x1x3

x2

+
x2

x3

≥ 3

and
1

x1

+
x1x4

x2

+
x2

x4

≥ 3

Hence,

dL

dt
= −

(
(S∗ − S)2

S

)
µ+ p

(
3− 1

x1

− x1x3

x2

− x2

x3

)
+ q

(
3− 1

x1

− x1x4

x2

− x2

x4

)
Thus it is easy to observe that

dL

dt
≤ 0 and the equality

dL

dt
= 0 hold on;y for x1 = x2 = x3 =

x4 = 1 for which S = S∗, E = E∗, Ia = I∗a , Is = I∗s .
From the LaSalle’s invariance principle [30], the equilibrium E1 of the given system is

globally asymptotically stable for R0 > 1.

5. SENSITIVITY ANALYSIS OF REPRODUCTION NUMBER

In this section, we also perform sensitivity analysis for the parameters involved in
reproduction number R0, which reflects that increase or decrease in these parameter causes
increase or decrease in R0. The sensitivity of R0 to different parameters is shown in Figure 3.
It is used to discover the parameters that have a high impact on R0 and should be targeted by
intervention strategies. Sensitivity indices allows to measure the relative change in a variable
when parameter changes. For that we use the forward sensitivity index of a variable, with
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respect to a given parameter, which is defined as the ratio of the relative change in the
variable to the relative change in the parameter. If such variable is differentiable with respect
to the parameter, then the sensitivity index is defined using partial derivatives. The normalized
forward sensitivity index of R0, which is differentiable with respect to a given parameter α,
is defined by

Y R0
α =

α

R0

∂R0

∂α

The above formula can be used to compute the analytical expression for the sensitivity of
R0 to each parameter that it includes. Accordingly, the sensitivity indexes of the model
(1) are illustrate in Figure 2. Consequently, the value of R0 increases with increase in the
values of all positive indices parameters Λ, βa, βs, κ, and ξ with R0. Also, the parameters
γ1, γ2, δ1, δ2, ρ, µ, and µ1 have negative index with R0. It is clearly observed that the effect
of the parameter Λ is the maximum and hence it is the most sensitive parameter of R0. It
means that small change (increase or decrease) in the parameters (Λ) will significant change
in the value of R0 by 100%. It is obvious that phenomenon of a lower value of R0 will boost
to prevent the disease prevalence. Thus, to control the disease from the population, we have to
control the increase of parameters having positive indices with R0, whereas parameters with
negative indices should be maintained.

6. EFFECTS OF PARAMETERS ON DISEASE OUTBREAK

For the Numerical simulation of the model, we consider all the parameters are in per day
basis. First we consider the following set of parameters which corresponds to disease-free
equilibrium.

Λ = 2; βa = 0.00085; βs = 0.00029; γ1 = 1/14; γ2 = 0.00245; γ3 = 0.002;κ = 1.19;

µ1 = 0.1;µ2 = 0.015;µ = 0.00425; ρ = 0.001; ξ = 0.0015; δ1 = 0.16; δ2 = 0.01;

For the above set of parameters we get R0 = 0.0932 < 1 and the disease-free equilibrium
point E0(462.52, 0, 0, 0, 0, 0) is stable. This fact is demonstrated in Figure 4 (a). Later, we did
few changes for endemic equilibrium as follows:

Λ = 40; βa = 0.00085; βs = 0.00029; γ1 = 1/14; γ2 = 0.000245; γ3 = 0.002;

κ = 0.89; µ1 = 1.05; µ2 = 0.015; µ = 0.0125; ρ = 0.69; ξ = 0.95; δ1 = 0.012; δ2 = 0.019;

From the above set of parameter we get R0 = 2.0075 > 1, and the endemic equilibrium
E1(801.56, 26.82, 25.04, 24, 43, 38.75, 208.6, ) is stable. The stability of the equilibrium point
E1 is shown in Figure 4(b). The effect of different values of recovery rate from asymptomatic
(γ1), symptomatic (γ2) and hospitalized (γ3), which corresponds to infective human is
demonstrated in Figure 4(c), 4(d), and 4(e) respectively. It is clear that the parameter of
recovery rate γ1, γ2, and γ3 increases, simultaneously the infected population decreases. The
effect of S, H, and R also shown in the figure 4(f) with respect to endemic equilibrium point.
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Fig. 2. Forward sensitivity of R0

7. THE OPTIMAL CONTROL MODEL

In this section, the model (1) is extended to formulate optimal control problem by
incorporating two time-dependent optimal control parameters, namely u1(t), and u2(t). If
u1, and u2 equal zero, no effort is placed in these controls at time t, and if they equal one,
maximum effort is applied. Thus, optimal control variables are given, as follows:

The control variable u1(t) represents the reduction in the transmission between human-
to-human via using surgical face masks, social distancing, self-isolation, sensitization and
awareness of transmission of the disease.

The control variable u2(t) represents the increase in the testing facility and treatment,
which can lead to fast detection of Covid infected cases and recovery and add additional
time-dependent parameter ηu2(t) in the rate of direction δ2. Keeping in view of the above
assumptions, the optimal control model is formulated as follows:

dS

dt
= Λ− (1− u1)βaIaS − (1− u1)βsIsS − µS

dE

dt
= (1− u1)βaIaS + (1− u1)βsIsS − (κ+ µ)E

dIa
dt

= ξκE − (ρ+ γ1 + µ+ δ1)Ia

dIs
dt

= (1− ξ)κE + ρIa − (γ2 + µ1 + µ)Is − (δ2 + ηu2)Is (4)

dH

dt
= δ1Ia + (δ2 + ηu2)Is − (γ3 + µ2 + µ)H

dR

dt
= γ1Ia + γ2Is + γ3H − µR
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Fig. 3. (a) Influence of βa and βs on R0, (b) Influence of βa and ρ on R0, (c) Influence of βs and ξ on R0 (d)
Influence of βa and ξ on R0, (e) Influence of Λ and ξ on R0, (f) Influence of γ3 and κ on R0
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7.1. The Optimal Control Problem
In this section, we study the behavior of the proposed model by using optimal control theory.
The objective functional for fixed time Tf if given by

J(u1, u2) =

∫ Tf

0

[
A1Ia + A2Is +

1

2
(B1u

2
1 +B2u

2
2)

]
dt (5)

subject to the model system (4). The parameter A1 ≥ 0, A2 ≥ 0, B1 ≥ 0, B2 ≥ 0 are the
weight and balancing constants, which measure the respective cost involvement over the
interval [0, Tf ]. In order to find an optimal control, u1

∗, and u2
∗ such that

J(u1
∗, u2

∗) = min
(u1,u2)∈Ω

J(u1, u2), (6)

where Ω is the control set and is defined as

Ω = {(u1, u2) : 0 ≤ u1, u2 ≤ 1, t ∈ [0, Tf ]}

Here, all the controls are bounded and measurable.

7.1.1. Existence and characterization of optimal controls Here, we shall first establish the
existence of such control functions that minimizes the cost functional J . The Lagrangian L
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of this problem is defined as:

L(Ia, Is, u1, u2) = A1Ia + A2Is +
1

2
B1u1

2 +
1

2
B2u

2
2

Now, we shall use Pontryagin’s maximum principle [32, 33] for necessary conditions for
optimal controls system (4). For that by choosing X = (S,E, Ia, Is, H,R) ,Ω = (u1, u2) and
λ = (λ1, λ2, λ3, λ4, λ5, λ6), the associated HamiltonianH can be written as

H(X,Ω, λ) = L(Ia, Is, u1, u2) + λ1
dS

dt
+ λ2

dE

dt
+ λ3

dIa
dt

+ λ4
dIs
dt

+ λ5
dH

dt
+ λ6

dR

dt
(7)

Since u∗1, and u∗2 are solutions to the control problem (4), there exists the adjoint variables
λ1, λ2, λ3, λ4, λ5, λ6 satisfying the following conditions.

dx

dt
=

∂H(t, x, u∗1, u
∗
2, λ1, λ2, λ3.λ4, λ5, λ6)

∂λ

0 =
∂H(t, x, u∗1, u

∗
2, λ1, λ2, λ3.λ4, λ5, λ6)

∂u
dλ

dt
= −∂H(t, x, u∗1, u

∗
2, λ1, λ2, λ3.λ4, λ5, λ6)

∂x
(8)

Theorem 7.1:
For the objective functional (5) and the control set (8) subject to control system (4) there
exists an optimal control u∗ = (u1

∗, u2
∗) ∈ Ω such that

J(u1
∗, u2

∗) = min
Ω

J(u1, u2).

Proof
To establish this result, we follow the Theorem 4.1 mentioned in [40] for the existence of
optimal controls. As, we have discussed above that all the state variables (population) are
bounded for each bounded controls coming from the control set Ω. Furthermore, Lipschitz
condition with respect to state variables is satisfied by the right hand part of the model system
(4). The control variable set Ω is also convex and closed by the definition and the model
system (4) is linear in control variables.
Thus, all the conditions for the existence of controls are fulfilled (for more details one can
follow [28, 29]). Hence the result.

Theorem 7.2:
For optimal controls measures u∗1, u

∗
2 and the state solutions S∗, E∗, I∗a , I

∗
s , H

∗, R∗ of the state
system (4), there exists adjoint variables λ = (λi)

Tf ∈ R6, i = 1, 2, 3, 4, 5, 6 such that
dλ1

dt
= (1− u1)βaIa(λ1 − λ2) + (1− u1)βsIs(λ1 − λ2) + µλ1

dλ2

dt
= (κ+ µ)λ2 + ξκ(λ4 − λ3)− κλ4

dλ3

dt
= −A1 + (1− u1)βaS(λ1 − λ2) + ρ(λ3 − λ4) + γ1(λ3 − λ6) + (µ+ δ1)λ3

dλ4

dt
= −A2 + (1− u1)βsS(λ1 − λ2) + γ2(λ4 − λ6) + (µ1 + µ)λ4 + (δ2 + ηu2)(λ4 − λ5)

dλ5

dt
= γ3(λ5 − λ6) + (µ2 + µ)λ5 (9)

dλ6

dt
= µλ6
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with transversality conditions

λ1(Tf ) = λ2(Tf ) = λ3(Tf ) = λ4(Tf ) = λ5(Tf ) = λ6(Tf ) = 0 (10)

Proof
Let u∗1, u

∗
2 be the optimal control functions and S∗, E∗, I∗a , I

∗
s , H

∗, R∗ are the corresponding
state variables. Then, Pontryagin’s Maximum Principle ensures the existence of the
following adjoint variable λi(i = 1, 2, 3, 4, 5, 6) ∈ R6, which satisfies the following
canonical equations:

dλ1

dt
= −∂H

∂S
,
dλ2

dt
= −∂H

∂E
,
dλ3

dt
= −∂H

∂Ia
,
dλ4

dt
= −∂H

∂Is
,
dλ5

dt
= −∂H

∂H
,
dλ6

dt
= −∂H

∂R

with transversality conditions (10) and the Hamiltonian (7). The adjoint system (9) can be
obtained.

In the following result, we shall state the analytical forms of the optimal controls.
Theorem 7.3:
The optimal controls (u∗1, u

∗
2) which minimizes J over the region Ω are given by

u∗1 = min{1, max(0, ũ1)}

u∗2 = min{1, max(0, ũ2)}
where

ũ1 =
(β1Ia + β2Is)S(λ2 − λ1)

B1

,

ũ2 =
ηIs(λ4 − λ5)

B2

,

Proof
Using optimally condition, we have

∂H
∂u1

= 0,
∂H
∂u2

= 0

We have
∂H
∂u1

= B1u1 + (βaIa + βsIs)S(λ1 − λ2) = 0

This gives

u1 =
((βaIa + βsIs)S)(λ2 − λ1)

B1

:= ũ1

Similarly,
∂H
∂u2

= B2u2 + ηIs(λ5 − λ4) = 0

This implies

u2 =
ηIs(λ4 − λ5)

B2

:= ũ2

Moreover, lower and upper bounds of these control are 0 and 1 respectively. Thus, if
ũ1 > 1, ũ2 > 1, then

u1 = u2 = 1.

Copyright © 2021 ASSA. Adv Syst Sci Appl (2021)



82 N.K. GOSWAMI, B. SHANMUKHA

Also, ũ1 < 0, ũ2 < 0 then
u1 = u2 = 0.

Otherwise, we have
u1 = ũ1, and u2 = ũ2

Hence, for these controls u∗1, u
∗
2 we get optimum value of the function J .

8. SIMULATION OF OPTIMAL CONTROL PROBLEM

In this section, we simulate our optimal control model using MATLAB. The parameter
values are keeping same the parameters corresponding to stability of endemic equilibrium
point E1 of the model (1). The weight constants for the optimal control problem are taken
as A1 = 1, A2 = 1, B1 = 45, B2 = 65. We solve the optimality system by iterative method
with the help of forward and backward difference approximations [32, 34–36]. We consider
the time interval as [0,180]. First we solve the state equations by the forward difference
approximation method then we use the backward difference approximation method to solve
the adjoint equations. We consider different types of strategies to see the impact of optimal
control in the total number of human infectives.

8.1. Strategy A: Employing hygiene promotion, social distancing and self-isolation (u1),
only.

Here, only control measure u1(t) is used to optimize the objective function J , while control
intervention u2(t) = 0, were not employed. The influence of u1(t) is demonstrated in Figure
5(a), to minimize the objective function, the optimal control u1(t) is maintained at the
maximum level. A single preventive measure can influence the spread of the Covid-19 in
the population. Maintaining social distancing and self-isolation leads to control significant
number reduction in asymptomatic and symptomatic cases in the population. From the
figures, it is clear that the optimal control u1(t) is a little more effective compared to other
types of controls but we need to maintain it to one for a longer period which is not easy
to achieve. This control strategy is for using surgical face masks, social distancing, self-
isolation, awareness of the transmission of disease, and sensitization.

8.2. Strategy B: Increase testing facility and treatment of the symptomatic individuals
(u2) only.

Here, only control measure u2(t) is used to optimize the objective function J , while control
intervention u1(t) = 0, were not employed. In Figure 5(b), we present the plots of population
and the effects of the increase in testing facility and treatment are demonstrated to minimizing
the cost and reducing the number of coronavirus infections in the population.

8.3. Strategy C: Employing both the control interventions (u1, u2).
Here both the control interventions (u1(t), u2(t)) are used to optimize the objective function
J. From Figure 5(c), it is easy to say that by combining both optimal controls u1(t) and
u2(t), the total number of infectious individuals decreases significantly. The simulation result
indicates the effectiveness of optimal control strategies in reducing the number of infectives.
It is observed that combined controls are more useful in reducing the number of infected
cases significantly. Finally, it observed that from Figure 5(d), the optimal control model gives
a better result as compacted to the model without the optimal control model as it reduces the
number of infectives significantly in a desired interval of time.
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Fig. 9. Influence of u1, when u2 = 0
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9. CONCLUSION

Dynamics of Covid-19 pandemic and its optimal control strategies are discussed in this
present study through a mathematical model. The host population of the model is subdividing
into six different compartment according to nature of the disease such as susceptible, exposed,
asymptomatic infective,symptomatic infective, hospitalized and recovery. This non-linear
mathematical model is proposed based on Indian condition by considering asymptomatic
and symptomatic infections populations. It is assumed that the transmission rates due to
asymptomatic and symptomatic individuals are different. The epidemiological threshold
(basic reproduction number) is computed by using next generation matrix method and
discussed different equilibria of the model in details. The model is globally asymptotically
stable for the global stability of disease-free equilibrium when basic reproduction number is
less than unity using the Castillo-chavez theorem. Also the theoretical analysis is carried out
the global stability of endemic equilibrium is globally asymptotically stable using Lyapunov
method when basic reproduction number is greater than one. Sensitivity analysis of the
model performed to identify the key parameter that influence the basic reproduction number,
which will regulate to control transmission dynamics of the disease. It emphasized that Λ
and µ are the most sensitive parameter, followed by asymptomatic transmission coefficient
β1 and ξ. Furthermore, the mathematical model is extended to optimal control problem by
incorporating two time-dependent optimal control parameters to reducing the burden due to
Covid-19 using Pontryagin’s Maximum Principal. Introduced control parameter u1 in the
model as surgical face masks, social distancing, self-isolation, sensitization and awareness
of transmission of the disease in asymptomatic and symptomatic invective individuals,
which effectively reduce transmission rate. Social distancing should always implement at a
higher percentage than self-isolation. The optimal control drives a significant reduction in
the asymptomatic and symptomatic infected populations. The control parameter u2 included
reducing the cost infrastructure like testing facility, which can lead to fast detection of Covid
infected cases. The optimal control suggests that unless the cost is very high, the social
distancing should implement at the maximum level throughout the time examined. The
optimal control model provides a more reliable result as compacted to the model without the
optimal control model. This control strategy reduces the number of infectives significantly in
a desired interval of time.
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