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Abstract

In his study of a simple one-dimensional parabolic PDE, Kim[11] obtained an
inequality that the price of Asian options satisfies. This paper aims to improve
this particular Kim’s inequality. Our inequality has an advantage over Kim’s,
for our estimation has an upper bound as R vanishes. Therefore, our newly
established estimation can help us to determine the solution error of a second
order partial differential equation with variable coefficients.
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1 Introduction

As a new financial product, Asian options, also known as average options, can
be seen as innovative European options. The commonality with the European
options is that investors are only allowed to exercise their option contracts on
the maturity dates, while the difference is that investors of Asian options decide
whether or not to exercise their option contracts based on the price level of the
average share price during the contract term. Because the value of European
options on the maturity date has nothing to do with the price path and depends
only on the maturity date of the stock price, it is difficult to prevent speculators
from manipulating the maturity price and consequently from arbitrage. On the
other hand, because Asian options are associated with the price path, they can
be applied to ease market behaviors. They represent the exotic options most
actively traded in financial derivatives market today. Their difference with the
usual-sense stock options is the implementation of price limits so that the exercise
price is the average price of the stock price of the secondary market over a period
of six months prior to exercise. Their difference with the standard options is that
the options’ maturity-date benefits are determined not by the prevailing market
price of the underlying asset, but by the average price of the underlying asset over
some time period during the option contract period. This time period is known
as an average period, over which either the arithmetic or geometric mean is ap-
plied. Asian options can be well designed to avoid stock price manipulation and
damage of company interests caused by insider trading. So, they are welcomed
by both investors and issuers. Additionally, compared to the standard options,
Asian options also possess such advantages as lower prices and can be applied to
hedge the risk of a specified time period. Along with baskets, spreads, as well as
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other strategies, Asian options have been extensively studied by many scholars.
Even so, few of published works deal with the problem of pricing general Asian
options.

In terms of the pricing of Asian options, [1-4] represent some of the most re-
cent results, while Dewynne et al. provide a simplified means of pricing Asian
options using parabolic PDE[5]. A progressive solution is established by using
Laplace transforms and power series expansions. Equations of Kolmogorov type
have also turned out to be relevant in option pricing in the setting of certain
models for stochastic volatility and in the pricing of Asian options. Frentz et al.
numerically solve the Cauchy problem of a general class of second order degener-
ate parabolic differential operators of Kolmogorov type with variable coefficients
by using posteriori error estimates and an algorithm developed for adaptive weak
approximation of stochastic differential equations[6]. On the basis of these works,
we show how to apply the relevant results in the context of mathematical finance
and option pricing. The approach outlined in this paper circumvents many of
the difficulties confronted by any deterministic approach based on, for example,
a finite-difference discretization of the partial differential equation. Meanwhile,
Frentz[7] also analyze the second order PDE operators arising in the pricing of
Asian options, while proving the optimal interior regularity. Min Dai presents
a lattice algorithm for pricing both European- and American-style moving av-
erage barrier options (MABOs)[8]. They develop a finite-dimensional partial
differential equation (PDE) model for discretely monitoring MABOs and solve it
numerically by using a forward shooting grid method. However, their modeling
PDE for continuously monitored MABOs is of infinite dimensions and cannot be
solved directly by using existing numerical methods. Recently, Bayraktar et al.
construct a sequence of functions based on the value of Asian option[9]. As a
result, each term of the sequence is the unique classical solution of a parabolic
PDE so that they provide the relevant numerical approximation.

Deelstra et al. obtain an approximation formula by using comonotonic bound-
s[10], leading to four different approximations: the upper, the improved upper,
the lower, and the intermediary bounds. In this way, they improve the traditional
hybrid moment matching method. Their methods have the advantage that they
can be applied in other frameworks, e.g., in Lévy settings, as well. These results
can be adapted to deal with options written in a foreign currency, such as compo
and quanto options. Kim studies a simple one-dimensional parabolic PDE that
the price of Asian options satisfies[11]. The result indicates that the generalized
solution is a classical solution and cannot be obtained. Additionally, Kim’s in-
equality is shown to be unbounded as the parameter R vanishes. By improving
Kim’s inequality, our estimation has an upper bound as R vanishes.
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2 Main Results

Kim (2009)[11] considers the following parabolic type equation

ut +
1

2
[x− e−

∫ t
0 dv(s)q(t)]2σ2uxx = 0 (1)

along with the boundary condition

u(T, x) = max(x−K1, 0) (2)

where v(t) stands for dividend yield, σ the volatility of the underlying asset, and
q(t) the trading strategy.

First let us introduce a lemma about Gauss estimation. Suppose that g(x) is
a continuous function in the interval [−R,R] satisfying

1

2
≤ g(x) ≤ 3

2
, x ∈ [−R,R]

Denote
Q := {(t, x) ∈ R2 : 0 < t < 2, |x| < R},

Ω := {(t, x) ∈ Q : t > g(x)},Σ := {(t, x) ∈ Q : t = g(x)}.

Lemma1[11] Let Ω and Σ be defined as above and a(t, x) a function satisfying{
Lu := ut − a(t, x)uxx = 0, (t, x) ∈ Ω

u = 0, (t, x) ∈ Σ

Assume that u ∈ C1,2
loc (Ω)

∩
C(Ω̄) and a(t, x) satisfy

0 ≤ a(t, x) ≤ 1, ∀(t, x) ∈ Ω

Then, we have the following estimate:

|u|0;Ω′ ≤ (
16√
2π

)R−1e−
R2

32 |u|0;Ω ,Ω′ := {(t, x) ∈ Ω : |x| < R

2
} (3)

Proposition 1 If |x| < R, then∫
E
ϕ(2, x− y)dy < 2

∫ 2R

0
ϕ(2, y)dy +

1√
2πR

e−2R2
(4)

where E =
∪
j∈Z

((4j + 1)R, (4j + 3)R).

Proof: First we prove that the following equality holds true:∫
E
ϕ(2, x− y)dy =

∞∑
j=1

∫ (4j−1)R+x

(4j−3)R+x
ϕ(2, y)dy +

∞∑
j=0

∫ (4j+3)R−x

(4j+1)R−x
ϕ(2, y)dy
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In fact,∫
E
ϕ(2, x− y)dy

=

∫
∞∪
j=1

((−4j+1)R,(−4j+3)R)
ϕ(2, x− y)dy +

∫
∞∪
j=0

((4j+1)R,(4j+3)R)
ϕ(2, x− y)dy

=
∞∑
j=1

∫ (−4j+3)R

(−4j+1)R
ϕ(2, x− y)dy +

∞∑
j=0

∫ (4j+3)R

(4j+1)R
ϕ(2, x− y)dy

=

∞∑
j=1

∫ x−(−4j+3)R

x−(−4j+1)R
−ϕ(2, y)dy +

∞∑
j=0

∫ x−(4j+3)R

x−(4j+1)R
ϕ(2, y)dy

∵ ϕ(2, y) = 1√
8π
e−

y2

8 is an even function,

∴
∫
E
ϕ(2, x− y)dy =

∞∑
j=1

∫ (−4j+3)R−x

(−4j+1)R−x
ϕ(2, y)dy +

∞∑
j=0

∫ (4j+3)R−x

(4j+1)R−x
ϕ(2, y)dy

=

∞∑
j=1

∫ (4j−1)R+x

(4j−3)R+x
−ϕ(2, y)dy +

∞∑
j=0

∫ (4j+3)R−x

(4j+1)R−x
ϕ(2, y)dy

Secondly, we prove that when −R < X < 0, the following inequality holds true

∞∑
j=1

∫ (4j−1)R+x

(4j−3)R+x
ϕ(2, y)dy ≤

∫ 2R

0
ϕ(2, y)dy +

1

2
√
2πR

e−2R2
(5)

In fact, when −R < X < 0,

∞∑
j=1

∫ (4j−1)R+x

(4j−3)R+x
ϕ(2, y)dy <

∞∑
j=0

∫ (4j+2)R

4jR
ϕ(2, y)dy

=

∫ 2R

0
ϕ(2, y)dy +

∞∑
j=1

∫ (4j+2)R

4jR
ϕ(2, y)dy

∵
∞∑
j=1

∫ (4j+2)R

4jR
ϕ(2, y)dy <

∫ ∞

4R
ϕ(2, y)dy =

∫ ∞

4R

1√
8π

e−
y2

8 dy

<
1√
8π

∫ ∞

4R

y

4R
e−

y2

8 dy =
1

2
√
2πR

e−2R2
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∴
∞∑
j=1

∫ (4j−1)R+x

(4j−3)R+x
ϕ(2, y)dy ≤

∫ 2R

0
ϕ(2, y)dy +

1

2
√
2πR

e−2R2

Thirdly, we prove that as 0 < X < R, we have

∞∑
j=0

∫ (4j+3)R−x

(4j+1)R−x
ϕ(2, y)dy ≤

∫ 2R

0
ϕ(2, y)dy +

1

2
√
2πR

e−2R2
(6)

In practice, as 0 < X < R,

∞∑
j=0

∫ (4j+3)R−x

(4j+1)R−x
ϕ(2, y)dy ≤

∞∑
j=0

∫ (4j+2)R

4jR
ϕ(2, y)dy

=

∫ 2R

0
ϕ(2, y)dy +

∞∑
j=1

∫ (4j+2)R

4jR
ϕ(2, y)dy

≤
∫ 2R

0
ϕ(2, y)dy +

1

2
√
2πR

e−2R2

Put (5) and (6) together, the proof is completed. QED.
Proposition 2, If |x| < R, then∫

E
ϕ(2, x− y)dy <

√
1− e−R2 +

1√
2πR

e−2R2
(7)

Proof: For arbitrary R > 0, we have inequality
∫ 2R
0 ϕ(2, y)dy < 1

2

√
1− e−R2 .

In fact, (∫ 2R

0
ϕ(2, y)dy

)2

=

∫ 2R

0

∫ 2R

0

1

8π
e−

x2+y2

8 dxdy

≤
∫∫

D

1

8π
e−

x2+y2

8 dxdy (8)

=
1

4
(1− e−R2

)

where D = {(x, y)|x2 + y2 ≤ 8R2, x ≥ 0, y ≥ 0}. Hence
∫ 2R
0 ϕ(2, y)dy <

1
2

√
1− e−R2 .

By substituting the above inequality in proposition 1, inequality (7) is obtained
at once. QED.

Proposition 3 If k > 1, R2 < 2ln2
16k−9 , then∫ (4j+2)R

4jR
ϕ(2, y)dy ≤

∫ 8jR

(8j−4)R
ϕ(2,

√
ky)dy (9)
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Proof: After changing the variable t = y+4R
2 , we have∫ 8jR

(8j−4)R
ϕ(2,

√
ky)dy =

1√
8π

∫ 8jR

(8j−4)R
e−

ky2

8 dy =
1√
8π

∫ (4j+2)R

4jR
eln2−

k(y−2R)2

2 dy

As R2 < 2ln2
16k−9 , 4jR < y < (4j + 2)R, j = 1, 2, · · · , the following inequality

holds true:ln2− k(y−2R)2

2 + y2

8 ≥ 0.

Hence 1√
8π

∫ (4j+2)R
4jR e−

y2

8 dy ≤ 1√
8π

∫ (4j+2)R
4jR eln2−

k(y−2R)2

2 dy.

That is
∫ (4j+2)R
4jR ϕ(2, y)dy ≤

∫ 8jR
(8j−4)R ϕ(2,

√
ky)dy. QED.

Proposition 4 If k > 1, R2 < 2ln2
16k−9 , then∫

E
ϕ(2, x− y)dy < 2

∫ 2R

0
ϕ(2, y)dy +

1√
2πkR

e−2kR2
(10)

Proof: Combining the results of proposition 2 and proposition 3 leads to∫
E
ϕ(2, x− y)dy ≤ 2

∫ 2R

0
ϕ(2, y)dy + 2

∞∑
j=1

∫ (4j+2)R

4jR
ϕ(2, y)dy

≤ 2

∫ 2R

0
ϕ(2, y)dy + 2

∞∑
j=1

∫ 8jR

(8j−4)R
ϕ(2,

√
ky)dy

≤ 2

∫ 2R

0
ϕ(2, y)dy + 2

∫ ∞

4R
ϕ(2,

√
ky)dy

≤ 2

∫ 2R

0
ϕ(2, y)dy +

1√
2π

∫ ∞

4R

y

4R
e−

ky2

8 dy

= 2

∫ 2R

0
ϕ(2, y)dy +

1√
2πkR

e−2kR2
.QED.

Proposition 5 If k > 1, R2 < 2ln2
16k−9 , then

∫
E ϕ(2, x − y)dy <

√
1− e−R2 +

1√
2πkR

e−2kR2
.

Proof: By substituting inequality (8) in Proposition 4, one knows that inequal-
ity (10) is true. QED.

3 Conclusions

With the increasing globalization of investment in recent years, a variety of Asian
options has obtained a wide range of applications and development. For example,
Quanto option represents a contingent claim that the option’s benefit depends on
the prices of financial derivatives in a foreign currency, while the actual transac-
tion of the option is paid in local currency. Quanto options, as a kind of option
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designed for avoiding different types of risks involved in international trades and
investments, represent a financial derivative instrument. They can be used as a
hedge in international trades against fluctuations in exchange rates. Therefore,
with the rapid development of international trades and the globalization of the
financial industry, this option will definitely attract more attention. The revenue
function of Quanto option stands for a joint concern of foreign asset prices and
exchange rates, creating many alternative investing and hedging opportunities.
Additionally, other than Asian options, Power options represent yet another new
class of options. They alter the pricing structure of assets and greatly increase
the sensitivity of price over time. Power-Asian options are a unification of the
two, making it possible for investors to better avoid risks. An example is the
moving average call option. It has been often used to design a poison pill, a
business strategy used to increase the likelihood of negative results over positive
ones against a party that attempts a takeover. The moving average calls, issued
to existing shareholders, would be triggered by the event of a hostile takeover.
The French investment bank Compagnie Financiere Indosuez and the French con-
struction company Bouygues have successfully issued such options/warrants to
protect themselves against potentially unfriendly investors.

Kim’s inequality is very useful for our work[12]. However, Kim’s estimation
is possibly unbounded as R vanishes. Our inequality, developed in this paper,
has an advantage over Kims inequality, because our estimation is bounded on
the top as R vanishes. Therefore, our work in this paper may help us to look
for the solution error of a second order partial differential equation with variable
coefficients.
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