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Abstract: In this article, we use the Sine-Cosine wavelets (SCWs) method to numerically solve
the Drinfel’d–Sokolov–Wilson (DSW) system. For this purpose, we use an approximation of
functions with the help of SCWs, and we approximate spatial derivatives using this method. The
operational matrix based on SCWs has a large number of zero components, which ensures good
system performance and provides acceptable accuracy even with fewer collocation points. In the
end, to show the effectiveness and accuracy of the method in solving this system one numerical
example is provided.
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1. INTRODUCTION

Nonlinear coupled partial differential equations (PDEs) are very significant in a type of
scientific field, especially in fluid mechanics, solid-state physics, plasma waves, plasma
physics, and chemical physics. Since many nonlinear physical phenomena can be explained
by the exact and numerical solutions of nonlinear equations, the attempt for finding the exact
and numerical solutions to these phenomena is important.

In this article, our main goal is to solve numerically the DSW system. A generalized form
of the DSW system is given by:{

Ψt + αΦΦx = 0,
Φt + βΦxxx + γΨΦx + δΨxΦ = 0,

(1.1)

where α, β, γ, and δ are some nonzero parameters.
System (1.1) plays an important role in fluid dynamics [8,12] and is originally introduced

by Drinfel’d and Sokolov [7] and Wilson [24] as a model of dispersive water waves. Many
researchers have devoted considerable efforts by successfully implementing various methods
to extract solitary wave solutions and other solutions of DSW system [1, 10, 17, 23, 25].

One way to solve equations numerically is to use wavelets. The basic idea of wavelets goes
back to the early 1960s [4,5]. There are developments concerning the multiresolution analysis
algorithm based on wavelets [6] and the construction of compactly supported orthonormal
wavelet bases [16]. So far, several problems have been solved numerically using different
wavelets, for example, we can refer to references [2, 3, 9, 13, 18, 19, 26, 27]. In this paper, we
consider system (1.1) by using the SCWs method to find numerical solutions. SCW has been
used and showed efficiency to solve various problems. To indicate this, we can refer to some
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works. Razzaghi and Yousefi in [20] have employed a SCW to solve variational problems.
Tavassoli Kajani et al. [15] for solving integro-differential equations have presented a method
based on SCWs. A numerical evaluation of Hankel transform for seismology has been given
in [14] using the SCWs approach. Amir and Umer Saeed in [22] have used SCWs to solve
the fractional nonlinear oscillator equations.

In the present article, we intend to use the SCWs method to numerically solve the DSW
system (1.1) with the initial conditions

Ψ(x, 0) = f1(x), Φ(x, 0) = f2(x), x ∈ [0, 1], (1.2)

and the boundary conditions

Ψ(0, t) = g1(t), Φ(0, t) = g2(t), t ∈ [0, tfin],
Φ(1, t) = k2(t), Φx(0, t) = w2(t), t ∈ [0, tfin], (1.3)

where tfin represents the final time. The differentiable functions fi(x), gi(t), for i = 1, 2,
k2(t), and w2(t) are known.

The structure of this article is as follows: In Section 2, we describe the properties of the
SCWs. In the following, expanding functions into the SCWs series and operational matrix of
them for the numerical solutions are discussed. In Section 3, the procedure of implementation
of the SCWs method, for system (1.1) with specified initial and boundary conditions (1.2) and
(1.3) is presented. The numerical performance of the method is made in Section 4, and finally,
concluding remarks are given in Section 5.

2. PROPERTIES OF SCWS

Wavelets are useful mathematical functions constructed from the dilation and translation of
a single function called the mother wavelet, which can be denoted by ω. Assuming that the
expansion parameter η and the translation parameter ν are considered, we have the continuous
wavelets family as follows [11]:

Wη,ν(x) = |η|−
1
2ω
(x− ν

η

)
, η, ν ∈ R, µ 6= 0.

If the parameters η and ν are restricted to take values η = η−κ0 and ν = rν0a
−κ
0 , a family of

discrete wavelets is obtained as:

Wκ,r(x) = |η0|
κ
2ω(ηκ0x− rν0), (2.4)

where η0 > 1, ν0 > 0, and r and κ are positive integers. The set {Wκ,r(x)} in (2.4), forms
a wavelet basis for L2(R). Especially, if η0 = 2 and ν0 = 1, the set {Wκ,r(x)} forms an
orthonormal basis.

SCWs are defined on interval x ∈ [0, 1) as [14]:

Wr,s(x) = 2
κ+1
2 Gs(2

κx− r)χ[ r
2κ
, r+1
2κ

), (2.5)

where κ = {0} ∪ N, r = 0, 1, 2, . . . , 2κ − 1, and χ[ r
2κ
, r+1
2κ

) denotes the characteristic function
given as

χ[ r
2κ
, r+1
2κ

) =

{
1, x ∈ [ r

2κ
, r+1

2κ
),

0, elsewhere. (2.6)

Also,

Gs(x) =


1√
2
, s = 0,

cos(2sπx), s = 1, 2, . . . , `,
sin(2(s− `)πx), s = `+ 1, `+ 2, . . . , 2`,

(2.7)
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where ` is any positive integer.
SCWs have compact support and are an orthonormal basis forL2([0, 1)). The orthonormal

basis functions for SCWs by assuming κ = 1 and ` = 1 are obtained as follows:

for 0 ≤ x < 1
2

=⇒

W0,0(x) =
√

2,
W0,1(x) = 2 cos(4πx),
W0,2(x) = 2 sin(4πx),

for 1
2
≤ x < 1 =⇒

W1,0(x) =
√

2,
W1,1(x) = 2 cos(2π(2x− 1)),
W1,2(x) = 2 sin(2π(2x− 1)).

(2.8)

So, with the collocation points

xm =
2m− 1

2N
, m = 1, 2, . . . ,N = 2κ(2`+ 1), (2.9)

the graphs of Wr,s(x) for κ = ` = 1, are shown in Fig. 2.1.
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Fig. 2.1. The graphs of Wr,s(x) for κ = ` = 1.

2.1. Expanding functions into the SCWs
Using the set of SCWs, any function Υ(x) ∈ L2([0, 1)) can be approximated as an infinite
series of these functions as follows:

Υ(x) =
∞∑
r=0

2∑̀
s=0

ar,sWr,s(x), (2.10)

where ar,s =< Υ,Wr,s >=
∫ 1

0
Υ(x)Wr,s(x) dx. By truncating the infinite series (2.10) at

levels r = 2κ − 1 and s = 2`, we obtain an approximate representation for Υ(x) as

Υ(x) '
2κ−1∑
r=0

2∑̀
s=0

ar,sWr,s(x) = ATΓ(x), (2.11)

where A and Γ are (N × 1)-vectors and are introduced as follows:

A =
[
a0,0, a0,1, . . . , a0,2`, a1,0, a1,1, . . . , a1,2`, . . . . . . , a2κ−1,0, a2κ−1,1 . . . , a2κ−1,2`

]T
,

Γ =
[
W0,0,W0,1, . . . ,W0,2`,W1,0,W1,1, . . . ,W1,2`, . . . . . . ,W2κ−1,0(x),W2κ−1,1 . . . ,W2κ−1,2`

]T
.

(2.12)
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The SCWs matrix ΓN×N at the collocation points (2.9), is given as follows:

ΓN×N =

[
Γ
( 1

2N

)
,Γ
( 3

2N

)
, . . . ,Γ

(2N − 1

2N

)]
,

in other words

ΓN×N =



W0,0( 1
2N ) W0,0( 3

2N ) . . . W0,0(2N−1
2N )

W0,1( 1
2N ) W0,1( 3

2N ) . . . W0,1(2N−1
2N )

...
... . . .

...

W0,2`(
1

2N ) W0,2`(
3

2N ) . . . W0,2`(
2N−1

2N )

W1,0( 1
2N ) W1,0( 3

2N ) . . . W1,0(2N−1
2N )

W1,1( 1
2N ) W1,1( 3

2N ) . . . W1,1(2N−1
2N )

...
... . . .

...

W1,2`(
1

2N ) W1,2`(
3

2N ) . . . W1,2`(
2N−1

2N )

...
... . . .

...
...

... . . .
...

W2κ−1,0( 1
2N ) W2κ−1,0( 3

2N ) . . . W2κ−1,0(2N−1
2N )

W2κ−1,1( 1
2N ) W2κ−1,1( 3

2N ) . . . W2κ−1,1(2N−1
2N )

...
... . . .

...

W2κ−1,2`(
1

2N ) W2κ−1,2`(
3

2N ) . . . W2κ−1,2`(
2N−1

2N )



.

In particular, for κ = ` = 1, the SCWs matrix Γ6×6 is given as follows:

Γ6×6 =



√
2
√

2
√

2 0 0 0
1 −2 1 0 0 0√
3 0 −

√
3 0 0 0

0 0 0
√

2
√

2
√

2
0 0 0 1 −2 1
0 0 0

√
3 0 −

√
3

 .

2.2. The operational matrix of SCWs
Due to the vector form (2.12), the integration of Γ(x) can be calculated as follows:∫ x

0

Γ(t) dt = QΓ(x),

where Q is N ×N operational matrix given by

Q =
1

2κ+ 1
2


F S · · · S
0 F · · · S
...

... . . . ...
0 0 · · · F

 ,

where S and F are (2`+ 1)× (2`+ 1) matrices (see [15]).
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3. APPLICATION OF THE METHOD

In this section, we use the SCWs method for finding the approximate solutions of system
(1.1) with specified initial and boundary conditions (1.2) and (1.3). For this, dividing the
interval [0, tfin] into M equal parts of length ~t =

tfin
M and denoting tn = (n− 1)~t, n =

1, 2, . . . , (M+ 1), we expand Ψ̇′ and Φ̇′′′ in terms of SCWs as,

Ψ̇′(x, t) ∼=
2κ−1∑
r=0

2∑̀
s=0

ar,sWr,s(x) = ATΓ(x), (3.13)

Φ̇′′′(x, t) ∼=
2κ−1∑
r=0

2∑̀
s=0

br,sWr,s(x) = BTΓ(x), (3.14)

where prime and dot mean differentiation concerning x and t, respectively. Now, we consider
the following two cases:
Case 1: Considering the equation (3.13): By integrating this equation once concerning t from
tn to t and once concerning x from 0 to x, we have

Ψ′(x, t) = (t− tn)ATΓ(x) + Ψ′(x, tn), (3.15)

Ψ̇(x, t) = ATQΓ(x) + g′1(t), (3.16)

Now, integrating equation (3.16) once concerning t from tn to t, we obtain

Ψ(x, t) = (t− tn)ATQΓ(x) + [g1(t)− g1(tn)] + Ψ(x, tn). (3.17)

Case 2: Considering the equation (3.14): By integrating this equation once concerning t from
tn to t and three times concerning x from 0 to x, we obtain

Φ′′′(x, t) = (t− tn)BTΓ(x) + Φ′′′(x, tn), (3.18)

Φ′(x, t) = (t− tn)BTQ2Γ(x) + Φ′(x, tn) + [w2(t)− w2(tn)] + x[Φ̇′′(0, t)− Φ̇′′(0, tn)],
(3.19)

Φ(x, t) = (t− tn)BTQ3Γ(x) + Φ(x, tn) + [g2(t)− g2(tn)] + x[w2(t)− w2(tn)]

+
x2

2
[Φ̇′′(0, t)− Φ̇′′(0, tn)], (3.20)

Φ̇(x, t) = BTQ3Γ(x) + g′2(t) + xw′2(t) +
x2

2
Φ̇′′(0, t). (3.21)

By using the boundary condition Φ(1, t) = k2(t) equations (3.19)-(3.21) are changed as
follows:

Φ′(x, t) = (t− tn)BTQ2Γ(x) + Φ′(x, tn) + (1− 2x)[w2(t)− w2(tn)] + 2x[k2(t)− k2(tn)]

− 2x[g2(t)− g2(tn)], (3.22)
Φ(x, t) = (t− tn)BTQ3Γ(x) + Φ(x, tn) + (1− x2)[g2(t)− g2(tn)]

+ x(1− x)[w2(t)− w2(tn)] + x2[k2(t)− k2(tn)], (3.23)

Φ̇(x, t) = BTQ3Γ(x) + (1− x2)g′2(t) + x(1− x)w′2(t) + x2k′2(t). (3.24)
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Discretizing the results (3.15)-(3.17) and (3.18) and (3.22)-(3.24), by assuming x→ xm and
t→ tn+1, we have

Ψ′(xm, tn+1) = ~tATΓ(xm) + Ψ′(xm, tn), (3.25)

Ψ̇(xm, tn+1) = ATQΓ(xm) + g′1(tn+1), (3.26)
Ψ(xm, tn+1) = ~tATQΓ(x) + [g1(tn+1)− g1(tn)] + Ψ(xm, tn), (3.27)
Φ′′′(xm, tn+1) = ~tBTΓ(xm) + Φ′′′(xm, tn), (3.28)
Φ′(xm, tn+1) = ~tBTQ2Γ(xm) + Φ′(xm, tn) + (1− 2xm)[w2(tn+1)− w2(tn)]

+ 2xm[k2(tn+1)− k2(tn)]− 2xm[g2(tn+1)− g2(tn)], (3.29)
Φ(xm, tn+1) = ~tBTQ3Γ(xm) + Φ(xm, tn) + (1− x2

m)[g2(tn+1)− g2(tn)]

+ xm(1− xm)[w2(tn+1)− w2(tn)] + x2
m[k2(tn+1)− k2(tn)], (3.30)

Φ̇(xm, tn+1) = BTQ3Γ(xm) + (1− x2
m)g′2(tn+1) + xm(1− xm)w′2(tn+1) + x2

mk
′
2(tn+1),

(3.31)

where, xm’s are the collocation points that are introduced in (2.9). To linearized the nonlinear
terms ΦΦx, ΨxΦ, and ΨΦx in system (1.1), we use the linearization form given by Rubin and
Graves [21] as follows:

ΦΦx = Φx(x, tn)Φ(x, tn+1)− Φx(x, tn)Φ(x, tn) + Φ(x, tn)Φx(x, tn+1), (3.32)
ΨxΦ = Φ(x, tn)Ψx(x, tn+1)− Φ(x, tn)Ψx(x, tn) + Ψx(x, tn)Φ(x, tn+1), (3.33)
ΨΦx = Φx(x, tn)Ψ(x, tn+1)− Φx(x, tn)Ψ(x, tn) + Ψ(x, tn)Φx(x, tn+1). (3.34)

Using linear expressions (3.32)-(3.34), the discrete form of system (1.1) considering xm and
tn+1 is as follows:

Ψ̇(xm, tn+1) + αΦ′(xm, tn)Φ(xm, tn+1) + αΦ(xm, tn)Φ′(xm, tn+1) = αΦ′(xm, tn)Φ(xm, tn),

Φ̇(xm, tn+1) + βΦ′′′(xm, tn+1) + δΦ(xm, tn)Ψ′(xm, tn+1) + δΨ′(xm, tn)Φ(xm, tn+1)
+γΦ′(xm, tn)Ψ(xm, tn+1) + γΨ(xm, tn)Φ′(xm, tn+1) = δΦ(xm, tn)Ψ′(xm, tn)
+γΦ′(xm, tn)Ψ(xm, tn).

(3.35)
Now, by using equations (3.25)-(3.31), system (3.35) leads to{

AT θ1 + BT θ2 = H1(xm, tn),
AT θ3 + BT θ4 = H2(xm, tn),

(3.36)

where the matrices θi, i = 1, 2, 3, 4 are matrices with dimensions N ×N as follows:

θ1 = QΓ(xm),

θ2 =
[
αΦ′(xm, tn)~tQ3Γ(xm) + αΦ(xm, tn)~tQ2Γ(xm)

]
,

θ3 =
[
δΦ(xm, tn)~tΓ(xm) + γΦ′(xm, tn)~tQΓ(xm)

]
,

θ4 =
[
Q3Γ(xm) + β~tΓ(xm) + δΨ′(xm, tn)~tQ3Γ(xm) + γΨ(xm, tn)~tQ2Γ(xm)

]
,
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and the matricesHi, i = 1, 2 are matrices with dimensions N × 1 as follows:

H1(xm, tn) =− αΦ(xm, tn)Φ′(xm, tn)− g′1(tn+1)− αΦ′(xm, tn)
[
(1− x2

m)[g2(tn+1)− g2(tn)]

+ xm(1− xm)[w2(tn+1)− w2(tn)] + x2
m[k2(tn+1)− k2(tn)]

]
− αΦ(xm, tn)

[
(1− 2xm)[w2(tn+1)− w2(tn)] + 2xm[k2(tn+1)− k2(tn)]

− 2xm[g2(tn+1)− g2(tn)]
]
,

H2(xm, tn) =− βΦ′′′(xm, tn)− δΦ(xm, tn)Ψ′(xm, tn)

− γΦ′(xm, tn)[g1(tn+1)− g1(tn) + Ψ(xm, tn)]

−
[
(1− x2

m)g′2(tn+1) + xm(1− xm)w′2(tn+1) + x2
mk
′
2(tn+1)

]
− δΨ′(xm, tn)

[
(1− x2

m)[g2(tn+1)− g2(tn)] + xm(1− xm)[w2(tn+1)− w2(tn)]

+ x2
m[k2(tn+1)− k2(tn)]

]
− γΨ(xm, tn)

[
(1− 2xm)[w2(tn+1)− w2(tn)]

+ 2xm[k2(tn+1)− k2(tn)]− 2xm[g2(tn+1)− g2(tn)]
]
.

The matrix-vector form of system (3.36) is as follows:[
θ1 θ2

θ3 θ4

]
2N×2N

[
A
B

]
2N×1

=

[
H1

H2

]
2N×1

(3.37)

From (3.37), the coefficients vector A and B can be calculated. With these coefficients and
using the equations (3.27) and (3.30), the approximate solutions are successively obtained.

4. NUMERICAL EXPERIMENTS

In this section, we apply the SCWs method to obtain the numerical solutions of the DSW
system (1.1). To compare the obtained numerical results, we use the following solutions that
obtained by Arnous et al. ( [1]):

Ψ(x, t) = 6c
γ+2δ

sech2
(√

c
βk2

(k(x− ct)− ξ0)
)
,

Φ(x, t) = ±
√

12c2

α(γ+2δ)
sech

(√
c
βk2

(k(x− ct)− ξ0)
)
,

where c and k are arbitrary real constants.
To show the effectiveness and accuracy of the proposed method, we considered an example
with α = β = γ = δ = 1, tfin = 1, ~t = 0.01.
Remark 4.1:
For describing the error, we introduce the infinity-norm of absolute error and the root mean
square (RMS) error norm as follows:

LΨ
∞ = ||Ψ(xm, t)−Ψ∗(xm, t)||∞ = max

1≤m≤N
|Ψ(xm, t)−Ψ∗(xm, t)|,

RMSΨ =

[
1

2N

2N∑
m=1

(
Ψ(xm, t)−Ψ∗(xm, t)

)2
] 1

2

,
(4.38)
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where Ψ∗ is the approximate solution of Ψ. Similarly, the LΦ
∞ and RMSΦ are obtained

according to formulas (4.38).

The numerical results for Ψ(x, t) and Φ(x, t) at time t = 1 when ` = κ = 1 are reported
in Table 4.1. For different values of κ, Table 4.2 stated the calculated errors (4.38) at time
t = 0.5, also, the execution times for these values are given in Table 4.3. Difference between
exact and numerical solutions Ψ and Φ at time t = 1 are shown in Figs. 4.2-4.4 and 4.5-4.7,
respectively.

Table 4.1. The numerical results for Ψ(x, t) and Φ(x, t) at t = 1 when ` = κ = 1.

xm Ψ(xm, 1) Ψ∗(xm, 1) |Ψ(xm, 1)−Ψ∗(xm, 1)| Φ(xm, 1) Φ∗(xm, 1) |Φ(xm, 1)− Φ∗(xm, 1)|
0.0833333 0.153514 0.153517 2.358647e− 06 0.159955 0.159953 2.434473e− 06

0.25 0.157382 0.157384 2.526247e− 06 0.161958 0.161949 8.477983e− 06

0.416667 0.160643 0.160646 2.873385e− 06 0.163627 0.163619 7.684178e− 06

0.583333 0.163242 0.163244 2.279712e− 06 0.164945 0.164933 1.248603e− 05

0.75 0.165133 0.165128 5.211826e− 06 0.165898 0.165906 7.514665e− 06

0.916667 0.166281 0.166280 1.685403e− 06 0.166474 0.166457 1.740170e− 05

Table 4.2. The calculated errors (4.38) at time t = 0.5 with ` = 1.

Ψ(x, 0.5) Φ(x, 0.5)

L∞

κ = 1 1.333830e− 06 8.630715e− 06

κ = 2 6.055654e− 08 1.078673e− 06

κ = 3 2.810132e− 09 7.847945e− 08

κ = 4 8.968863e− 11 5.304455e− 09

κ = 5 3.105035e− 12 3.172111e− 10

κ = 6 9.736049e− 14 2.018670e− 11

RMS

κ = 1 7.661924e− 07 5.199718e− 06

κ = 2 3.315228e− 08 5.115186e− 07

κ = 3 1.000311e− 09 2.933696e− 08

κ = 4 3.271928e− 11 2.026272e− 09

κ = 5 9.981293e− 13 1.217716e− 10

κ = 6 3.154537e− 14 7.797156e− 12

Table 4.3. The execution times for different values of κ with ` = 1.

κ = 1 κ = 2 κ = 3 κ = 4 κ = 5 κ = 6

CPU time (s) 102.835546 189.641444 373.585049 753.232887 1519.095320 3163.873643
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Fig. 4.2. Difference between exact and numerical solutions Ψ at time t = 1, when ` = 1 and κ = 1, 2.

Copyright © 2021 ASSA. Adv Syst Sci Appl (2021)



84 N. AZIZI, R. POURGHOLI

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-12

-10

-8

-6

-4

-2

0

2

4

6

8

Ψ
(x
,1
)
−
Ψ

∗
(x
,1
)

×10
-9 (ℓ = 1, κ = 3)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-4

-3

-2

-1

0

1

2

3

Ψ
(x
,1
)
−
Ψ

∗
(x
,1
)

×10
-10 (ℓ = 1, κ = 4)

Fig. 4.3. Difference between exact and numerical solutions Ψ at time t = 1, when ` = 1 and κ = 3, 4.
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Fig. 4.4. Difference between exact and numerical solutions Ψ at time t = 1, when ` = 1 and κ = 5, 6.
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Fig. 4.5. Difference between exact and numerical solutions Φ at time t = 1, when ` = 1 and κ = 1, 2.
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Fig. 4.6. Difference between exact and numerical solutions Φ at time t = 1, when ` = 1 and κ = 3, 4.
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Fig. 4.7. Difference between exact and numerical solutions Φ at time t = 1, when ` = 1 and κ = 5, 6.

Given the approximation function Υ(x) expressed in section 2, the solutions of the system
(1.1), can be expanded as:

Υ(x) =
∞∑
r=0

2∑̀
s=0

ar,sWr,s(x). (4.39)
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In the investigated example, we approximate the solution of this equation as follows:

Υ(x) '
2κ−1∑
r=0

2∑̀
s=0

ar,sWr,s(x), (4.40)

which is the truncating the infinite series (4.39). By substituting the solutions ar,s in (4.40),
we get the error function E (x) as follows:

E (x) =

∣∣∣∣∣Υ(x)−
2κ−1∑
r=0

2∑̀
s=0

ar,sWr,s(x)

∣∣∣∣∣.
Therefore, as κ increases, the series (4.40) becomes larger and closer to the series (4.39), in
other words, E (x) approaches zero. The obtained numerical results for Ψ and Φ confirm this.

5. CONCLUSION

In this article, using the SCWs method and using the initial and boundary conditions (1.2)
and (1.3), we solved the DSW system (1.1) numerically. Considering the obtained numerical
results in Tables 4.1 and 4.2, Figs. 4.2-4.7, and also comparing these results with the exact
solutions, it can be concluded that the presented method for solving the DSW system (1.1)
is an efficient and high accuracy method. The strength of this method is the simplicity of
calculations with low storage space.
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