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Abstract

Most models, which are used for solving airline seat inventory control problems,
are developed in the literature under the assumptions that the parameter values
of the models are known with certainty. When these models are applied to
solve real-world problems, the parameters are estimated and then treated as if
they were the true values. The risk associated with using estimates rather than
the true parameters is called estimation risk and is often ignored. When data
are limited and/or unreliable, estimation risk may be significant, and failure to
incorporate it into the model design may lead to serious errors. In this paper, we
consider the static and dynamic problems of airline seat inventory control under
parametric uncertainty, which are invariant with respect to a certain group of
transformations. Since common practice for airlines is to charge several different
fares for a common pool of seats, this paper presents the policies that have been
used to address the problem of when to refuse booking requests for a given fare
level to save the seat for a potential request at a higher fare level. In this paper,
we present the innovative technologies for constructing the static and dynamic
policies of the airline seat inventory control.on the basis of the ‘unbiasedness
performance index’. The idea of prediction of a future cumulative customer
demand for the seats on a flight via the order statistics from the underlying
distribution, introduced in the paper, allows one to use the invariant embedding
technique in order to eliminate the unknown parameters from the problem and to
use the previous and current sample data as completely as possible. The proposed
unbiased static and dynamic policies are more efficient as compared with the
policies, where the unknown parameters of the airline customer demand models
are estimated and then treated as if they were the true values. An illustrative
example is given.
Keywords Airlines, demand, uncertainty, airline booking, optimization
1 Introduction

Passenger reservations systems have evolved from low level inventory control pro-
cesses to major strategic information systems. Today, airlines and other trans-
portation companies view revenue management systems and related information
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technologies as critical determinants of future success. Indeed, expectations of
revenue gains that are possible with expanded revenue management capabilities
are now driving the acquisition of new information technology. Each advance in
information technology creates an opportunity for more comprehensive reserva-
tions control and greater integration with other important transportation plan-
ning functions.

The airline seat inventory control problem lies at the heart of airline revenue
management. It is common practice for airlines to sell a pool of identical seats
at different prices according to different booking classes to improve revenues in a
very competitive market. In other words, airlines sell the same seat at different
prices according to different types of travelers (first class, business and economy)
and other conditions. The question then arises whether to offer seats at a rela-
tively low price at a given time with a given number of seats remaining or to wait
for the possible arrival of a higher paying customer. Assigning seats in the same
compartment to different fare classes of passengers in order to improve revenues
is a major problem of airline seat inventory control. This problem has been con-
sidered in numerous papers. For details, the reader is referred to a review of yield
management, as well as perishable asset revenue management, by Weatherford
et al. [1], and a review of relevant mathematical models by Belobaba [2].

This paper deals with the airline seat inventory control problem when cus-
tomers for different fare levels are booked into a common seating pool in the
aircraft. The following assumptions are made: (1) single-leg flight: bookings are
made on the basis of a single departure and landing; no allowance is made for the
possibility that bookings may be part of larger trip itineraries, (2) independent
demands: the demands for different fare classes are stochastically independent,
(3) low before high demands: the lowest fare reservations requests arrive first,
followed by the next lowest, etc., (4) no cancellations: cancellations, no-shows
and overbooking are not considered, (5) nested classes: any fare class can be
booked into seats not taken by bookings in lower fare classes, (6) fare classes: the
business and economy fare classes are considered.

The first purpose of this paper is to present the innovative information tech-
nologies for constructing the static and dynamic policies of the airline seat inven-
tory control on the basis of the ‘unbiasedness performance index’. The static and
dynamic policies (unbiased) are more efficient (from the point of view of airline
revenue management) as compared with the policies, where the unknown param-
eters of the airline customer demand models are estimated and then treated as if
they were the true values.

The second purpose of this paper is to introduce the idea of prediction of a
future cumulative customer demand for the seats on a flight via the order s-
tatistics from the underlying distribution, where only the functional form of the
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distribution is specified, but some or all of its parameters are unspecified. This
idea allows one to use the technique of invariant embedding of sample statistics
in a performance index in order to eliminate the unknown parameters from the
problem [3-4]. The technique represents a simple and computationally attractive
statistical method based on the constructive use of the invariance principle in
mathematical statistics. Unlike the Bayesian approach, an invariant embedding
technique is independent of the choice of priors, i.e., subjectivity of investigator
is eliminated from the problem. It allows one to find the improved invariant
statistical decision rules, which have smaller risk than any of the well-known tra-
ditional statistical decision rules, and to use the previous and current sample data
as completely as possible.

2 State-of-the-art and Progress Beyond

Airline seat inventory control is a very profitable tool in the airline industry.
A major problem of airline seat inventory control is to sell the same seat at
different prices according to different types of travelers (first class, business and
economy) and other conditions in order to improve revenues. This problem has
been considered in numerous papers. Littlewood [5] was the first to propose a
solution method of the seat inventory control problem for a single leg flight with
two fare classes. The idea of his scheme is to equate the marginal revenues in
each of the two fare classes. He suggests closing down the low fare class when the
certain revenue from selling low fare seat is exceeded by the expected revenue of
selling the same seat at the higher fare. That is, low fare booking requests should
be accepted as long as

c2 ≥ c1Pr{Y1 > µ1}, (1)

where c1 and c2 are the high and low fare levels respectively, Y1 denotes the de-
mand for the high fare (or business) class,µ1 is the number of seats to protect
for the high fare class and Pr{Y1 > µ1} is the probability of selling more than
µ1 protected seats to high fare class customers. The smallest value of µ1 that
satisfies the above condition is the number of seats to protect for the high fare
class, and is known as the protection level of the high fare class customers. The
concept of determining a protection level for the high fare class can also be seen
as setting a booking limit, a maximum number of bookings, for the low fare class.
Both concepts restrict the number of bookings for the low fare class in order to
accept bookings for the high fare class.

It should be remarked that there is no protection level for the low fare (or
economy) class;µ2 is the booking limit, or number of seats available, for the low
fare class; the low fare class is open as long as the number of bookings in this
class remains less than this limit. Thus,is the booking limit, or number of seats
available, for the low fare class; the low fare class is open as long as the number



Advances in Systems Science and Applications (2012) Vol.12 No.3 275

of bookings in this class remains less than this limit. Thus, µ1+µ2 is the booking
limit or number of seats available, for the high fare class at time. The high fare
class is open as long as the number of bookings in this and low classes remain
less than this limit.

Richter [6] gave a marginal analysis, which proved that (1) gives an optimal
allocation (assuming certain continuity conditions). Optimal policies for more
than two classes have been presented independently by Curry [7], Wollmer [8],
and Brumelle & McGill [9].

3 Airline Booking Policies which are Used in Practice

3.1 Static Airline Booking Policy under Complete Information

It will be noted that (1) represents the static policy of airline seat inventory
control (or airline booking) under complete information. If Fθ , the probability
distribution function of Y1 with the parameter θ (in general, vector), is continuous
and strictly increasing, the definition (1) of µ1 is equivalent to

µ1 = arg
(
F̄θ(µ1) = γ

)
(2)

where
γ = c1/c2, (3)

F̄θ(τj) = 1− Fθ(τj). (4)

3.2 Static Airline Booking Policy under Parametric Uncertainty

In practice, under parametric uncertainty, i.e. when the parameter θ is unknown,
the performance index,

F̄θ(µ1) = γ, (5)

is usually used to construct the static policy given by

µ1 = arg
(
F̄θ̂(µ1) = γ

)
, (6)

where θ̂ represents the maximum likelihood estimator of θ . The performance
index (5) is named as ‘maximum likelihood performance index’. The static poli-
cy (6) based on (5) is named as ‘static maximum likelihood airline booking policy’.

3.3 Dynamic Airline Booking Policy under Parametric Uncertainty

The static policy of airline booking is optimal as long as no change in the prob-
ability distributions of the customer demand is foreseen. However, information
on the actual customer demand process can reduce the uncertainty associated
with the estimates of demand. Hence, repetitive use of a static policy over the
booking period, based on the most recent demand and capacity information, is
the general way to proceed.
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4 Improved Airline Booking Policies Proposed in the Paper

4.1 Static Unbiased Airline Booking Policy under Parametric Uncertainty

This policy is based on the performance index,

Eθ{F̄θ(µ1)} = γ, (7)

which takes into account (2) and the previous data of cumulative customer de-
mand Y1 for the seats on a flight. It allows one to construct the static airline
booking policy given by

µ
(µnb)
1 = arg

(
Eθ{F̄θ(µ1)} = γ

)
, (8)

where µ1 ≡ µ1(θ̂),θ̂ represents either the maximum likelihood estimator of θ or
sufficient statistic S for θ, i.e., µ1 ≡ µ1(S) The performance index (7) is named
as ‘unbiasedness performance index’.The static policy (8), which is based on (7),
is named as ‘static unbiased airline booking policy’.

The relative bias of the static airline booking policy is given by

γ(µ1) =

∣∣Eθ{F̄θ(µ1)} − γ
∣∣

γ
100% (9)

4.2 Dynamic Airline Booking Policy under Complete Information

In this section, we consider a flight for a single departure date with m predefined
reading dates at which the dynamic policy is to be updated, i.e., the booking peri-
od before departure is divided intom readings periods:(0, τ1], (τ1, τ2], . . . , (τm−1, τm]
determined by them reading dates:τ1, τ2, . . . , τm. These reading dates are indexed
in increasing order:0 < τ1 < τ2 < . . . < τm, where (τm−1, τm] denotes the reading
period immediately preceding departure, and τm] is at departure. Typically, the
reading periods that are closer to departure cover much shorter periods of time
than those further from departure. For example, the reading period immediately
preceding departure may cover 1 day whereas the reading period 1-month from
departure may cover 1 week.

Let us suppose that the cumulative passenger demand for the high fare class
at the kth reading date (time τk, 1 ≤ k ≤ m) is Y1k representing the kth order
statistic from the underlying distribution with the probability distribution func-
tion Gθ(y1k), where θ is a parameter (in general, vector). In other words,Y1k
represents the number of seats sold for the customers of the high fare class at
the kth reading date. We assume that the cumulative passenger demands for
the high and low fare classes are stochastically independent. Each booking of
a seat of the high fare class generates average revenue of c1. Each booking of
a seat of the low fare class generates average revenue of c2 , where c2 < c1.Let
µ1k be an individual protection level for the high fare class at time τk (the kth
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reading date).This many seats are protected for the high fare class from the low
fare class. There is no protection level for the low fare class;µ2k is the booking
limit for the low fare class at time τk; the low fare class is open as long as the
number of bookings in this class remains less than this limit. Thus,µ1k + µ2k is
the booking limit for the high fare class at time τk The high fare class is open
as long as the number of bookings in this and low classes remain less than this
limit. The maximum number of seats that may be booked by fare classes in the
next at time τk prior to flight departure is the number of unsold seats µ◦

k.
Under the complete information, the dynamic airline booking policy is given

by
µ1k = arg

(
Ḡθ(µ1k|y1k) = γ

)
, k = 1, 2, . . . ,m− 1, (10)

where
Ḡθ(µ1k|y1k) = 1−Gθ(µ1k|y1k), (11)

Gθ(µ1k|y1k) represents the conditional probability distribution function of the
mth order statistic Y1m . The number of unsold seats protected for the high fare
class from the low fare class in the next at time τk prior to flight departure is the
number of unsold seats,µ◦

1k,which is given by

µ◦
1k = min(µ◦

k, µ1k − y1k). (12)

4.3 Dynamic Unbiased Airline Booking Policy under Parametric Uncertainty

Under the parametric uncertainty, the dynamic unbiased airline booking policy
is given by

µunb
1k = arg

(
Eθ{Ḡθ(µ1k|y1k)} = γ

)
, k = 1, 2, . . . ,m− 1, (13)

where µ1k ≡ µ1k(θ̂),θ̂ represents either the maximum likelihood estimator of θ or
sufficient statistic S for θ, i.e.,µ1k ≡ µ1k(S).The number of unsold seats protected
for the high fare class from the low fare class in the next at time τk prior to flight
departure is the number of unsold seats µ◦

1k,which is given by

µ
◦(unb)
1k = min(µ◦

k, µ
unb
1k − y1k). (14)

5 Mathematical Preliminaries

Theorem 1 Let X1 ≤ . . . ≤ Xk be the first k ordered observations (order statis-
tics) in a sample of size m from a continuous distribution with some probability
density function fθ(x) and distribution function Fθ(x) where θ is a parameter (in
general, vector). Then the joint probability density function of X1 ≤ . . . ≤ Xk

and the lth order statistics Xl(1 ≤ k ≤ l ≤ m) is given by

gθ(x1, . . . , xk, xl) = gθ(x1, . . . , xk)gθ(xl|xk), (15)
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where

gθ(x1, . . . , xk) =
m!

(m− k)!

k∏
i=1

fθ(xi)
[
1− Fθ(xk)

]m−k
, (16)

gθ(xl|xk) =
(m− k)!

(l − k − 1)!(m− l)!

[Fθ(xl)− Fθ(xk)

1− Fθ(xk)

]l−k−1[
1− Fθ(xl)− Fθ(xk)

1− Fθ(xk)

]m−l

fθ(xl)

1− Fθ(xk)
=

(m− k)!

(l − k − 1)!(m− l)!

k−l−1∑
j=0

(
l − k − 1

j

)
(−1)j

[ 1− Fθ(xl)

1− Fθ(xk)

]m−l+j

fθ(xl)

1− Fθ(xk)
=

(m− k)!

(l − k − 1)!(m− l)!

m−l∑
j=0

(
m− l
j

)
(−1)j

[Fθ(xl)− Fθ(xk)

1− Fθ(xk)

]l−k−1+j

fθ(xl)

1− Fθ(xk)

(17)

represents the conditional probability density function of Xl given Xk = xk.

Proof. The joint density of X1 ≤ . . . ≤ Xk and Xl is given by

gθ(x1, . . . , xk, xl)

=
m!

(l − k − 1)!(m− l)!

k∏
i=1

fθ(xi)
[
Fθ(xl)− Fθ(xk)

]l−k−1
fθ(xl)

[
1− fθ(xl)

]m−l

=gθ(x1, . . . , xk)gθ(xl|xk).

(18)

It follows from (4) that

gθ(xl|x1, . . . , xk) =
gθ(x1, . . . , xk, xl)

gθ(x1, . . . , xk)
= gθ(xl|xk), (19)

i.e., the conditional distribution of Xl, given Xi = xi for all i = 1, . . . , k, is the
same as the conditional distribution of Xl, given only Xk = xk, which is given by
(17). This ends the proof.
Corollary 1.1. The conditional probability distribution function of Xl given
Xk = xk is

Pθ{Xl ≤ xl|Xk = xk}

=1− (m− k)!

(l − k − 1)!(m− l)!

l−k−1∑
j=0

(
l − k − 1

j

)
(−1)j

m− l + 1 + j

[ 1− Fθ(xl)

1− Fθ(xk)

]m−l+1+j

=
(m− k)!

(l − k − 1)!(m− l)!

m−k∑
j=0

(
m− l
j

)[Fθ(xl)− Fθ(xk)

1− Fθ(xk)

]l−k+j
.

(20)
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Corollary 1.2.Let X1 ≤ . . . ≤ Xk be the first k order statistics in a sample of
size m from the two-parameter Weibull distribution with the probability density
function

fθ(x) =
δ

β

(x
β

)δ−1
exp

[
−(

x

β
)δ
]
(x > 0), (21)

where θ = (β, δ), β > 0 and δ > 0 are the scale and shape parameters, respective-
ly. Then the conditional probability distribution function of Xl given Xk = xk
is

Pθ{Xl ≤ xl|Xk = xk} = 1− (m− k)!

(l − k − 1)!(m− l)!

l−k−1∑
j=0

(
l − k − 1

j

)
(−1)j

m− l + 1 + j

[
exp(−

xδl − xδk
βδ

)
]m−l+1+j

.

(22)

Theorem 2 If in (22) the scale parameter β is unknown, then the predictive
probability distribution function of Xl based on (xk, δ) is given by

Pδ

{(Xl

Xk

)δ
≤
( xl
xk

)δ
)
}
= 1− m!

(l − k − 1)!(m− l)!
×

l−k−1∑
j=0

(
l − k − 1

j

)

(−1)j

m− l + 1 + j

(
Πk−1

s=0

[(( xl
xk

)δ
− 1

)
(m− j +1+ j) + (m− k+1+ s)

])−1

. (23)

Proof.We reduce (22) to

Pθ

{(Xl

Xk

)δ
≤
( xl
xk

)δ
|
(Xk

β

)δ
=
(xk
β

)δ}
= 1− (m− k)!

(l − k − 1)!(m− l)!
l−k−1∑
j=0

(
l − k − 1

j

)
× (−1)j

m− l + 1 + j

[
exp

(
− ω[νδ − 1]

)]m−l+1+j

=Pδ{V δ ≤ νδ|W = ω}

(24)

where V = Xl/Xk is the ancillary statistic whose distribution does not depend
on the parameter β. Since Xk does not depend on V ,W = (Xk/β)

δ is the pivotal
quantity, whose distribution is known and does not depend on the parameters β
and δ, we eliminate the parameter β from the problem as

Pδ{Xl ≤ xl} =

∫ ∞

0
Pθ{Xl ≤ xl|Xk = xk}gθ(xk)dxk, (25)

where

gθ(xk) =
m!

(k − 1)!(m− k)!
F k−1
θ (xk)

[
1− Fθ(xk)

]m−k
fθ(xk), xk ∈ (0,∞), (26)
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represents the probability density function of the kth order statistic Xk.Indeed,
it follows from (26) that

gθ(xk)dxk =
m!

(k − 1)!(m− k)!

[
1− exp

(
−
(xk
β

)δ)]k−1
exp

(
−
(xk
β

)δ(m−k)
)

exp
(
−
(x
β

)δ)
d
(x
β

)δ
=

m!

(k − 1)!(m− k)!

[
1− e−ω

]k−1
e−ω(m−k+1)dω

= g(ω)dω.

(27)

It follows from (24) and (27) that

Pδ{V δ ≤ νδ}

=

∫ ∞

0
Pδ{V δ ≤ νδ|W = ω}g(ω)d(ω)

=1− m!

(l − k − 1)!(m− l)!

l−k−1∑
j=0

(
l − k − 1

j

)
(−1)j

m− l + 1 + j(
Πk−1

s=0

[
(νδ − 1)(m− l + 1 + j) + (m− k + 1 + s)

])−1
.

(28)

Now (23) follows from (28). This ends the proof.
Corollary 2.1.If the parameter δ = 1 , i.e., we deal with the exponential distri-
bution,
then the predictive probability distribution function of Xl based on xk is given
by

P
{(Xl

Xk
≤ xlxk

)}
=1− m!

(l − k − 1)!(m− l)!
×

l−k−1∑
j=0

(
l − k − 1

j

)
(−1)j

m− l + 1 + j(
Πk−1

s=0

[( xl
xk − 1

)
(m− l + 1 + j) + (m− k + 1 + s)

])−1
.

(29)

6 Illustrative Example of Airline Booking Policies

Let X1, . . . , Xn be the random sample of the previous independent observations
of the cumulative customer demand for the high fare class, which follow the
exponential distribution with the probability density function (21)(δ = 1) , where
the parameter β is unknown. Then the static policies of airline booking under
parametric uncertainty are given as follows.
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The static maximum likelihood airline booking policy follows from (6):

µml
1 = ln γ−S/n, (30)

where S =
∑n

i=1Xi is the sufficient statistic for β,with

V = S/β ∼ f(ν) =
1

Γ(n)
νn−1 exp(−ν), ν ≥ 0, (31)

and the relative bias,

r(µml
1 ) =

∣∣Eθ{F̄θ(µ
ml
1 )} − γ

∣∣
γ

100% = 1 +
(1 + ln γ−1/n)−1 − γ

γ
100%. (32)

If, say,n = 1 and γ = 0.4, then rrb(µ
ml
1 ) = 30%.Thus, in this example the

static maximum likelihood airline booking policy has the relative bias equal to
30%.It follows that the protection level for customers of the high fare class will
be determined incorrectly. This may lead to serious loss.

The static unbiased airline booking policyfollows from (8):

µunb
1 = [γ−1/n − 1]S, (33)

where the relative bias r(µunb
1 ) = 0.

The dynamic unbiased airline booking policyfollows from (13) and (29):

µunb
1k = arg

(
m!

(m− k − 1)!

m−k−1∑
j=0

(
m− k − 1

j

)
(−1)j

1 + j

(
Πk−1

s=0

[(µ1k

y1k
− 1
)
(1 + j)

+ (m− k + 1 + s)
])−1

= γ

)
, k = 1, 2 . . . ,m− 1,

(34)

µ
◦(unb)
1k = min

(
µ◦
k, µ

unb
1k ,−y1k

)
. (35)

7 Conclusion

The methodology, which is developed in this paper for the use in the airline in-
dustry under parametric uncertainty of airline customer demand models, may
be found to be useful in other industries such as hotels, car rental companies,
shipping companies, etc. While the details of problems considered in this project
can change significantly from one industry to the next, the focus is always on
making better demand decisions and not manually with guess work and intuition
but rather scientifically with models and technology, all implemented with disci-
plined processes and systems.
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