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Abstract: The article presents an optimization method for the formation of quantitative weights of 
objects (importance of criteria, priorities of alternatives) according to the initial expert judgment 
matrix in multi-criteria selection problems. Since the matrix of pairwise comparisons can be con-
sidered as some perturbation of the multiplicative matrix, the proposed method is based on the 
approximation of the original matrix of pairwise comparisons by the multiplicative matrix accord-
ing to the matrix criterion of minimum distances between matrices. There is a one-to-one mapping 
between the elements of the weight vectors and the elements of the multiplicative matrix. For the 
first time, using a specific example using the matrix criterion, a relative estimate of the approximate 
solution of the Analytical Hierarchy Process by T. Saaty concerning the optimal solution obtained 
by the approximation matrix method is given. On account of the approximation matrix method 
being mathematically justified and due to the simplicity of finding optimal solutions, it can be 
recommended instead of the Analytical Hierarchy Process by T. Saaty.  
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1. INTRODUCTION 

When solving applied problems of multicriteria choice on a set of objects (alternatives, man-
agement decisions, options) presented in the form of preference relations, the problem of their 
expert measurement in the quantitative scale of relations arises. To date, many approaches and 
methods have been proposed to solve this problem, based on the resulting preference relations 
to narrow the set of non-dominant alternatives, as well as on paired comparisons of objects 
(solutions, criteria) [1, 2], which do not always allow us to identify a single alternative or 
management solution without attracting additional information.  

However, when solving applied problems related to the measurement of objects in expert 
scales, as well as the formation of local weights of criteria presented in the form of a hierar-
chical tree of the importance of criteria, expert methods of evaluating and ranking objects are 
usually used [3]. Direct methods of expert evaluation of criteria weights have found applica-
tion in the planning methodology through relative indicators of technical evaluation (PAT-
TERN). Experts are asked to evaluate the normalized local weights of criteria at each level of 
the hierarchy on a quantitative scale, and then the global weights are found by multiplying 
local weights along the branches of a multi-level criteria tree [4]. 

Another expert approach based on the matrix of paired comparisons to assign "weights" to 
a finite set of compared objects is the Analytical Hierarchy Process (AHP) by T. Saaty which 
is now firmly established in the theory and practice of multicriteria selection problems [5–7].  

Following the Analytical Hierarchy Process, experts form a so-called matrix of paired com-
parisons (judgments) of objects 𝑉 = [𝑣], 𝑖, 𝑗 = 1, 𝑛,തതതതത in the scale of relations, and then find 
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the right eigenvector 𝑤ሬሬ⃗ = (𝑤ଵ, . . . , 𝑤 )் of this matrix, corresponding to the maximum eigen-
value. The desired weight vector is a vector whose elements are normalized by the sum of the 
elements of the right eigenvector.  

Since the calculation of the vectors of weights of objects (criteria and alternatives) is per-
formed by a numerical (approximate) method, T. Saaty aware of this, introduced a special 
numerical indicator: consistency index - the compatibility index of the judgment matrix 𝑉 and 
the multiplicative matrix 𝑊 obtained based on the values of the eigenvector, in the form of the 
Hadamard product [9]: 

𝑆. 𝐼. =
ଵ

మ
𝑒்𝑉°𝑊்𝑒,  𝑒் = (1,1, … ,1), 

where V
 
is the original judgment matrix, and 𝑊 = [𝑤] = 

௪ 

௪ೕ
൨ is a multiplicative square ma-

trix whose elements are determined from the normalized elements of the right eigenvector 𝑤ሬሬ⃗  
of the judgment matrix V. In this case, the ratio takes place: 

𝑤 =
𝑤

𝑤
=

𝑤/ ∑ 𝑤

ୀଵ

𝑤/ ∑ 𝑤

ୀଵ

=
𝑤

𝑤
, 𝑖, 𝑗 = 1, 𝑛തതതതത. 

The S.I. Index It characterizes the degree of confidence in the results obtained with the help 
of AHP and is interpreted as a kind of measure of the deviation of the initial perturbed judg-
ment matrix 𝑉 from the multiplicative one W. In the work of T. Saaty [8, p. 76], it is shown 
that if we perform the Hadamard matrix product, then the compatibility index takes the form 

𝑆. 𝐼. =  
ౣ౮


> 1,  where λ୫ୟ୶ is the maximum eigenvalue of the matrix  𝑉. With a sufficiently 

close approximation to the unit value of the index, the matrix of paired comparisons 𝑉
 
is 

"close" to the multiplicative matrix W. If the consistency index exceeds a certain "threshold" 
value, then it is impossible to conclude the proximity of these matrices, and therefore it is not 
recommended to use AI in such cases. The hierarchy analysis method and its applications are 
described in many reviews, monographs, scientific articles, as well as works popularizing this 
method [10–15].  

However, it can be clearly stated that the method of hierarchy analysis by T. Saaty is ap-
proximate since the method of determining the weight vector is based on numerical (approxi-
mate) methods for calculating the roots of a polynomial. The problem of finding the roots of 
polynomials of degree 𝑛 ≥ 5 is unsolvable in radicals. Therefore, in T. Saaty's method, for the 
number of objects at least five, the procedure for finding the eigenvalues of the matrix of de-
grees of the superiority of the importance of criteria or preferences of alternatives is carried 
out using numerical approximate methods for finding the roots of a polynomial implemented 
in the package Expert Choice [16].  

V.D. Noghin states that "the value of the compatibility index can only indirectly judge the 
magnitude of the final "model" error: it can never be precisely determined by anyone. This is 
the specificity of this heuristic approach" [10, p. 1194].  

The article suggests a more efficient method of the approximation matrix (MAM) for form-
ing optimal object weights based on the matrix criterion of distance to the original matrix of 
judgments than the method of analyzing hierarchies of T. Saaty.  

2. STATEMENT OF THE PROBLEM OF APPROXIMATION 
OF MATRICES OF JUDGMENTS 

In multi-criteria applied problems the aggregation mechanism is usually represented in the 
form of an additive candle of object ratings (alternatives, variants) 𝑎 ∈  𝐴 = {𝑎|𝑙 = 1, 𝑛

തതതതതത }, 
according to criteria with weights of importance in the form [1]: 

𝐹(𝑎, 𝑤ଵ, … , 𝑤) = ∑ 𝑤𝑓(𝑎),
ୀଵ  ∑ 𝑤 = 1,

ୀଵ  
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where 𝑓(𝑎) is the object score 𝑎 in the resulting scale according to the criterion 𝑓 , 𝑗 =   1, 𝑛തതതതത; 
     𝑤 = 𝑤( 𝑓) is the quantitative (normalized) weight 𝑓 of the criterion. 
Let us consider the formulation of the formation of object weights by the criterion of prox-

imity to the original matrix of paired comparisons of a multiplicative matrix. Let us have as 
initial data: 𝑉 =  [𝑣] – the initial expert matrix of judgments about the relative importance of 
objects (criteria) 𝑓  ∈ 𝐹, 𝑖, 𝑗 = 1, 𝑛തതതതത; 𝑊 – the set of multiplicative square matrices n of the nth 
order over the field of real numbers.  As  a measure  of proximity 𝑑(𝑉, 𝑊) between the original 
𝑉 =  [𝑣] and the multiplicative 𝑊 = ൣ𝑤൧ matrix, where 𝑊 ∈ 𝑊 , we take the square of the 
Euclidean l2-norm equal to the difference of these matrices [9]: 

𝑑(𝑉, 𝑊) = ‖𝑉 − 𝑊‖ா
ଶ =  (𝑣 − 𝑤)ଶ



ୀଵ



ୀଵ

. (2.1) 

Then the mathematical formulation of the problem of choosing a multiplicative matrix W 
that approximates the original matrix 𝑉 =  [𝑣], i.e., the closest approach to the original expert 
judgment matrix, is reduced to minimizing the indicator (2.1) in the form  

 (v୧୨ − w୧୨)
ଶ

୬

୨ୀଵ

୬

୧ୀଵ

→ 𝑚𝑖𝑛
∈

, (2.2) 

provided that the matrix elements are multiplicative 𝑊 = [𝑤]: 

w୧୨ = w୧୩w୩୨, ∀ i, j, k = 1, nതതതതത. (2.3) 
Due to condition (2.3), it is not analytically possible to obtain a solution to the original 

problem using one of the classical optimization methods, for example, the Lagrange multiplier 
method. Let us use the properties of the multiplicative matrix and solve this problem by reduc-
ing the original problem to an equivalent problem.  

3. SPECIAL LINEAR PROPERTIES OF A MULTIPLICATIVE MATRIX  

To solve the original problem (2.2)–(2.3), it is necessary to find elements of the multiplicative 
𝑊 = ൣ𝑤൧, ∀𝑖, 𝑗 = 1 , 𝑛തതതതത, matrix, that provides a minimum for the quadratic criterion 𝑑(𝑉, 𝑊) 
(2.1) under condition (2.3). It turns out that for a multiplicative matrix, the relationship be-
tween the elements of the columns of the matrix and the elements of the right eigenvector is 
valid. To do this, consider two statements. The work of B.G. Mirkin [17, p. 183–184] provided 
that the matrix 𝐵 = ൣ𝑏൧, ∀ 𝑖, 𝑗 = 1, 𝑛തതതതത is over traditional if there exists a positive vector 𝑥 =

(𝑥ଵ, . . . , 𝑥ே) such that that 𝑏 =
௫

௫ೖ
 and the vector 𝑥 is a point of equilibrium process: 𝑞ത௧ =

ଵ

ఒ
𝐵𝑞ത௧, 𝑡 = 1,  2, . . ., which in the limit leads to a private vector 𝑞ത = lim

௧⟶ஶ
 𝑞ത௧. We show that 

the multiplicative matrix has several other properties that will be useful in reducing the origi-
nal, analytically unsolvable problem (2.2)–(2.3) in the framework of classical optimization 
methods to an equivalent one.  

3.1. The Relationship Between Normalized Column Elements 
of a Multiplicative Matrix and Elements of the Right Eigenvector 

Theorem 3.1:  

1. Between the elements 𝑤 of a multiplicative matrix 𝑊 = ൣ𝑤൧, ∀𝑖, 𝑗 = 1, 𝑛തതതതത, and any 
pair (𝑤,  𝑤) component of the right eigenvector 𝑤ሬሬ⃗ = (𝑤ଵ, . . . , 𝑤)் true bijective mapping 
௪

௪ೕ
↦ 𝑤, whose every attitude 

௪

௪ೕ
 to one mapping element 𝑤 of the matrix W and back 
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𝑤 ↦
𝑤

𝑤
, 

provided this is true equality:  

𝑤 =
𝑤

𝑤
, ∀ 𝑖, 𝑗 = 1, 𝑛തതതതത. (3.4) 

2. The normalized elements  𝑤 of the columns 𝑤ሬሬ⃗  = (𝑤ଵ, … , 𝑤)் , 𝑗 =  1, 𝑛തതതതത, coincide 
with each other and are equal to the normalized right eigenvector, i.e. 

𝑤ሬሬ⃗෩ = ቌ

𝑤ଵ 
…

𝑤 
ቍ = ൭

𝑤ଵ

…
𝑤

൱ = 𝑤ሬሬ⃗෩, ∀ 𝑗 = 1, 𝑛തതതതത, (3.5) 

where 𝑤 =
௪ೕ

∑ ௪ೕ

ೖసభ

 is the normalized element 𝑗 of the j-th column of 
 
𝑤ሬሬ⃗ ; 𝑤 =

௪

∑ ௪ೖ

ೖసభ

 is 

the normalized element of the i-th row of the right eigenvector 𝑤ሬሬ⃗ . 

3. The multiplicative matrix has one basis row. 
Proof. 1. Since by hypothesis the matrix 𝑊 = ൣ𝑤൧  multiplicative then will provide that, 

if for any pair of numbers from {𝑤ଵ, . . . , 𝑤} the validity of the equation (3.4), then in this case 

the condition of multiplicative between the elements of the matrix 𝑊 = 
௪

௪ೕ
൨,  i.e. thus there 

exists a one-to-one mapping between the elements: 

𝑤 ↔
௪

௪ೕ
. 

Indeed, if 𝑤 =
௪

௪ೖ
 and 𝑤 =

௪ೖ

௪ೕ
, then we have 𝑤𝑤 =

௪

௪ೖ
×

௪ೖ

௪ೕ
=

௪

௪ೕ
= 𝑤, that is, 

for all 𝑖, 𝑗, 𝑘 = 1, 𝑛തതതതത , the multiplicativity condition is satisfied.  
2. Let the elements of the vector 𝑤ሬሬ⃗ = (𝑤ଵ, … , 𝑤)் satisfy equality (3.4). We show that 

 𝑤ሬሬ⃗ = (𝑤1,. . . , 𝑤𝑤𝑛)் is the right eigenvector of the matrix 𝑊 = 
௪

௪ೕ
൨ , ∀𝑖, 𝑗 = 1, 𝑛തതതതത. Let us 

verify that 𝑊𝑤ሬሬ⃗ = λ𝑤ሬሬ⃗  is valid: 

𝑊𝑤ሬሬ⃗ = ൮

𝑤ଵ/𝑤ଵ

𝑤ଶ/𝑤ଵ

…
𝑤/𝑤ଵ

  

𝑤ଵ/𝑤ଶ …
𝑤ଶ/𝑤ଶ …

… …
𝑤/𝑤ଶ …

  

𝑤ଵ/𝑤

𝑤ଶ/𝑤

…
𝑤/𝑤

൲ ൮

𝑤ଵ

𝑤ଶ

…
𝑤

൲ = ൮

𝑛𝑤ଵ

𝑛𝑤ଶ

…
𝑛𝑤

൲ = 𝑛 ൮

𝑤ଵ

𝑤ଶ

…
𝑤

൲ = 𝑛𝑤ሬሬ⃗ , 

where λ୫ୟ୶ = 𝑛 is the maximum eigenvalue. 
For arbitrary columns 𝑤ሬሬ⃗  и 𝑤ሬሬ⃗  𝑤𝑘 𝑎𝑛𝑑 𝑤𝑞 (1 ≤ 𝑘, 𝑞 ≤ 𝑛) of the matrice W, whose ele-

ments satisfy the multiplicativity condition 𝑤 (2.3), we normalize the elements.  
Since 𝑤 = 𝑤𝑤, then 𝑤 = 𝑤/𝑤, whence for any column numbers 𝑘, 𝑞  we have: 

𝑤 =
௪ೖ

∑ ௪ೖ

సభ

=
௪/௪ೖ

∑ ௪ೖ

సభ

=
௪

∑ ௪ೖ௪ೖ

సభ

=
௪

∑ ௪

సభ

= 𝑤, ∀  𝑖 = 1, 𝑛തതതതത,    

i.e., the normalized components of the columns of the matrix coincide with each other. On the 
other hand: 

𝑤 =
𝑤

∑ 𝑤

ୀଵ

=
𝑤/𝑤

∑ 𝑤/𝑤

ୀଵ

=
𝑤

∑ 𝑤

ୀଵ

= 𝑤, ∀ 𝑖 = 1, 𝑛തതതതത. 

Thus, the normalized components of the matrix columns are also equal to the normalized 
elements of the right vector of the multiplicative matrix.  

3. Since the matrix 𝑊 = 
௪

௪ೕ
൨ by linear transformations is reduced to the form: 
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൮

𝑤ଵ/𝑤ଵ

𝑤ଶ/𝑤ଵ

. . .
𝑤/𝑤ଵ

 

𝑤ଵ/𝑤ଶ. . .
𝑤ଶ/𝑤ଶ. . .

. . . . . .
𝑤/𝑤ଶ. . .

 

𝑤ଵ/𝑤

𝑤ଶ/𝑤

. . .
𝑤/𝑤

൲ ~ ∏ 𝑤

ୀଵ ൮

1/𝑤ଵ

1/𝑤ଵ

. . .
1/𝑤ଵ

 

1/𝑤ଶ. . .
1/𝑤ଶ. . .

. . . . . .
1/𝑤ଶ. . .

 

1/𝑤

1/𝑤

. . .
1/𝑤

൲ ~ ∏ 𝑤

ୀଵ ൮

1/𝑤ଵ

0
. . .
0

 

1/𝑤ଶ. . .
0. . .

. . . . . .
0. . .

 

1/𝑤

0
. . .
0

൲,  

the rank of the multiplicative matrix is equal to one: rg 𝑊 = 1, i.e., the multiplicative matrix 
has one basic row. The theorem is proved. ∎ 

3.2. Reducing the Elements of the Matrix Columns to Integer Values 
and Equality to the Right Eigenvector 

Theorem 3.2: 

Let the elements 𝑞 , 𝑖, 𝑘 = 1, 𝑛തതതതത, of the multiplicative matrix 𝑊 = [𝑞], ∀ 𝑖, 𝑘 = 1, 𝑛തതതതത, be 
represented in general by integers and rational numbers in the form of irregular fractions. 

Then, if the elements of 𝑞 any column �⃗�,  𝑘 = 1, 𝑛തതതതത, of the matrix is multiplied by the least 
common multiple 𝑛 denominators of the rational elements of the column, obtained in the 
result of this procedure, the integer elements 𝑧 = 𝑛𝑞 , ∀ 𝑘 =  1, 𝑛തതതതത, the columns of the ma-
trix coincide with each other on any line number, and will be equal to the integer elements 𝑤 
right eigenvector 𝑤ሬሬ⃗ = (𝑤ଵ, . . . , 𝑤, … 𝑤)்corresponding to its own maximum eigenvalue 
𝜆௫ =  𝑛: 

൭

zଵ  
…

z 
൱ = ൭

𝑤ଵ 
…

𝑤 
൱ , 1 ≤ 𝑘 ≤ 𝑛. (3.6) 

Proof.  By theorem 1, the elements of any multiplicative inverse-symmetric matrix can be 
brought to mind (3.4), namely: 𝑞 =

௪

௪ೖ
, where 𝑤 are positive integer numbers – the elements 

of the right eigenvector, the least common multiple of positive integers to rational denomina-
tors of the elements of such a multiplicative matrix is equal to 𝑛 = 𝑤, ∀ 𝑘 = 1, 𝑛തതതതത. 

As a result, for k-th column �⃗� = ቀ
௪భ

௪ೖ
, . . . ,

௪

௪ೖ
ቁ

்

, we find  

𝑛�⃗� = 𝑛 × ൭
𝑤ଵ/𝑛 

…
𝑤/𝑛 

൱ = 𝑤 × ൭
𝑤ଵ/𝑤 

…
𝑤/𝑤 

൱ = ൭

𝑤ଵ 
…

𝑤 
൱ = 𝑤ሬሬ⃗ , ∀ 𝑘 = 1, 𝑛തതതതത,  

that is, we proved the correctness of (3.6). It is easy to verify that 𝑤ሬሬ⃗  is the right eigenvector of 
the matrix 𝑊, which was required to prove. The theorem is proved. ∎ 

Example 1. Consider a multiplicative matrix  

𝑊 =

⎝

⎜
⎜
⎜
⎛

1
1

2
1

3
1

5

  

2
1
2

3
2

5

  

3
3

2
1
3

5

 

5
5

2
5

3
1⎠

⎟
⎟
⎟
⎞

 (3.7) 

For the columns of the matrix, the lowest common multiples are:  

𝑛ଵ = 𝑤ଵ = 2 × 3 × 5 = 30, 𝑛ଶ = 𝑤ଶ = 3 × 5 = 15, 
𝑛ଷ = 𝑤ଷ = 2 × 5 = 10, 𝑛ସ = 2 × 3 = 6. 

From here we come to the matrix: 𝑊 = ൮

30
15
10
6

  

30
15
10
6

  

30
15
10
6

 

30
15
10
6

൲. It is easy to verify that the right 
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eigenvector 𝑤ሬሬ⃗ = (30, 15, 10, 6)் of the matrix W (3.7), corresponding to the eigenvalue 
𝜆 =  4 and the normalized elements of the columns of the matrix coincide with each other and 
are equal to the elements of the normalized right vector of the matrix: 

𝑤ሬሬ⃗෩ = ൬
30

61
,
15

61
,
10

61
,

6

61
൰

்

. 

The original matrix can also be represented as 𝑊 = 
௪

௪ೕ
൨: 

𝑊 = ൮

30/30
15/30
10/30
6/30

  

30/15
15/15
10/15
6/15

 

30/10
15/10
10/10
6/10

 

30/6
15/6
10/6
6/6

൲. 

4. REDUCING THE ORIGINAL PROBLEM TO AN EQUIVALENT ONE 

Since, following (3.5), the elements of the 𝑖-th rows of the normalized vector columns of the 
multiplier and vector matrix are equal to the 𝑖-th normalized component of the right proper 
vector, namely:  

𝑤ଵ = ⋯ = 𝑤 = ⋯ = 𝑤 = 𝑤, (4.8) 

where  ∑ 𝑤

ୀଵ = 1, to we have: 𝑤 =

௪

௪ೕ
=

௪/ ∑ ௪ೖ

ೖసభ

௪ೕ/ ∑ ௪ೖ

ೖసభ

=
௪ 

௪ೕ
, ∀𝑖, 𝑗 = 1, 𝑛തതതതത. 

We show that the multiplicativity condition (2.3) for the normalized row elements (4.8) of 
the matrix is satisfied: 

𝑤𝑤 =
𝑤 

𝑤 
×

𝑤 

𝑤  
=

𝑤 

𝑤  
= 𝑤,   𝑖, 𝑗, 𝑘 = 1, 𝑛തതതതത. 

Thus, finding the elements of the approximating matrix 𝑊 =  [𝑤] of the problem (2.2)–
(2.3) is equivalent to finding the elements of a normalized column vector: 

𝑤ሬሬ⃗෩ = (𝑤ଵ, … , 𝑤, … , 𝑤)் . 

As the target indicator of the approximation problem, we take the square of the difference 
between the normalized elements of the original and multiplicative matrices in the form: 

𝜌൫𝑉෨ , 𝑊෩ ൯ =  ൫𝑣 − 𝑤൯
ଶ



ୀଵ



ୀଵ

 (4.9) 

Then the mathematical formulation of the original problem is reduced to finding the 
normalized right column vector of the approximating matrix and providing the minimum cri-
terion (4.9): 

 ൫𝑣 − 𝑤൯
ଶ



ୀଵ



ୀଵ

→ min
(௪భ,…,௪)

, (4.10) 

where 𝑣 =
௩ೕ

∑ ௩ೕ

సభ

 are the normalized elements of the matrix 𝑉 = [𝑣] of judgments, 

𝑗 =  1, 𝑛തതതതത. 
The reasonableness of the transition from the original perturbed matrix 𝑉 = [𝑣] to the 

normalized 𝑉෨ = [𝑣] is based on the fact that the rank and magnitude of the relation between 
the elements of the same vector column are preserved for the original and normalized matrix.  
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4.1. Theorem on the Optimal Solution: 

Theorem 4.3: 

The optimal solution to the problem (4.10) is a normalized vector  

𝑤ሬሬ⃗෩∗ = ൭
𝑤ଵ

∗

…
𝑤

∗ 
൱, 

the components of which are taken as the coefficients of the importance the criteria 
𝑤

∗ =  𝑤(𝑓) and calculated by the formula: 

𝑤
∗ =

1

𝑛
 𝑣 ,



ୀଵ

 ∀ 𝑖 =  1, 𝑛തതതതത, 

while delivering a minimum of the indicator (4.9).  

The elements of the optimal approximation matrix 𝑊∗ = ൣ𝑤
∗ ൧ are determined by the for-

mula: 

𝑤
∗ =

𝑤
∗

𝑤
∗. 

As an estimate of the approximation matrix to the original judgment matrix, we take the 
Euclidean matrix norm [9]:  

𝑑(𝑉, 𝑊∗) = ‖𝑉 − 𝑊∗‖ா
 = ඩ ൫𝑣 − 𝑤

∗ ൯
ଶ



ୀଵ



ୀଵ

 (4.11) 

The proof is trivial and is based on necessary and sufficient conditions for the existence of 
an optimal solution of a function of many variables. 

4.2. Algorithm for Generating Optimal Weights for Criteria 

Step 1. Normalization of elements of the original matrix of pairwise comparisons of the 
importance of criteria by the sum ∑ 𝑣


ୀଵ  of elements columns of the original matrix of judg-

ments: 𝑣 =
௩ೕ

∑ ௩ೕ

సభ

 are the normalized elements of the judgment matrix 𝑉 = [𝑣]. 

Step 2. The calculation for each row of the normalized matrix 𝑉෨ = [𝑣] of judgments of 
its average value, we take it as the normalized weights of the criteria, namely: 

𝑤
∗ =

1

𝑛
 𝑣 ,  



ୀଵ

𝑤
∗ = 𝑤(𝑓) ∀ 𝑖 =  1, 𝑛തതതതത. 

Step 3. Recovery of the elements of the multiplicative matrix by the optimal normalized 

weights of the criteria: 𝑊ெெ = ൬
௪

∗

௪ೕ
∗ ൰. 

Step 4. Estimation of the proximity between the elements of the original matrix of pairwise 
comparisons and the optimal multiplicative matrix by the formula 𝑑(𝑉, 𝑊∗) (4.11). 

5. COMPARISON OF THE EFFECTIVENESS OF THE METHOD 
WITH THE ANALYTICAL HIERARCHY PROCESS BY T. SAATY 

Let us compare the error of calculating the weights of the importance of objects (criteria, al-
ternatives) by T. Saaty's method with the optimization method of the approximation matrix for 
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the formation of object weights in multi-criteria problems. As multiplicative matrices consider 

the square matrix 𝑊ு = ൬
௪ 

௪ೕ
൰

,ୀଵ,.

 and 𝑊ெெ = ൬
௪

∗

௪ೕ
∗൰

,ୀଵ,.

, in which the elements are de-

termined by the vector of priorities, found by the method of analysis of hierarchies and using 
approximate matrices. 

To do this, we will use the data from the example of buying a house by a family with 
average incomes, given in the work of T. Saaty (see [6, p. 41–44]).  

The problem consists in choosing one house from three available alternatives {A, B, C} 
based on eight factors that serve as criteria for the multi-criteria selection problem.  

Table 5.1 shows expert estimates of pairwise comparison of the importance of criteria and 
the priority vector calculated from the maximum eigenvalue following the method of hierarchy 

analysis by T. Saaty (𝜆୫ୟ୶ = 8,811, compatibility index 𝑆. 𝐼. =
଼,଼ଵଵ

଼
≈ 1,101).  

The summed elements of the judgment matrix and the vector of weights of the importance of 
criteria found from these data using the approximation matrix method are presented in Table 5.2. 

Table 5.1. Initial matrix 𝑉 
 
of judgments and priority vector according to AHP [6, p. 42] 

Factor (criteria) 𝑓ଵ 𝑓ଶ 𝑓ଷ 𝑓ସ 𝑓ହ 𝑓 𝑓 𝑓  
Priority vector, 

𝑤ሬሬ⃗ ு 
Size, 𝑓ଵ 1 5 3 7 6 6 1/3 1/4 0,175 

Transport, 𝑓ଶ 1/5 1 1/3 5 3 3 1/5 1/7 0,062 
Environment, 𝑓ଷ 1/3 3 1 6 3 4 1/2 1/5 0,103 

Age, 𝑓ସ 1/7 1/5 1/6 1 1/3 1/4 1/7 1/8 0,019 
Yard, 𝑓ହ 1/6 1/3 1/3 3 1 1/2 1/5 1/6 0,034 

Facilities, 𝑓 1/6 1/3 1/4 4 2 1 1/5 1/6 0,041 
State, 𝑓 3 5 2 7 5 5 1 1/2 0,221 

Finance, 𝑓  4 7 5 8 6 6 2 1 0,348 

Table 5.2. Normalized matrix 𝑉෨ =
௩ೕ

∑ ௩ೕ

సభ

  of judgments and a vector of priorities by MAM 

Factor (criteria) 𝑓ଵ 𝑓ଶ 𝑓ଷ 𝑓ସ 𝑓ହ 𝑓 𝑓 𝑓  
Priority vector,  

𝑤ሬሬ⃗ ெெ  
Size, 𝑓ଵ 0,11 0,23 0,25 0,17 0,23 0,23 0,07 0,10 0,174 

Transport, 𝑓ଶ 0,02 0,05 0,03 0,12 0,11 0,12 0,04 0,06 0,068 
Environment, 𝑓ଷ 0,04 0,14 0,08 0,15 0,11 0,16 0,11 0,08 0,108 

Age, 𝑓ସ 0,02 0,01 0,01 0,02 0,01 0,01 0,03 0,05 0,021 
Yard, 𝑓ହ 0,02 0,02 0,03 0,07 0,04 0,02 0,04 0,07 0,038 

Facilities, 𝑓 0,02 0,02 0,02 0,10 0,08 0,04 0,04 0,07 0,047 
State, 𝑓 0,33 0,23 0,17 0,17 0,19 0,19 0,22 0,20 0,212 

Finance, 𝑓  0,44 0,32 0,41 0,20 0,23 0,23 0,44 0,39 0,333 

To evaluate the accuracy, we restore multiplicative matrices of pairwise relations by prior-
ity vectors: 

𝑤ሬሬ⃗ ு = (0,175; 0,062; 0,103; 0,019; 0,034; 0,041; 0,221; 0,348), (5.12) 

𝑤ሬሬ⃗ ெெ = (0,174; 0,068; 0,108; 0,021; 0,038; 0,047; 0,212; 0,333), (5.13) 

obtained by the method of calculating the eigenvector and the method of approximating the 
matrix of pairwise comparisons using the minimum distance criterion, and compare the results.  

Tables 5.3 and 5.4 present multiplicative matrices 𝑤ሬሬ⃗ ு, 𝑤ሬሬ⃗ ெெ, with priority vectors 𝑤ሬሬ⃗ ு 
(5.12) and 𝑤ሬሬ⃗ ெெ (5.13) formed from normalized weights. 

Table 5.3. Multiplicative matrix Wு , formed from normalized weights of the priority vector 𝑤ሬሬ⃗ ு 
Factor (criteria) 𝑓ଵ 𝑓ଶ 𝑓ଷ 𝑓ସ 𝑓ହ 𝑓 𝑓 𝑓  

Size, 𝑓ଵ 1,00 2,82 1,70 9,21 5,15 4,27 0,79 0,50 
Transport, 𝑓ଶ 0,35 1,00 0,60 3,26 1,2 1,51 0,28 0,18 

Environment, 𝑓ଷ 0,59 1,66 1,00 5,42 3,03 2,51 0,47 0,30 
Age, 𝑓ସ 0,11 0,31 0,18 1,00 0,56 0,46 0,09 0,05 
Yard, 𝑓ହ 0,19 0,55 0,33 1,79 1,00 0,83 0,15 0,10 
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Facilities, 𝑓 0,23 0,66 0,40 2,16 1,21 1,00 0,19 0,12 
State, 𝑓 1,26 3,56 2,15 11,63 6,50 5,39 1,00 0,64 

Finance, 𝑓  1,99 5,61 3,38 18,32 10,24 8,49 1,57 1,00 

Table 5.4. Multiplicative matrix 𝑊ெெ  formed from normalized weights of the priority vector 𝑤ሬሬ⃗ ெெ  
Factor (criteria) 𝑓ଵ 𝑓ଶ 𝑓ଷ 𝑓ସ 𝑓ହ 𝑓 𝑓 𝑓  
Size, 𝑓ଵ 1,00 2,54 1,62 8,37 4,63 3,70 0,82 0,52 
Transport, 𝑓ଶ 0,39 1,00 0,64 3,30 1,83 1,46 0,32 0,21 
Environment, 𝑓ଷ 0,62 1,57 1,00 5,17 2,86 2,29 0,51 0,32 
Age, 𝑓ସ 0,12 0,30 0,19 1,00 0,55 0,44 0,10 0,06 
Yard, 𝑓ହ 0,22 0,55 0,35 1,81 1,00 0,80 0,18 0,11 
Facilities, 𝑓 0,27 0,69 0,44 2,26 1,25 1,00 0,22 0,14 
State, 𝑓 1,22 3,10 1,98 10,21 5,65 4,52 1,00 0,64 
Finance, 𝑓  1,91 4,86 3,10 16,02 8,86 7,08 1,57 1,00 

We find the values of the norm of the difference between the original matrices and the 
multiplicative matrices of relations formed from the values of the priority vector (the im-
portance of objects):   

𝑑ு = ‖𝑉 − Wு‖ = √200,66 ≈ 14,2; 𝑑ெெ = ‖𝑉 − 𝑊ெெ‖ = √139,61 ≈ 11,8. 

Let us determine the accuracy of the solution 𝑑ு by the method of T. Saaty concerning 
the optimal 𝑑 ெெ obtained in the framework of the optimization problem by the criterion 
(4.11). Using the ε-approximation formula, we find that: 

𝜀 =
|𝑑ு − 𝑑ெெ|

𝑑ெெ
× 100 % =

14,2 − 11,8

11,8
× 100 % ≈ 20,3 %. 

Comparison of methods for the accuracy of obtaining the weights of objects for the original 
perturbed matrix of the 8th order is shown in Fig. 5.1.  

 
Fig 5.1. Comparison of methods based on the accuracy of obtaining object weights 

It follows that the error estimate is 20,3 % and the AHP solution that differs from the opti-
mal one by this value cannot be considered satisfactory. Thus, T. Saaty's method of finding 
priorities for the importance of criteria and objects based on the eigenvector of the matrix of 
pairwise comparisons should be attributed to approximate, and not to exact, as the author of 
AHP declares. 

7. CONCLUSION 

The paper explores the problem of forming quantitative weights of objects based on the matrix 
of pairwise comparisons in the relationship scale. Since in the hierarchy analysis process of 
T. Saaty, the method of determining the weight vector is carried out using polynomials, the 
problem of finding the roots of polynomials of degree 𝑛 ≥ 5 is unsolvable in radicals.  

Therefore, in T. Saaty's method, for the number of objects at least five, the procedure for 
finding the eigenvalues of the matrix of degrees of the superiority of the importance of criteria 
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or preferences of alternatives is carried out using numerical methods for finding the roots of a 
polynomial implemented in the package Expert Choice [17]. 

On the other hand, and because of the inverse symmetry of the elements of the matrix of 
judgments 𝑉 = [𝑣], 𝑖, 𝑗 = 1, 𝑛,തതതതത obtained by sequential comparison of all pairs of objects, the 

expert has to answer 
(ିଵ)

ଶ
 questions about the values 𝑣. In this regard, the T. Saaty's method 

is justified only for a small number of criteria and objects. 
In this article, using a concrete example, it is shown that the analytical hierarchy method is 

approximate and at the same time, its error is estimated relative to the optimal solution obtained 
by the method of the approximation matrix for the formation of object weights in multi-criteria 
problems. Since the presented method is mathematically justified, and also because of the 
computational simplicity of forming object weights, it can be recommended instead of the 
method T. Saaty in solving applied problems. 
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