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Abstract

A system of postulates which give a geometric meaning to the fundamental no-
tions of gravity theory is introduced. The fundamental equation of geometric
gravity theory is derived. The consistency of the system of postulates is shown.
A series of examples adequately describing the gravitational field are considered.
Mathematically rigorous definitions of a black hole and dark energy are given.
Keywords pseudo-Riemannian space, scalar curvature, metric gravity equation,
spherically symmetric spatial black hole, dark energy

1 Introduction

Hilbert’s sixth problem of axiomatizing those branches of physics in which math-
ematics is prevalent, posed by Hilbert in 1900 among other problems, has the
status of being too vague. However, in the context of some particular area of
physics, such as gravity theory, this problem can be stated rigorously.

The foundation of physical gravity theory is two fundamental physical concept-
s, of the gravitational field and of the mass of a body. In general relativity theory
(GRT), which is essentially relativistic gravity theory, a substantial progress in
the mathematical interpretation of one of the basic concepts of the theory, name-
ly, that of the gravitational field, has been made. From the geometrical point
of view, the gravitational field is interpreted as a metric pseudo-Riemannian 4-
space. However, GRT does not provide such a precise mathematical definition of
mass, or, to be more precise, the distribution density of mass. Thus, the GRT
fundamental equation contains both a purely mathematical left-hand side, which
is generated by a metric space, and a purely physical right-hand side, which is the
energy-momentum tensor of the physical system under consideration. Note that
GRT imposes no constraints on the choice of the energy-momentum tensor; this
leads to the possibility of constructing unrealistic models and, thereby, provides
evidence for the insufficiency of the principles on which GRT is founded.

Our purpose in this paper is to present a complete translation of gravity theo-
ry into the language of differential geometry, in which the physical notion of the
mass distribution density has a purely geometric interpretation.

2 The First Postulates of Mathematical Gravity Theory

The notion of a metric space is the basis on which mathematical gravity theory is
constructed. To construct the theory, it suffices to choose a pseudo-Riemannian
4-space of signature (−−−+), on which a twice covariant symmetric nondegen-
erate tensor field gij(x1,K, x4) is defined; we have
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det |gij | ̸= 0, gij = gji, i, j = 1, . . . , 4

We refer to the tensor as the metric of the pseudo-Riemannian space. General
requirements to a metric space are as follows: (1) smoothness, i.e., the continuity
of all components of the metric on the entire space and the continuous differen-
tiability of the components up to the second order with respect to all variables
almost everywhere except, possibly, on singular sets; (2) the preservation of the
metric signature at each point of the space.

Note that the metric smoothness condition is stated in a somewhat relaxed
form in order to make it possible to consider pseudo-Riemannian spaces with
discontinuous scalar curvature.

Note that the space structure and dimension chosen above are not regarded to
be final. They are only sufficient for constructing geometric gravity theory; thus,
we introduce them as sufficient conditions for constructing an adequate theory
rather than as fundamental postulates.

We proceed to state two postulates of geometric gravity theory. As mentioned
above, the main physical objects of gravity theory are the gravitational field and
the distribution density of the matter mass. The objective of gravity theory is
determining laws governing the interaction of the gravitational field with the dis-
tribution density of gravitational mass.

The first postulate of geometric gravity theory can be stated as follows.
Postulate 1. The gravitational field is a metric of a pseudo-Riemannian space.
This assertion is the basis of GRT and does not need any comments. Before

stating the second postulate, we introduce the following notation[1-2]:
Γk
ij is the pseudo-Riemannian connection, which is defined by

Γk
ij = −1

2
gkl(

∂glj
∂xi

+
∂gli
∂xj

+
∂gij
∂xl

); (1)

Rij is the Ricci tensor, that is,

Rij =
Γk
ij

∂xk
−

Γk
ik

∂xj
+ Γk

pkΓ
p
ij − Γk

pjΓ
p
ik; (2)

R is the scalar curvature, that is,

R = gijRij ; (3)

where the summation over repeated indices is implied; and is the contravariant
metric tensor.

Postulate 2′ (weak statement). If the mass density of the matter is nonzero at
some point of the space, then so is the scalar curvature of the space at this point,
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and vice versa.
This postulate says nothing about the form of the dependence between these

scalar functions. It only indicates the existence of a relation between them. To
determine this relation, we use two principles; namely, the principle of minimal
action and the correspondence principle.

These principles make it possible to derive the fundamental equation of geo-
metric gravity theory and refine the statement of Postulate 2.

3 The Third Postulate, the Fundamental Equation of Gravity Theory, and
the Strengthened Statement of Postulate 2′

According to Postulate 2′, there is a dependence between the scalar function of
the matter mass density and the function of the space scalar curvature. To find
this dependence, we introduce a composite scalar function χ (ρ) , which depends
on the matter mass density ρ in an unknown way, and a scalar curvature function
R(gij), which is a composite function depending on the metric gij .

The general form of the gravitational field equations can be obtained by ap-
plying the principle of minimal action. The field equations are obtained as the
EulerCLagrange equations under the variation of the field action. For the field
action functional we take the quantity

Sg =

∫
Ω
(R + χ)

√
|g|d4x, (4)

where dΩ =
√

|g|d4x is the standard volume 4-form on the pseudo-Riemannian
space,g = det(gij), and the integral is the whole 3-space (x1, x2, x3) and over the
interval x41 ≤ x4 ≤ x42 of the time coordinate x4.

Postulate 3. In geometric gravity theory, the following relation holds:

δSg

δgij
= 0.

Postulate 3 means that the sought dependence between the composite functions
R(g) and χ(ρ) minimizes the action functional (4) with respect to the contravari-
ance metric of the pseudo-Riemannian space gij .

Theorem 1. If Postulate 3 holds for functional (4), then

Rij −
1

2
Rgij =

1

2
χgij . (5)

Proof. Relation (4) implies

δSg

δgij
=

δ
∫
ΩR(g)

√
|g|d4x

δgij
+

δ
∫
Ω χ(ρ)

√
|g|d4x

δgij
.
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The first term is the Hilbert variational derivative[3]

δ
∫
ΩR(g)

√
|g|d4x

δgij
= Rij −

R

2
gij .

The second term can be represented in the form

δ
∫
Ω χ(ρ)

√
|g|d4x

δgij
=

∫
Ω(δχ(ρ)

√
|g|+ χ(ρ)δ

√
|g|)d4x

δgij
.

Taking into account the relation δ
√

|g| = −1
2

√
|g|gijδgij and the fact that the

variation of the scalar.
function χ(ρ), which does not depend on the metric gij , vanishes, we obtain

δ
∫
Ω χ(ρ)

√
|g|d4x

δgij
= −χ(ρ)

2
gij .

It follows that
δSg

δgij
= Rij − R

2 gij −
χ(ρ)
2 gij = 0, which completes the proof of the

theorem.
Equation (5) implies the presence of a linear dependence between the functions

R and χ. Indeed, multiplying the right- and left-hand sides of equation (5) by
the contravariant metric tensor gij and convolving both sides over the indices i
and j, we obtain the relation

χ = −R

2
. (6)

According to (6), the scalar curvature R turns out to depend on the matter mass
density ρ. However, we do not know the particular form of this dependence so far.
To determine it, we apply the correspondence principle, which can be stated as
follows: If the metric gij weakly converges to the Minkowski metric ηij and, more-
over, g44 = 1+ aφ

c2
+ o( 1

c3
) and gij = −δij + o( 1

c3
) for i, j = 1, . . . , 4, i ̸= j , where

c−1 is a small parameter and φ is a twice differentiable function, then equation (5)
must degenerate into the Poisson equation for Newtonian gravity theory, which is

∆φ = 4πGρ, (7)

where ∆ is the Laplace operator, φ is the Newtonian gravitational potential, G
is the gravitational constant, and c is the speed of light. Simple calculations
show that equation (5) does degenerate into the Poisson equation (7) under the
condition

ρ =
c2

32πG
R. (8)

Relation (8) can be regarded as a stronger statement of Postulate 2’.
Postulate 2 (strong statement). The matter mass distribution density in space
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is directly proportional to the scalar curvature of the pseudo-Riemannian space:
ρ = æR , where æ = c2

32πG .It follows from Postulate 2 and equation (5) , based on
Postulate 3, that the fundamental equation of gravity theory can be represented
in the form

Rij −
1

2
Rgij = −8πG

c2
ρgij , i, j = 1, . . . , 4, (9)

or in the form of the system of two relations

Rij =
R

4
gij , i, j = 1, . . . , 4, (10)

R =
32πG

c2
ρ

the first of which is a direct consequence of Postulate 3 and the second, of Pos-
tulate 2.

Thus, physical theory of gravitational fields can be translated into the language
of differential geometry. According to Postulates 1 and 2, the fundamental phys-
ical concepts of gravitational theory, such as gravitational field and matter mass
density, are interpreted in the geometric as the metric and the scalar curvature
(up to proportionality), respectively, of a pseudo-Riemannian space.

4 Consistency and Physical Adequacy of Postulates 1-3

To verify the consistency of the system of postulates stated above and the phys-
ical adequacy of these postulates, consider a model of a spherically symmetric
space with a ball of radius r1 at the center of symmetry. The ball is uniformly
filled with a matter of mass ρ and constant density; outside the ball, there is
no matter. From the geometric point of view, we have a spherically symmetric
pseudo-Riemannian space with constant scalar curvature R = 32πG

c2
ρ inside a ball

of radius r1 and vanishing scalar curvature outside the ball. The problem is to
determine the metric of such a space.

Hereafter, we always assume that the system units used for measuring physical
quantities is chosen so that G, c = 1 .

The general form of a stationary spherically symmetric metric of a pseudo-
Riemannian 4-space in spherical coordinates t, r, θ, φ is[4]

dS2 = g44(r)dt
2 + g11(r)dr

2 + g22(r)(dθ
2 + sin2θdφ2), (11)

where g11 and g22 are negative unknown functions and g44 is a positive function,
which depend on the variable r, and r, t ∈ (0,∞), r ∈ (0,∞), θ ∈ [0, π], φ ∈
[0, 2π).

The components of metric (11) must satisfy system (10) . Using relations (1)
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and (2), we can reduce system (10) for metric (11) to the form

(
g′22
g22

)′ +
1

2
(
g′44
g44

)′ − 1

2
(
g′11
g11

)(
g′22
g22

+
g′44
2g44

) +
1

2
(
g′22
g22

)
2

+
1

4
(
g′44
g44

)
2

=
R

4
g11,

1

2
(
g′22
g11

)′ +
g′22
2g11

(
g′11
2g11

+
g′22
g22

+
g′44
2g44

)− 1

2g11g22
(g′22)

2 − 1 =
R

4
g22, (12)

−1

2
(
g′44
g11

)′ − g′44
2g11

(
g′11
2g11

+
g′22
g22

+
g′44
2g44

) +
1

2g11g44
(g′44)

2
=

R

4
g44,

where g′ij =
dgij
dr , R > 0 ,at r ≤ r1, and R = 0 at r > r1 . For the sake of generality,

we assume that the unknown scalar function R in system (12) depends on the r
coordinate.

The following theorem is valid.
Theorem 2. If g22(0) = 0 and g44(0) < ∞, then the scalar curvature R(r) does

not depend on r in the domain where it is nonzero, and system (12) has a unique
solution depending on one free parameter.

If, in addition,g44(0) = 1, then the solution of system (12) is unique; moreover,

at r ≤ r1, where r1 <
√

12
R , it coincides with the de Sitter metric[5]

dS2 = (1− R

12
r2)dt2 − dr2

1− R
12r

2
− r2(dθ2 + sin2θdφ2), (13)

and at r > r1, it coincides with the Schwarzschild metric[6]

dS2 = (1− R

12

r31
r
)dt2 − dr2

1− R
12

r31
r

− r2(dθ2 + sin θ2dφ2). (14)

Proof. System of equations (12) can be simplified by passing to the generalized

spherical coordinates x1, . . . , x4,where x1 = r3

3 ,x2 = − cos θ,x3 = φ,and x4 = t.
Let us introduce the following new notation for the components of the metric
tensor:

g11 = −(3x1)
4
3 f1(x1), g22 = −f2(x1), g44 = f4(x1).

In this notation, metric (11) takes the following form in the generalized spherical
coordinates:

dS2 = f4dx4
2 − f1dx1

2 − f2(
dx2

2

1− x22
+ (1− x2)dx3

2). (15)

Using the arbitrariness of the scaling multiplier of the coordinate x1 , we can
achieve

f1f2
2f4 = 1. (16)
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System (10) for metric (15) can be represented as

−1

2
(
f ′
1

f1
)′ +

1

2
(
f ′
2

f2
)
2

+
1

4
(
f ′
1

f1
)
2

+
1

4
(
f ′
4

f4
)
2

= −R

4
f1,

1

2
(
f ′
2

f1
)′ − 1

2f1f2
(f ′

2)
2 − 1 = −R

4
f2, (17)

−1

2
(
f ′
4

f1
)′ +

1

2f1f4
(f ′

4)
2
=

R

4
f4.

Condition (16) gives the additional equation

f ′
1

f1
+

2f ′
2

f2
+

f ′
4

f4
= 0, (18)

where f ′
i =

dfi
dxi

.
System (17), (18) contains four unknown functions f1 ,f2 ,f4 , and R ; only

two of these functions, say f2 and R , can be regarded to be independent. This
follows from relations (3) and (16). Let us express the unknown functions f1 and
f4 in terms of f2 and R . For this purpose, note that the third equation in system
(17) can be represented as

1

2f1f4
f ′
1f

′
4 −

1

2
(
f ′
4

f4
)′ =

R

4
f1. (19)

Adding the first equation in system (17) to equation (19) and using (18) ,we
obtain the relation

(
f ′
2

f2
)′ +

3

2
(
f ′
2

f2
)
2

= 0.

Twice integrating it, we obtain f2 = λ(3x1 + α)
2
3 , where λ and α are arbitrary

constants of integration. By the assumption of the theorem, we have f2(0) = 0 ,
which implies α = 0 and

f2 = λ(3x1)
2
3 . (20)

We seek
f ′
4

f4
in (19) in the form

f ′
4

f4
= c(x1)f1 . Substituting the last relation into

equation (19) , we obtain

f ′
4 =

C − 1
2

∫
Rdx1

λ2(3x1)
4
3

,

where C is a constant.
Integrating both sides of this relation, we arrive at the formula

f4 = β − C

λ2(3x1)
1
3

+
1

2λ2

∫
Rdx1

(3x1)
1
3

− 1

2λ2

∫
R

(3x1)
1
3

dx1, (21)
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where β is constant of integration. By the assumption of the theorem, the function
f4(0) is bounded; therefore, considering a solution in some neighborhood of zero,
we must set C = 0 , and the formula for f4 takes the form

f4 = β +

∫
R(x1)dx1

2λ2(3x1)
1
3

− 1

2λ2

∫
R(x1)

(3x1)
1
3

dx1. (22)

Condition (16) implies

f1 =
1

λ2(3x1)
4
3

1

f4
. (23)

The functions f1 ,f2, and f4 specified by (20), (22), and (23) satisfy system (17)
of differential equations only if

βλ3 = 1,∫
R(x1)

(3x1)
1
3

dx1 =
R(x1)

2
(3x1)

2
3 . (24)

It follows from relation (24) that the function R(x1) must be constant in the
domain where it is nonzero. Thus, inside the ball of radius r1 , the components
of metric (25) have the form

f2 = λ(3x1)
2
3 , f4 =

1

λ3
− R

12

(3x1)
2
3

λ2
, f1 =

1

λ2(3x1)
4
3

1

f4
. (25)

Outside the ball, the scalar curvature vanishes, and relation (21) implies that the
components of metric (15) have the form

f2 = λ(3x1)
2
3 , f4 =

1

λ3
− C

λ2(3x1)
1
3

. (26)

These components satisfy also system (17),(18). The constant C in (26) is found
from the condition that the metric components must be continuous on the entire
space, which implies C = R

12r1
3.

System (17), (18) has the unique solution (25), (26), which contains one free
parameter λ. Taking into account the additional condition g44(0) = 1 in the
theorem, which implies λ = 1, and passing to the usual spherical coordinates, we
see that relations (13) and (14) hold. This completes the proof of the theorem.

Thus, in the framework of the proposed axiomatics, we have constructed a
mathematically rigorous model of a spherically symmetric space adequately de-
scribing the spherically symmetric gravitational field generated by a spherical
gravitational source with constant mass density.

Theorem 2 are easy to extend to a more general case.
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5 Stationary Spherically Symmetric Spaces with Scalar Curvature having
Finitely or Countably Many Discontinuities of the First Kind and a Math-
ematically Rigorous Definition of Spherically Symmetric Black Holes

Consider a stationary spherically symmetric space endowed with a metric of the
general form (11). Suppose that the scalar curvature of this space is a piecewise
smooth function R(r) with at most countably many discontinuities of the first
kind at points r1, r2, . . . , rn, . . . numbered in increasing order. For such a space,
the following theorem is valid.

Theorem 3. If the components of metric (11) satisfy the conditions g22(0) = 0
and g44(0) = 1 , then the scalar curvature of the spherically symmetric space
under consideration is a piecewise constant function taking the constant values
R(r) = Rk at rk−1 < r ≤ rk for k = 1, . . . , n, . . ., where r0 = 0.

The metric of such a space is everywhere continuous, provided that 2m(r)
r < 1

for r ∈ (0,∞), and has the form

dS2 = (1− 2m(r)

r
)dt2 − dr2

1− 2m(r)
r

− r2(dθ2 + sin2θdφ), (27)

where m(r) =
r∫
0

∑
k>0

Rk
4 [θ(x− rk−1)− θ(x− rk)]x

2dx.

The components of metric (27) satisfy system (12) of differential equations
everywhere except at a finite or countable set of points r1, . . . , rn, . . . .

Proof. This theorem is proved by the same method as Theorem 2. As in
Theorem 2, we show that, under the assumptions of Theorem 3, the components
of metric (11) in the spherical coordinate system have the form

g44 = 1− 1

4r

r∫
0

R(x)x2dx, g22 = −r2, g11 = −g44
−1, (28)

where R is a piecewise smooth function with at most countably many disconti-
nuities of the first kind at points r1, r2, . . . . The functions in (28) satisfy system
(12) only under the condition

dR

dr
= 0, (29)

which is an analogue of condition (24) in the proof of Theorem 2. Relation (29)
implies that R(r) must take constant values in its domains of continuity. Suppose
that R(r) takes a value Rk at rk−1 < r ≤ rk ; then

R(r) =
∑
k=1

Rk(θ(r − rk−1)− θ(r − rk)),
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which implies the assertion Theorem 3.
The components of metric (27) are everywhere continuous if 2m(r)

r < 1 for

r ∈ (0,∞). If 2m(r)
r = 1 at some r = rg. In this case, there are two possibilities:

either the spherically symmetric space is bounded by a hypersphere with radial
parameter rg (if 2m(r)

r > 1 at r > rg ), or this space can be extended (if 2m(r)
r < 1

at r > rg ). In the latter case, the space contains a spherically symmetric body of
radius rg with generally nonuniform mass distribution density, and on the bound-
ary of this body, the metric exhibits an irregular behavior.

We refer to such bodies as spherically symmetric stationary black holes. Below
we give the definition of the simplest stationary black hole.

Definition 1. A globular body of radius rg with constant mass density satisfy-
ing the condition R = 12

rg2
is called a stationary spherical black hole. The sphere

of radius rg being the surface of a black hole is called its horizon level, or the
Schwarzschild sphere.

It follows from the definition that rg =
√

12
R . Note that the signature of the

space inside a black hole and outside it remains invariable, which agrees with
condition (2) on the metric of a pseudo-Riemannian space. All components of
metric (27) are continuously differentiable on the entire space except on the sur-
face of the black hole, on which the behavior of metric (27) is irregular, namely,
g11(rg) = −∞. The mathematical properties of a stationary spherically sym-
metric black hole in the formalism suggested here substantially differ from the
properties of black holes investigated in the framework of GRT[7].

If the spherically symmetric space has the same scalar curvature R at all points,
then the space is the de Sitter closed elliptic space[5] determined by metric (27)
of the form

dS2 = (1− R

12
r2)dt2 − dr2

1− R
12r

2
− r2(dθ2 + sin2θdφ)

with r <
√

12
R . This space is bounded by a sphere with radial parameter

r <

√
12

R
.

Such a model corresponds to a homogeneous closed space filled with a matter
with constant mass density.

Consider yet another parameter of the spherically symmetric space generated
by a ball of radius r1 with constant mass density ρ1 and a matter with constant
mass density ρ2 filling the whole space outside the ball. The scalar curvature of
the space inside the ball is calculated by R1 = 32πρ1 and outside the ball, by
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R2 = 32πρ2. The components of metric (27) for each space have the form

g44 = 1− R1

12
r2

at r < r1,

g44 = 1− R1 −R2

12

r1
3

r
− R2

12
r2

at r ≥ r1, and
g22 = −r2, g11 = −g44

−1(r)

if R1
12 r1

2 < 1. The spherically symmetric space is bounded by a sphere of radius
r2, which is the least positive root of the cubic equation

r3 − 12

R2
r +

R1 −R2

R2
r1

3 = 0.

A criterion for the transformation of the ball into a black hole is R1
12 r1

2 = 1.

6 A Model of a Nonstationary Spherically Symmetric Pseudo-Riemannian
Space with Constant Scalar Curvature and the Definition of Dark Energy

In the preceding section, we described a stationary spherically symmetric space
with discontinuous scalar curvature. Here, we consider a mathematical model of
a spherically symmetric pseudo-Riemannian space with nonstationary Fridman-
type metric[8]

dS2 = dx4
2 − r2(x4)(dx1

2 + sin2x1(x2
2 + sin2x2dx3

2)), (30)

where r is the curvature radius of the three-dimensional hypersphere, which
depends on the parameter x4; x1 ∈ (0, 2π); x2 ∈ (0, π); x3 ∈ (0, 2π); and
x4 ∈ (0,∞).

The following theorem is valid.
Theorem 4. System (10) for metric (30) reduces to the single second-order

nonlinear differential equation

r
d2r

dx42
− (

dr

dx4
)
2

− 1 = 0

for the unknown function r(x4). This equation has a real solution r = r0 cosh
x4
r0
,where

r0 is a some constant. The scalar curvature of the space is everywhere constant
and has the form R = 12

r02
.

Proof. According to (30), the nonzero components of the covariant metric
tensor gij have the form

g11 = −r2, g22 = −r2sin2x1, g33 = −r2sin2x1sin
2x2, g44 = 1. (31)
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The components of the contravariant metric tensor gij have the form

g11 = −r−2, g22 = − 1

r2sin2x1
, g33 = − 1

r2sin2x1sin
2x2

, g44 = 1. (32)

Substituting the metric components (31) and (32) into relation (1), we find all
nonzero elements of the pseudo-Riemannian connection; these are

Γ22
1 = − sinx1 cosx1,Γ33

1 = − sinx1 cosx1sin
2x2,Γ14

1 =
1

r

dr

dx4
,

Γ12
2 = cotx1,Γ33

2 = − sinx2 cosx2,Γ24
2 =

1

r

dr

dx4
, (33)

Γ13
3 = cotx1,Γ23

3 = cotx2,Γ34
3 =

1

r

dr

dx4
,

Γ11
4 = r

dr

dx4
,Γ22

4 = r
dr

dx4
sin2x1,Γ33

4 = r
dr

dx4
sin2x1sin

2x2.

Using the components (33) of the connection and applying formula (2), we obtain
all nonzero components of the Ricci tensor Rij :

R11 = −2(
dr

dx4
)
2

− r
d2r

dx42
− 2, R22 = sin2x1R11, (34)

R33 = sin2x1sin
2x2R11, R44 =

3

r

d2r

dx42
.

It follows from (10), (32), and (34) that the scalar curvature is

R =
6

r

d2r

dx42
+

6

r2
(
dr

dx4
)
2

+
6

r2
. (35)

By virtue of (31), (34), and (35), system (10) degenerates into a single equation
of the form

r
d2r

dx42
− (

dr

dx4
)
2

− 1 = 0. (36)

We seek a solution of equation (36) in the form

r = a1e
β1x4 + a2e

−β2x4 ,

where a1, a2, β1, and are some constants. Then equation (36) transforms into
the relation a1a2(β1 + β2)

2 = e(β2−β1)x4 , which implies β1 = β2 and a1a2 =
1

4β1
2 .

Since r > 0, it follows that a1 > 0 if β1 > 0, and we can set a1 =
ea

2β1
and a2 =

e−a

2β1
.

If dr
dx4

|
x4=0

= 0, then a = 0. Setting a1 = r0, we finally obtain r(x4) = r0 cosh
x4
r0
.
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There exists yet another, complex, solution of equation (36), namely, r = ix4,
but we are interested only in real positive solutions. Substituting the solution
r(x4) = r0 cosh

x4
r0

into (35), we obtain the following expression R = 12
r02

for the
scalar curvature, which proves the theorem.

At first glance, the physical interpretation of the assertion of Theorem 4 may
seem rather contradictory. On the one hand, the hyperspherical space expands by
an almost exponential law, i.e., the curvature radius increases as r = r0 cosh

x4
r0
,

while the scalar curvature R itself does not depend on the parameter x4 and
remains everywhere constant. According to Postulate 2, this means that the mass
density of the matter uniformly filling the expanding space remains constant as
well.

In reality, these results involve no contradiction. At present, the existence of
a new type of matter in our universe, which is known as dark energy, has been
reliably established in cosmology; this matter fills uniformly whole space and is
characterized by constant mass density not depending on the time parameter
x4. The model suggested above can be regarded as an example confirming the
existence of this type matter with such unusual physical properties.

7 Conclusion

The axiomatization of gravity theory proposed in this paper and the fundamen-
tal gravity equation obtained on the basis of these axioms make it possible to
demonstrate the effectiveness of the suggested approach for a number of physical
examples considered in the paper. It suffices to mention that the problem of con-
structing an everywhere continuous spherically symmetric stationary metric of a
pseudo-Riemannian space with discontinuous scalar curvature, which is solved in
general form in Section 4, still remains unsolved in the framework of GRT, in
which solving this problem involves fundamental difficulties. In the framework of
the formalism suggested here, the concepts of a stationary black hole and dark
energy are defined more rigorously from the mathematical point of view. Impor-
tantly, dark energy arises in a natural way as one of the solutions of the system
(10) of gravity equations, which, unlike in GRT[9], does not require introduce any
additional empirical constants into the main equation, such as the cosmological
constant and its comparatively recent interpretation as the mass density of dark
energy[10].
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