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Abstract: In this paper we study the controllability problem in a Banach space for various
classes of functional inclusions with causal operators with an infinite delay, and impulse effects.
Basing on the topological degree theory for condensing multimaps, we prove a global theorem
on the existence of trajectories for systems governed by functional inclusions. As an application,
we obtain generalizations of existence theorems for the controllability problem for a semilinear
first order functional differential inclusions of this type and a semilinear functional differential
inclusions of a fractional order 0 < q < 1.
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1. INTRODUCTION

It is well known that the contemporary approach in the theory of control systems and
in mathematical physics leads to models which are convenient to be described by using
differential equations and inclusions. Recently, the attention of many researchers (see [1], [2],
[3] and references therein) has been attracted to generalizations of differential equations and
inclusions, namely to the class of functional equations and inclusions with causal operators.
The term of a causal or Volterra operator in the sense of A.N. Tikhonov (see [4]), was
used in mathematical physics to solve problems of differential equations, integro-differential
equations, functional-differential equations with a finite or infinite delay, integral equations
of Volterra type, functional equations of a neutral type, etc. (see, for example, [5]). The
papers [6], [7], [8], [9] among others are devoted to the study of equations and inclusions
with causal operators of various types, theorems on the existence of solutions, description of
qualitative properties of solutions and various applications.

At the same time, in recent decades the interest to the theory of fractional-order
differential equations has significantly increased, thanks to applications in various branches
of applied mathematics, physics, engineering, biology, economics, etc. (see, for example,
monographs [10], [11] papers [12], [13], [14], [15], [16], etc.). The boundary value problems
of various types for fractional differential equations and inclusions were considered in the
works [17], [18], [19], [20], [21], [22], [23].

In this paper we develop and generalize the results of papers [2] and [3], and we study
the controllability problem in Banach spaces for various classes of functional inclusions with
causal operators with an infinite delay and impulse effects. Basing on the topological degree
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theory for condensing multimaps we prove a global theorem on the existence of trajectories
for systems governed by functional inclusions. As an application, we obtain generalizations
of existence theorems for solutions of the controllability problem for a first order semilinear
functional differential inclusions and a semilinear functional differential inclusions of a
fractional order 0 < q < 1.

2. PRELIMINARIES

2.1. Multivalued maps and measures of noncompactness
Let X be a metric space and Y a normed space. Introduce the following notation:

P (Y ) denotes the collection of all non-empty subsets of Y ;
Pb(Y ) denotes the collection of all non-empty and bounded subsets of Y ;
C(Y ) denotes the collection of all non-empty and closed subsets of Y ;
Cv(Y ) denotes the collection of all non-empty, closed and convex subsets of Y ;
K(Y ) denotes the collection of all non-empty and compact subsets of Y ;
Kv(Y ) denotes the collection of all non-empty, compact and convex subsets of Y.
Let us recall some notations (see, for example, [24], [25]).

Definition 2.1:
A multivalued map (multimap) F : X → P (Y ) is said to be upper semicontinuous (u.s.c.) at
a point x ∈ X, if for every open set V ⊂ Y such that F(x) ⊂ V, there exists a neighborhood
U(x) of x such that F(U(x)) ⊂ V.

Definition 2.2:
A multivalued map (multimap) F : X → P (Y ) is called closed if its graph GF = {(x, y) :
x ∈ X, y ∈ F(x)} is a closed subset of X × Y.
Definition 2.3:
A multivalued map (multimap) F : X → P (Y ) is called quasicompact if its restriction to
each compact subset A ⊂ X is compact.

Lemma 2.1:
( [24], Theorem 1.1.12). If F : X → K (Y ) a closed quasicompact multimap, Then F is
u.s.c.

Definition 2.4:
For a given p ≥ 1, a multifunction G : [0, T ]→ K(Y ) is called:

• Lp–integrable if it admits an Lp–Bochner integrable selection, i.e., there exists a
function g ∈ Lp ([0, T ];Y ) such that g(t) ∈ G(t) for a.e. t ∈ [0, T ];

• Lp–integrably bounded if there exists a function ξ ∈ Lp([0, T ]) such that

‖G(t)‖ ≤ ξ(t)

for a.e. t ∈ [0, T ].

Let E be a Banach space

Lemma 2.2:
(see [24], Theorem 4.2.1.) Let a sequence of functions {ξn} ⊂ L1([0, T ];E) be L1–integrably
bounded. Suppose that

χ({ξn} (t)) ≤ α(t) a.e. t ∈ [0, T ]

for all n = 1, 2, ..., where α ∈ L1
+([0, T ]). Then for every δ > 0 there exist a compact set

Kδ ⊂ E, a set mδ ⊂ [0, T ] of a Lebesgue measure mδ < δ, and a set of functions Gδ ⊂
L1([0, T ];E) with values in Kδ, such that for every n ≥ 1 there exists a function bn ∈ Gδ for
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which
‖ξn(t)− bn(t)‖E ≤ 2α(t) + δ, t ∈ [0, T ] \mδ.

Moreover, the sequence {bn}may be chosen so that bn ≡ 0 onmδ and this sequence is weakly
compact.

Definition 2.5:
Let (A,≥) be a partially ordered set. A function β : Pb(E)→ A is called the measure of
noncompactness (MNC) in E if for each Ω ∈ Pb(E) we have:

β(co Ω) = β(Ω),

where co Ω denotes the closure of the convex hull of Ω.

A measure of noncompactness β is called:

1) monotone if for each Ω0,Ω1 ∈ Pb(E), from Ω0 ⊆ Ω1 follows β(Ω0) ≤ β(Ω1).
2) nonsingular, if for each a ∈ E and each Ω ∈ Pb(E) we have β({a} ∪ Ω) = β(Ω).

If A is a cone in a Banach space, the MNC β is called:

3) regular, if β(Ω) = 0 is equivalent to the relative compactness of Ω ∈ Pb(E);
4) real, if A is the set of all real numbers R with the natural ordering.

As the example of a real MNC obeying all above properties, we can consider the Hausdorff
MNC χ(Ω):

χ(Ω) = inf{ε > 0, for which Ω has a finite ε-net in E }.
As other examples, consider the measures of noncompactness defined in the space of

continuous functions C([a, b];E) with values in the Banach space E:

(1) the modulus of fiber noncompactness:

ϕ(Ω) = sup
t∈[a,b]

χE(Ω(t)),

where χE is the Hausdorff MNC in E and Ω(t) = {y(t) : y ∈ Ω};
(2) the fading modulus of fiber noncompactness:

γ(Ω) = sup
t∈[a,b]

e−LtχE(Ω(t)),

where L > 0 is a given number;
(3) the modulus of equicontinuity:

modC (Ω) = lim
δ→0

sup
y∈Ω

max
|t1−t2|≤δ

‖y (t1)− y (t2)‖ .

These measures of noncompactness satisfy all the above properties, except for the
regularity.

Definition 2.6:
A multimap F : X ⊆ E → K(E) is called condensing with respect to a MNC β (or β–
condensing) if for each bounded set Ω ⊆ X which is not relatively compact, we have:

β(F (Ω)) 6≥ β(Ω).

Let D ⊂ E a non-empty closed convex subset, V a non-empty bounded open subset of D,
β a monotone nonsingular MNC in E and F : V → Kv (D) be a u.s.c. β-condensing map
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such that x /∈ F (x) for all x ∈ ∂V , where V and ∂V denote the closure and the boundary of
the set V in the relative topology of D.

In such a setting, the (relative) topological degree

degD
(
i−F , V

)
of the corresponding vector field i−F , satisfying the standard properties is defined (see, for
example, [24], [25]). In particular, the condition

degD
(
i−F , V

)
6= 0

implies that the fixed points set FixF = {x : x ∈ F(x)} is a nonempty subset of V.
Application of topological degree theory leads to the following fixed point principles,

which will be used in the what follows.
Theorem 2.1:
( [24], Corollary 3.3.1). Let M be a convex closed bounded subset of E and F :M→
Kv(M) a β–condensing multimap, where β is a monotone nonsingular MNC in E . Then the
fixed point set FixF is non-empty.
Theorem 2.2:
( [24], Theorem 3.3.4). Let V ⊂ D be a bounded open neighborhood of a point a ∈ V and
F : V → Kv(D) a u.s.c. β-condensing multimap, where β is a monotone nonsingular MNC
in E , satisfying the boundary condition

x− a /∈ λ(F(x)− a)

for all x ∈ ∂V and 0 < λ ≤ 1. Then FixF 6= ∅ is a non-empty compact set.

2.2. Phase space
We will use the axiomatic definition of the phase space B, introduced by J.K. Hale and J. Kato
(see. [26], [27]).The space B we will be considered as a linear topological space of functions
defined on (−∞, 0] with values in a Banach space E endowed with the seminorm ‖ · ‖B.

For all function x : (−∞, T ]→ E, where T > 0, and every t ∈ (−∞, T ], xt is a function
from (−∞, 0] to E, defined as

xt(θ) = x(t+ θ), θ ∈ (−∞, 0].

We will be assume that B satisfies the following axioms:

(B1) if the function x : (−∞;T ]→ E is continuous on [0;T ] and x0 ∈ B, then for each
t ∈ [0;T ] :

(i) xt ∈ B;
(ii) the function t 7→ xt is continuous;

(iii) ‖xt‖B ≤ K(t) sup
0≤τ≤t

‖x(τ)‖+H(t)‖x0‖B, where the functions K,H : [0;∞)→

[0;∞) are independent of x, K is strictly positive and continuous and H is locally
bounded.

(B0) there exists l > 0 such that ‖ψ(0)‖E ≤ l‖ψ‖B, for all ψ ∈ B.
Notice that under these conditions the space C00 of all continuous functions from (−∞, 0]

to E with compact support into phase space B( [27], Proposition 1.2.1).
In addition, we will assume that the following condition is satisfied:

(BC1) if a uniformly bounded sequence {ψn}+∞
n=1 ⊂ C00 converges to a function ψ compactly

(i.e. uniformly on each compact subset (−∞, 0]), then ψ ∈ B and lim
n→+∞

‖ψn − ψ‖B =

0.
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The condition (BC1) implies that the Banach space of bounded continuous functions
BC = BC((−∞, 0];E) is continuously embedded into B. More precisely, the following
assertion is true.
Theorem 2.3:
( [27], Proposition 7.1.1).

(i) BC ⊂ C00, where C00 denote the closure of C00 in B;
(ii) if a uniformly bounded sequence {ψn} in BC converges to a function ψ compactly on

(−∞, 0], then ψ ∈ B and lim
n→+∞

‖ψn − ψ‖B = 0;

(iii) there exists L > 0 such that ‖ψ‖B ≤ L‖ψ‖BC for all ψ ∈ BC.
Finally, we will assume that the following condition is satisfied:

(BC2) if ψ ∈ BC and ‖ψ‖BC 6= 0, then ‖ψ‖B 6= 0.

This assumption implies that the space BC, endowed with ‖ · ‖B is a normed space. We
will denote it as BC.

We may consider the following examples of phase spaces satisfying all the above
properties:

(1) for γ > 0 let B = Cγ be the space of continuous functions ϕ : (−∞; 0]→ E, having a
limit lim

θ→−∞
eγθϕ(θ) with

‖ϕ‖B = sup
−∞<θ≤0

eγθ‖ϕ(θ)‖.

(2) (Spaces of ”fading memory”) Let B = Cρ be the space of functions ϕ : (−∞; 0]→ E
such that
(a) ϕ is continuous on [−r; 0], r > 0;
(b) ϕ is Lebesgue measurable on (−∞; r) and there exists a nonnegative Lebesgue

integrable function ρ : (−∞;−r)→ R+ such that ρϕ Lebesgue integrable on
(−∞; r); moreover, there exists a locally bounded function P : (−∞; 0]→ R+

such that, for all ξ ≤ 0, ρ(ξ + θ) ≤ P (ξ)ρ(θ) a.e. θ ∈ (−∞;−r).
Then,

‖ϕ‖B = sup
−r≤θ≤0

‖ϕ(θ)‖+

−r∫
−∞

ρ(θ)‖ϕ(θ)‖dθ.

A simple example of such a space is given by ρ(θ) = eµθ, µ ∈ R.

2.3. Causal multioperators with infinite delay
Let E be a separable Banach space. By Lp ([0, T ];E) , 1 ≤ p ≤ ∞, we denote the Banach
space of all Bochner summable functions f : [0, T ]→ E with the usual norm.

For each subset N ⊂ Lp ([0, T ];E) and τ ∈ (0, T ) we define restriction N on [0, τ ] as

N |[0,τ ]= {f |[0,τ ]: f ∈ N}.

We split the segment [0, T ] by points 0 < t1 < ... < tm < T,m ≥ 1. For a function
c : [0, T ]→ E we will denote

c(t+k ) = lim
ξ→0+

c(tk + ξ),

c(t−k ) = lim
ξ→0−

c(tk + ξ),
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for 1 ≤ k ≤ m.
For a function g : (−∞, T ]→ E, we will assume that its restriction to [0, T ] belongs to

the space PC([0, T ];E) of functions z : [0, T ]→ E, continuous on [0, T ] \ {t1, · · · , tm} and
such that the left and right limits z(t+k ) and z(t−k ), 1 ≤ k ≤ m, exist and z(t−k ) = z(tk).

It is easy to see that the space PC([0, T ];E), endowed with the norm

‖z‖PC = sup
t∈[0,T ]

‖g(t)‖E,

is a Banach space. The classical space of continuous function C([0, T ], E) is its closed
subspace.

We denote by C((−∞;T ];E) the normed space of piecewise continuous functions x :
(−∞;T ]→ E, endowed with the norm

‖x‖C = ‖x0‖BC + ‖x |[0;T ] ‖PC.

Definition 2.7:
A multivalued mapQ : C ((−∞, T ];E) ( Lp ([0, T ];E) is said to be a causal multioperator,
if for each τ ∈ (0, T ) and for every u(·), v(·) ∈ C ((−∞, T ];E) the condition u |(−∞,τ ]=
v |(−∞,τ ] implies that Q(u) |[0,τ ]= Q(v) |[0,τ ] .

Let us give examples of causal multioperators.
Example 2.1:
We assume that the multimap F : [0, T ]× BC × E → Kv (E) satisfies the following
conditions:

(F1) for each (ψ, φ) ∈ BC × E the multifunction F (·, ψ, φ) : [0, T ]→ Kv (E) admits a
measurable selection;

(F2) for a.e. t ∈ [0, T ] the multifunction F (t, ·, ·) : BC × E → Kv (E) is u.s.c.;
(F3) there exists a function α ∈ Lp+[0, T ], 1 ≤ p ≤ ∞, such that

‖F (t, ψ, φ)‖E := sup{‖z‖E : z ∈ F (t, ψ, φ)} ≤ α(t)(1 + ‖ψ‖BC + ‖φ‖E)

for a.e. t ∈ [0, T ] and (ψ, φ) ∈ BC × E.
From above conditions (F1)− (F3) and (B1) it follows that the multimap PF :

C((−∞;T ];E)→ P (Lp([0, T ];E)), given in the following way

PF (x) = {f ∈ Lp([0, T ];E) : f(t) ∈ F (t, xt, x(t)) a.e. t ∈ [0, T ]}
is well defined (see, for example, [24], [25]). It is clear that the multioperator PF is causal.
Example 2.2:
Let F : [0, T ]× BC → Kv(E) be a multimap satisfying conditions (F1)− (F3) from
Example 2.1. Suppose that {K(t, s) : 0 ≤ s ≤ t ≤ T} is a continuous (with respect to
the corresponding norm) family of bounded linear operators in E and m ∈ L1([0, T ];E)
is a given function. Consider the Volterra integral multioperator V : C ((−∞, T ];E) (
L1 ([0, T ];E) defined as

V(u)(t) = m(t) +

∫ t

0

K(t, s)F (s, us)ds,

i.e.,

V(u) = {y ∈ L1 ([0, T ];E) : y(t) = m(t) +

∫ t

0

K(t, s)f(s)ds : f ∈ PF (u)}.

It is also clear that the multioperator V is causal.
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3. THE CONTROLLABILITY PROBLEM FOR FUNCTIONAL INCLUSIONS
WITH THE CAUSAL OPERATORS

We will assume that the causal operator Q : C ((−∞, T ];E)→ C (Lp ([0, T ];E)) satisfies
the following conditions:

(Q1) Q is weakly closed in the following sense: conditions {un}∞n=1 ⊂ C ((−∞, T ];E) ,

{fn}∞n=1 ⊂ Lp ([0, T ];E) , 1 ≤ p ≤ ∞, fn ∈ Q(un), n ≥ 1, un → u0, fn
L1

⇀ f0 implies
f0 ∈ Q(u0);

(Q2) there exists a function α ∈ L∞+ ([0, T ]) such that

‖Q (u) (t) ‖E ≤ α (t) (1 + ‖u‖C) , for a.e. t ∈ [0, T ],

for all u ∈ C((−∞, T ];E);
(Q3) there exists a function ω : [0, T ]× R+ → R+ such that

(ω1) for all x ∈ R+ : ω(·, x) ∈ Lp+([0, T ]), 1 ≤ p ≤ ∞, ;
(ω2) for a.e. t ∈ [0, T ] a function ω(t, ·) : R+ → R+ is continuous, nondecreasing and

quasihomogeneous in the sense that ω(t, λx) ≤ λω(t, x) for all x ∈ R+ and λ ≥ 0;
(ω3) for each bounded set ∆ ⊂ C ((−∞, T ];E) we have

χ (Q (∆) (t)) ≤ ω

(
t, sup
s∈[0,t]

ϕ (∆s)

)
for a.e. t ∈ [0, T ],

where the set ∆s = {ys : y ∈ ∆} ⊂ BC and ϕ is the modulus of fiber
noncompactness in BC.

Note that the condition (ω2) means that ω(t, 0) = 0 for a.e.t ∈ [0, T ] and as an example
of such a function we can consider ω(t, x) = k(t) · x, where k(·) ∈ Lp+([0, T ]).

Consider a linear operator S : Lp([0, T ];E)→ C([0, T ];E), which is causal in the sense
that for every τ ∈ (0, T ] and f, g ∈ Lp([0, T ];E) condition f(t) = g(t) for a.e. t ∈ [0, τ ]
implies (Sf) (t) = (Sg) (t) for all t ∈ [0, τ ]. Following [24], we impose the next conditions
on operator S :

(S1) for 1 ≤ p <∞ there exist D ≥ 0 such that

‖Sf(t)− Sg(t)‖pE ≤ D

∫ t

0

‖f(s)− g(s)‖pEds

for all f, g ∈ Lp([0, T ];E) and 0 ≤ t ≤ T ;
if p =∞ there exist D1 ≥ 0 such that

‖Sf(t)− Sg(t)‖E ≤ D1

∫ t

0

‖f(s)− g(s)‖Eds

for all f, g ∈ L∞([0, T ];E) and 0 ≤ t ≤ T.
(S2) for an arbitrary compact set K ⊂ E and a sequence {fn}∞n=1 ⊂ Lp ([0, T ];E) , 1 ≤ p ≤

∞, such that {fn(t)}∞n=1 ⊂ K for all t ∈ [0, T ] the weak convergence fn
L1

⇀ f0 implies
Sfn → Sf0 in C([0, T ];E).

Also we suppose that S satisfies the relation:

(S3) (Sf) (0) = 0 for each function f ∈ Lp([0, T ];E).
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Notice, that condition (S1) implies that the operator S satisfies the Lipschitz condition:

(S1′) ‖Sf − Sg‖C ≤ D‖f − g‖L1 .

Consider following important examples.

(i) Let a closed linear operator A : D (A) ⊂ E → E be the infinitesimal generata of a C0-
semigroup {eAt}t≥0. The operator L : L1([0, T ];E)→ C([0, T ];E) defined as

Lf(t) =

∫ t

0

eA(t−s)f(s)ds

is a special case of the operator S.
Note that taking A = 0 we obtain, as a special case, the usual integral operatorLI :
L1([0, T ];E)→ C([0, T ];E),

LIf(t) =

∫ t

0

f(s)ds;

(ii) Let A : D(A)→ E be a closed linear operator E generating a C0- semigroup
{U(t)}t≥0 . The operator G : Lp([0, T ];E)→ C([0, T ];E), p > 1/q, defined as

Gf(t) =

∫ t

0

(t− s)q−1T (t− s)f(s)ds, 0 < q < 1,

where

T (t) = q

∫ ∞
0

θξq(θ)U(tqθ)dθ, ξq(θ) =
1

q
θ−1− 1

qΨq(θ
−1/q),

Ψq(θ) =
1

π

∞∑
n=1

(−1)n−1θ−qn−1 Γ(nq + 1)

n!
sin(nπq), θ ∈ R+,

is a special case of the operator S.
Lemma 3.1:
( [24], Lemma 4.2.1, [12], Lemma 3.4). The operators L and G satisfy conditions (S1)−
(S3).

Consider a control system governed by a functional inclusion with causal operatorsQ and
S, of the following form:

y(t) ∈ G(t)
(
ψ(0) + Σtk<tIk(y(tk))

)
+ S ◦ Q(y)(t) + S ◦Bu(t), t ∈ [0, T ], (3.1)

y(t) = ψ(t), t ∈ (−∞, 0], (3.2)

Iky(tk) = y(t+k )− y(tk), k = 1, ...,m, (3.3)
where ψ ∈ BC is a given function, Ik : E → E are the impulse functions, B : U → E is a
linear bounded operator, U is a Banach space of the controls,

G(t) =

∫ ∞
0

ξq(θ)U(tqθ)dθ,
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and a control function u ∈ L∞([0, T ];U).
We will assume that the corresponding linear problem is solvable, that is, there exists an

operator W−1 which is a right inverse operator for W : L∞([0, T ];U)→ E of the following
form

Wu =

∫ T

0

(T − s)q−1T (T − s)Bu(s)ds

Let the operator W−1 satisfy the following regularity condition:

(W ) there exists a function σ ∈ L∞+ ([0, T ]) such that for every bounded set Ω ⊂ E we have:

χU
(
W−1(Ω)(t)

)
≤ σ(t)χE(Ω) for a.e. t ∈ [0, T ],

where χU is the Hausdorff MNC in U.

We impose the following conditions on the impulse functions Ik:

(I1) the functions Ik : E → E, 1 ≤ k ≤ m, are completely continuous.
(I2) the functions Ik : E → E, 1 ≤ k ≤ m, are globally bounded, i.e. there exists N > 0

such that ‖Ikx‖ ≤ N for all x ∈ E.

Lemma 3.2:
(see [12]) The operator functions G and T possess the following properties:

1) For each t ∈ [0, T ], G(t) and T (t) are linear bounded operators, more precisely, for
each x ∈ E we have

‖G(t)x‖E ≤M ‖x‖E , ‖T (t)x‖E ≤
qM

Γ(1 + q)
‖x‖E ,

where M = supt≥0 ‖U(t)‖
2) the operator functions G(·) and T (·) are strongly continuous, i.e., functions t ∈ [0, T ]→
G(t)x and t ∈ [0, T ]→ T (t)x are continuous for each x ∈ E.

Suppose ψ ∈ BC is a given function. For a function y ∈ PC([0, T ];E) such that y(0) =
ψ(0) we define the function y[ψ] ∈ C((−∞, T ];E) as

y[ψ](t) =

{
ψ(t), −∞ ≤ t < 0,

y(t), 0 ≤ t ≤ T .

We denote by D the closed convex subset of PC([0, T ];E), consisting of all functions y
satisfying the condition y(0) = ψ(0).

Definition 3.1:
A function y ∈ C((−∞, T ];E) is called a mild solution of problem (3.1)-(3.3), if it satisfies
conditions:

(1) the function y|[0,T ] ∈ D and satisfies inclusion (3.1);
(2) y(t) = ψ(t), for t ∈ (−∞, 0];
(3) Iky(tk) = y(t+k )− y(tk), k = 1, ...,m.

Now, the controllability problem which we solve in this paper may be formulated in
the following way: for a given initial function ψ ∈ BC and a given x1 ∈ E we consider
the existence of a mild solution y of problem (3.1)-(3.3) and a control u such that y(t) =
ψ(t), t ∈ (−∞, 0], and

y(T ) = x1. (3.4)
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The pair (y, u) consisting of an integral solution y of problem (3.1)-(3.3) and a control
u ∈ L∞([0, T ];U) will be called the solution of controllability problem (3.1)-(3.4).

Consider the multioperator Γ : D( D defined as

Γ(y) = {x ∈ D : x(t) = G(t)
(
ψ(0) + Σtk<tIk(y(tk))

)
+

S ◦ Q(y[ψ]) + S ◦BW−1
(
x1 − G(T )ψ(0)− ζ ◦ S ◦ Q(y[ψ])

)
−

S ◦BW−1(Σm
k=1G(T )Ik(y(tk)))},

where f ∈ Q(y[ψ]) and the linear operator ζ : C([0;T ];E)→ E is defined as ζx = x(T ).
It is clear that if the function y is a fixed point of the multioperator Γ, then the pair

(y[ψ], u) is a solution to controllability problem (3.1) - (3.4), therefore, our goal is to prove
the existence of fixed point of the multioperator Γ.

Definition 3.2:
A sequence of functions {ξn} ⊂ Lp([0, T ];E) is called Lp–semicompact if it is Lp–integrably
bounded, i.e.,

‖ξn(t)‖E ≤ v(t) for a.e. t ∈ [0, T ] and for all n = 1, 2, ...,

where v ∈ Lp([0, T ]), and the set {ξn(t)} is relatively compact in E for a.e. t ∈ [0, T ].

Lemma 3.3:
(see. [24], Proposition 4.2.1.) Every Lp–semicompact sequence is weakly compact in
L1([0, T ];E).

We need the following properties of the multioperator S ◦ Q. Since for every 1 < p ≤
∞ : Lp([0, T ];E) ⊂ L1([0, T ];E), we can formulate a modification of Theorem 5.1.1 from
[24] in the following form.

Lemma 3.4:
Let S : Lp([0, T ];E)→ C([0, T ];E) be an operator satisfying conditions (S1) and (S2).
Then for every Lp-semicompact sequence {fn}∞n=1 ⊂ Lp([0, T ];E), the sequence {Sfn}∞n=1

is relatively compact in C([0, T ];E) and, moreover, the weak convergence fn
L1

⇀ f0 implies
that Sfn → Sf0 in C([0, T ];E).

Theorem 3.1:
Let the multioperator Q satisfy conditions (Q1)–(Q3) and the operator S satisfy (S1),
(S2). Then the composition S ◦ Q : C((−∞, T ];E) ( C([0, T ];E) is a u.s.c. multimap with
compact values.

Proof
Let us show that the multioperator S ◦ Q is closed. Let {xn}∞n=1 ⊂ C((−∞, T ];E),
{yn}∞n=1 ⊂ C([0, T ];E), xn → x0, yn ∈ S ◦ Q(xn), n ≥ 1, and yn → y0. Take an arbitrary
sequence {fn}∞n=1 ⊂ Lp([0, T ];E) such that fn ∈ Q(xn), yn = S(fn), n ≥ 1. From
condition (Q2) it follows that the sequence {fn}∞n=1 is Lp-integrally bounded. The condition
(Q3) means that

χ ({fn (t)}∞n=1) ≤ ω

(
t, sup
s∈[0,t]

ϕ ({(xn)s}∞n=1)

)
= ω(t, 0) = 0

for a.e. t ∈ [0, T ], and therefore the sequence {fn}∞n=1 is Lp-semicompact.
From Lemma 3.3 it follows that the sequence {fn}∞n=1 is weakly compact, so we can

assume without loss of generality that fn
L1

⇀ f0. By Lemma 3.4 we have yn = Sfn → Sf0 =
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y0. On the other hand, applying the condition (Q1) we obtain f0 ∈ Q(x0) and moreover
y0 ∈ S ◦ Q(x0), i.e., the multioperator S ◦ Q is closed.

For each x ∈ C((−∞, T ];E), conditions (Q2) and (Q3) mean that the sequence
{fn}∞n=1 ⊂ Q(x) is Lp-semicompact and, by Lemma 3.4, the sequence {Sfn}∞n=1 ⊂
C([0, T ];E) is relatively compact. The compactness of the set S ◦ Q(u) follows from its
closedness.

Finally, if we consider the converging sequence {xn}∞n=1 ⊂ C((−∞, T ];E) and the
arbitrary sequence {fn}∞n=1 ⊂ Lp([0, T ];E, ) such that fn ∈ Q(xn), then the sequence
{Sfn}∞n=1 ⊂ C([0, T ];E) is relatively compact, which means that the multimap S ◦ Q is
quasicompact and applying Lemma 2.1 we obtain that it is u.s.c.

Let us proceed to finding conditions under which the multioperator S ◦ Q will be
condensing with respect to a corresponding MNC. For this we need the following statements.
Lemma 3.5:
Let a sequence of functions {fn}∞n=1 ⊂ Lp([0, T ];E) be Lp-integrally bounded and there exist
a function υ ∈ Lp+([0, T ]) such that

χ ({fn (t)}∞n=1) ≤ υ(t) for a.e. t ∈ [0, T ].

If an operator S satisfies conditions (S1) and (S2), then for 1 ≤ p <∞ we have

χ ({Sfn (t)}∞n=1) ≤
(

4pD

∫ t

0

υp(s)ds

)1/p

,

and for p =∞

χ ({Sfn (t)}∞n=1) ≤ 2D1

∫ t

0

υ(s)ds,

where D,D1 are the constants from condition (S1).

Proof
For ε > 0 we take δ ∈ (0, ε), such that for every m ⊂ [0, T ], with the measure meas(m) < δ,
we have: ∫

m

|υ(s)|p < ε, for 1 ≤ p <∞,

and respectively for p =∞ : ∫
m

|υ(s)| < ε.

Taking mδ and bn corresponding to {fn} from Lemma 2.2, we, by using property (S1),
obtain that the sequence {S(bn)} is relatively compact in C([0, T ];E).

Let 1 ≤ p <∞, then the following estimates hold:

‖S(fn)(t)− S(bn)(t)‖pE ≤ D

∫ t

0

‖fn(s)− bn(s)‖pE ds ≤

D

∫
[0,t]\mδ

‖fn(s)− bn(s)‖pE ds+D

∫
[0,t]∩mδ

‖fn(s)‖pE ds ≤

D

∫
[0,t]\mδ

[2υ(s)− δ]p ds+D

∫
mδ

|υ(s)|p ds ≤ D

∫ t

0

|2υ(s) + ε|p ds+ εD ≤

D

∫ t

0

2p |2υ(s)|p ds+D

∫ t

0

2pεpds+ εD ≤ 4pD

∫ t

0

υp(s)ds+ 2pεpTD + εD.
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Therefore, the relatively compact set SGδ(t) is a
(

4pD
∫ t

0
υp(s)ds+ 2pεpTD + εD

)1/p

-
net for the set {S(fn)(t)} . Since ε > 0 is arbitrary, we obtain the conclusion of the lemma
for the case 1 ≤ p <∞.

If p =∞, then the following estimates hold:

‖S(fn)(t)− S(bn)(t)‖E ≤ D1

∫ t

0

‖fn(s)− bn(s)‖E ds ≤

D1

∫
[0,t]\mδ

‖fn(s)− bn(s)‖E ds+D1

∫
[0,t]∩mδ

‖fn(s)‖E ds ≤

D1

∫
[0,t]\mδ

|2υ(s)− δ|ds+D1

∫
mδ

|υ(s)| ds ≤ 2D1

∫ t

0

υ(s)ds+ εTD1 + εD1.

Thus, the relatively compact set SGδ(t) is a 2D1

∫ t
0
υ(s)ds+ εD1(T + 1) - net for the set

{S(fn)(t)} . Since ε > 0 is arbitrary, we obtain the conclusion of the lemma also for the case
p =∞.

Let M1, M2 be positive constants, such that

‖B‖ ≤M1,
∥∥W−1

∥∥ ≤M2. (3.5)

Consider the measure of noncompactness ν in the space PC([0, T ];E) with values in the
cone R2

+. On a bounded subset of Ω ⊂ PC([0, T ];E) we define the values of ν as follows:

ν(Ω) = (γ (Ω) ,modC (Ω)) ,

where modC is the modulus of equicontinuity, γ is the fading modulus of fiber
noncompactness

γ(Ω) = sup
t∈[0,T ]

e−Ltχ(Ω(t)).

The constant L > 0 is chosen so that

max{q1, q2} < 1,

where

q1 = sup
t∈[0,T ]

(
4D1/p

(
1 + 4M1σD

1/pT 1/p
) ∫ t

0

e−Lp(t−s)ωp (s, 1) ds

)1/p

,

q2 = sup
t∈[0,T ]

(
2D1 (1 + 2M1σD1T )

∫ t

0

e−L(t−s)ω (s, 1) ds

)
,

where the constants D,D1 are from condition (S1), ω is a function from condition (Q3).
It is easy to see that the MNC ν is monotone, nonsingular, and algebraically semi-additive.

It follows from the Arzela–Ascoli theorem that it is also regular.

Theorem 3.2:
Let a causal multioperatorQ : C((−∞, T ];E) ( Lp ([0, T ];E) satisfy conditions (Q2) and
(Q3) and for a causal operator S : Lp ([0, T ];E)→ C ([0, T ];E) the conditions (S1)–(S3)
be satisfied. Then, under conditions (I1), (I2), (W ) the multioperator Γ is ν-condensing.
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Proof
By Lemma 3.2 and conditions (I1), (I2), it is suffices to prove the assertion of the theorem
for the multioperator

S ◦ Q+ S ◦BW−1
(
x1 − G(T )ψ(0)− ζ ◦ S ◦ Q

)
.

Let Ω ⊂ D be a bounded set such that

ν
(
S ◦ Q (Ω[ψ]) + S ◦BW−1

(
x1 − G(T )ψ(0)− ζ ◦ S ◦ Q(Ω[ψ])

))
≥ ν (Ω) . (3.6)

Let us show that the set Ω is relatively compact.
Inequality (3.6) means that

γ({S ◦ Q (Ω[ψ]) + S ◦BW−1
(
x1 − G(T )ψ(0)− ζ ◦ S ◦ Q(Ω[ψ])

)
}) ≥ γ(Ω). (3.7)

Applying the condition (Q3) and by using the properties of the function ω, we obtain for
a.e. t ∈ [0, T ]

χ ({f(t) : f ∈ Q (Ω[ψ])}) ≤ ω

(
t, sup
s∈[0,t]

ϕ ({y[ψ]s : y ∈ Ω})

)
= ω

(
t, ϕ

(
{y|[0,t] : y ∈ Ω}

))
=

ω
(
t, eLte−Ltϕ

(
{y|[0,t] : y ∈ Ω}

))
≤ ω

(
t, eLtγ

(
{y|[0,t] : y ∈ Ω}

))
≤

ω
(
t, eLtγ (Ω)

)
≤ ω

(
t, eLt

)
· γ (Ω) .

At first, we consider the case 1 ≤ p <∞. By Lemma 3.5 we have for each t ∈ [0, T ] :

χ ({Sf(t) : f ∈ Q (Ω[ψ])}) ≤
(

4pD

∫ t

0

ωp
(
s, eLs

)
ds · γp (Ω)

)1/p

≤

4D1/p

(∫ t

0

epLsωp (s, 1) ds

)1/p

· γ (Ω) .

Further,

χ
(
{BW−1

(
x1 − G(T )ψ(0)− ζ ◦ Sf(t) : f ∈ Q (Ω[ψ])}

)
≤

M1σχ ({ζ ◦ Sf(t) : f ∈ Q (Ω[ψ])}) =

M1σχ ({Sf(T ) : f ∈ Q (Ω[ψ])}) ≤M1σ

(
4pD

∫ T

0

epLsωp (s, 1) ds · γp (Ω)

)1/p

=

4M1σD
1/p

(∫ T

0

epLsωp (s, 1) ds

)1/p

· γ (Ω) ,

where σ = supt∈[0,T ] σ(t).
Using Lemma 3.5 again, we have for each t ∈ [0, T ] :

χ
(
S ◦BW−1

(
x1 − G(T )ψ(0)− ζ ◦ Sf(t) : f ∈ Q (Ω[ψ])

)
≤(

4pD

∫ t

0

4pMp
1σ

pD
(∫ T

0

epLsωp (s, 1) ds
)
dτ · γp (Ω)

)1/p

≤
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16D2/pM1σT
1/p
(∫ T

0

epLsωp (s, 1) ds
)1/p

· γ (Ω) .

Inequality (3.7) and the last inequality imply the following

γ(Ω) ≤ sup
t∈[0,T ]

(
4D1/p

(
1 + 4M1σD

1/pT 1/p
) ∫ t

0

e−Lp(t−s)ωp (s, 1) ds

)1/p

γ (Ω) = q1 · γ (Ω) ,

therefore
γ (Ω) = 0,

thus
ϕ (Ω[ψ]t) = 0

for all t ∈ [0, T ].
Let us turn to the case p =∞. By Lemma 3.5 we have for each t ∈ [0, T ] :

χ ({Sf(t) : f ∈ Q (Ω[ψ])}) ≤ 2D1

∫ t

0

ω
(
s, eLs

)
ds · γ (Ω) ≤ 2D1

∫ t

0

eLsω (s, 1) ds · γ (Ω) ;

χ
(
{BW−1

(
x1 − G(T )ψ(0)− ζ ◦ Sf(t) : f ∈ Q (Ω[ψ])}

)
≤

M1σχ ({ζ ◦ Sf(t) : f ∈ Q (Ω[ψ])}) =

M1σχ ({Sf(T ) : f ∈ Q (Ω[ψ])}) ≤M1σ2D1

∫ T

0

eLsω (s, 1) ds · γ (Ω) =

2M1σD1

∫ T

0

eLsω (s, 1) ds · γ (Ω) ,

where σ = supt∈[0,T ] σ(t).
Using Lemma 3.5, we have for each t ∈ [0, T ] :

χ
(
S ◦BW−1

(
x1 − G(T )ψ(0)− ζ ◦ Sf(t) : f ∈ Q (Ω[ψ])

)
≤

2D1

∫ t

0

2M1σD1

(∫ T

0

eLsω (s, 1) ds
)
dτ · γ (Ω) ≤

4D1M1σT

∫ T

0

eLsω (s, 1) ds · γ (Ω) .

Inequality (3.7) and the last inequality imply the following

γ(Ω) ≤ sup
t∈[0,T ]

(
2D1 (1 + 2M1σD1T )

∫ t

0

e−L(t−s)ω (s, 1) ds

)
γ (Ω) = q2 · γ (Ω) ,

therefore
γ (Ω) = 0,

thus
ϕ (Ω[ψ]t) = 0

for each t ∈ [0, T ].
Now we will show that the set Ω is equicontinuous. We take sequences {yn}∞n=1 ⊂

Ω, n ≥ 1 and {fn}∞n=1, fn ∈ Q(yn[ψ]). From conditions (Q2) and (Q3) it follows that the
sequence {fn}∞n=1 is Lp-semicompact, and therefore by Lemma 3.4 the sequence {Sfn}∞n=1
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is relatively compact. Hence
modC({Sfn}∞n=1) = 0.

From the conditions that the operatorsB,W−1, ζ are bounded and linear, we can conclude
that

modC

(
S ◦BW−1(x1 − G(T )ψ(0)− ζ{Sfn}∞n=1)

)
= 0.

Thus

ν
(
{S ◦ Q (Ω[ψ]) + S ◦BW−1

(
x1 − G(T )ψ(0)− ζ ◦ S ◦ Q(Ω[ψ])

)
}
)

= (0, 0),

but then it follows from the inequality (3.6) that

ν(Ω) = (0, 0),

and the last expression yields that the set Ω is relatively compact.

To prove the main theorem of the paper, we need the following statements, known as the
Gronwall - Bellman Lemma and the generalized Gronwall - Bellman Lemma.
Lemma 3.6:
Let v(t) and f(t) be nonnegative continuous functions on the segment [a, b], moreover

v(t) ≤ c+

∫ t

a

f(s)v(s)ds, t ∈ [a, b],

where c is a positive constant. Then for each t ∈ [a, b] the inequality

v(t) ≤ ce
∫ t
a f(s)ds,

holds.

Lemma 3.7:
Let h(t), u(t) and v(t) be nonnegative functions integrable on [a, b] satisfying the inequality:

v(t) ≤ u(t) +

∫ t

a

h(s)v(s)ds, t ∈ [a, b].

Then the following inequality holds:

v(t) ≤ u(t) +

∫ t

a

e
∫ t
a h(θ)dθh(s)u(s)ds, t ∈ [a, b].

Theorem 3.3:
Let a causal multioperator Q : C((−∞, T ];E)→ Cv(Lp([0, T ];E)), 1 ≤ p ≤ ∞, satisfy
conditions (Q1)–(Q3) and a linear causal operator S : Lp([0, T ];E)→ C([0, T ];E) satisfy
conditions (S1)–(S3). Then, under conditions (I1), (I2), (W ) the set Σψ of all solutions to
problem (3.1)-(3.4) is a non-empty compact set.

Proof

Let us show that the set of all solutions y ∈ D of a one-parameter inclusion

y ∈ λΓ(y), λ ∈ [0, 1], (3.8)

is a priori bounded. We divide the proof into three cases: p = 1, 1 < p <∞, p =∞.
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Let p = 1, if y ∈ D satisfies condition (3.8), then for each t ∈ [0, T ], using assumptions
(B0), (S1), (I1), (I2) and (3.5), we have the following estimates:

‖y(t)‖E ≤ ‖G(t)
(
ψ(0) + Σtk<tIk(y(tk))

)
‖E +D

∫ t

0

‖f(s)‖Eds+

DM1M2

∫ t

0

‖x1 − G(T )ψ(0)− ζ ◦ Sf(s)‖Eds+DM1M2

∫ t

0

‖Σm
k=1G(T )Ik(y(tk))‖Eds ≤

M(l‖ψ‖BC +mN) +D

∫ t

0

‖f(s)‖Eds+DM1M2

∫ t

0

‖x1 − G(T )ψ(0)‖Eds+

DM1M2

∫ t

0

‖ζ ◦ Sf(s)‖Eds+DMM1M2mNT ≤

M(l‖ψ‖BC +mN) +D

∫ t

0

‖f(s)‖Eds+DM1M2 (‖x1‖E +Ml‖ψ‖BC)T+

DM1M2

∫ t

0

(
D

∫ T

0

‖f(s)‖Eds
)
dτ +DMM1M2mNT ≤

M(l‖ψ‖BC +mN) +D

∫ t

0

‖f(s)‖Eds+DM1M2 (‖x1‖E +Ml‖ψ‖BC)T+

D2M1M2T

∫ T

0

‖f(s)‖Eds+DMM1M2mNT ≤

M(l‖ψ‖BC +mN) +DM1M2T (‖x1‖E +Ml‖ψ‖BC +MmN)

+(1 +DM1M2T )D

∫ T

0

‖f(s)‖Eds,

where f ∈ Q(y[ψ]) and, therefore, by condition (Q2) :

‖f(s)‖E ≤ α(s)(1 + ‖y[ψ]‖C).

Then

‖y(t)‖E ≤M(l‖ψ‖BC +mN) +DM1M2T (‖x1‖E +Ml‖ψ‖BC +MmN) +

(1 +DM1M2T )D

∫ T

0

α(s)(1 + ‖y[ψ]‖C)ds ≤

M(l‖ψ‖BC +mN) +DM1M2T (‖x1‖E +Ml‖ψ‖BC +MmN) +

(1 +DM1M2T )D‖α‖L∞
∫ T

0

(
1 + ‖y[ψ]s‖BC + sup

s∈[0,T ]

‖y(s)‖E

)
ds.

From property B1 (iii) it follows that

‖y[ψ]s‖BC + sup
s∈[0,T ]

‖y(s)‖E ≤ H‖ψ‖BC + (K + 1)‖y‖PC , (3.9)

where H(t) ≤ H,K(t) ≤ K, t ∈ [0, T ]. Then, we obtain the following estimates
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‖y(t)‖E ≤M(l‖ψ‖BC +mN) +DM1M2T (‖x1‖E +Ml‖ψ‖BC +MmN) +

(1 +DM1M2T )D‖α‖L∞
∫ T

0

(1 +H‖ψ‖BC + (K + 1)‖y‖PC) ds ≤

M(l‖ψ‖BC +mN) +DM1M2T (‖x1‖E +Ml‖ψ‖BC +MmN) +

(1 +DM1M2T )D‖α‖L∞ (1 +H‖ψ‖BC)T+

(1 +DM1M2T )D‖α‖L∞
∫ T

0

(K + 1)‖y‖PCds.

The last expression is a non-decreasing function of t, so we get

‖y‖PC ≤M(l‖ψ‖BC +mN) +DM1M2T (‖x1‖E +Ml‖ψ‖BC +MmN) +

(1 +DM1M2T )D‖α‖L∞ (1 +H‖ψ‖BC)T+∫ T

0

(1 +DM1M2T )D‖α‖L∞(K + 1)‖y‖PCds.

This means that the function v(t) = ‖y‖PC satisfies the estimate

v(t) ≤M(l‖ψ‖BC +mN) +DM1M2T (‖x1‖E +Ml‖ψ‖BC +MmN) +

(1 +DM1M2T )D‖α‖L∞ (1 +H‖ψ‖BC)T +

∫ T

0

(1 +DM1M2T )D‖α‖L∞(K + 1)v(s)ds.

Applying Lemma 3.6, we obtain the required a priori boundedness:

v(t) = ‖y‖PC ≤ Ue(1+DM1M2T )D‖α‖L∞ (K+1) = γ1,

where

U = M(l‖ψ‖BC +mN) +DM1M2T (‖x1‖E +Ml‖ψ‖BC +MmN) +

(1 +DM1M2T )D‖α‖L∞ (1 +H‖ψ‖BC)T.
For the case 1 < p <∞, by using the same properties (B0), (S1), (I1), (I2) and (3.5),

we have

‖y(t)‖E ≤M(l‖ψ‖BC +mN) +
(
D

∫ t

0

‖f(s)‖pEds
)1/p

+

D1/pM1M2T
1/p(‖x1‖E +Ml‖ψ‖BC) +D1/pM1M2

(∫ t

0

‖ζ ◦ (Sf)(t)‖pEds
)1/p

+

D1/pMM1M2mNT
1/p ≤M(l‖ψ‖BC +mN)+

D1/pM1M2T
1/p(‖x1‖E +Ml‖ψ‖BC +MmN) +D2/pM1M2T

1/p
(∫ T

0

‖f(s)‖pEds
)1/p

+

(
D

∫ t

0

‖f(s)‖pEds
)1/p

≤M (l‖ψ‖BC +mN) +

D1/pM1M2T
1/p (‖x1‖E +Ml‖ψ‖BC +MmN) +
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D2/pM1M2T
1/p

(∫ T

0

αp(s)(1 + ‖y[ψ]‖C)pds
)1/p

+

(
D

∫ t

0

αp(s)(1 + ‖y[ψ]‖C)pds
)1/p

≤

M (l‖ψ‖BC +mN) +D1/pM1M2T
1/p (‖x1‖E +Ml‖ψ‖BC +MmN) +

D2/pM1M2T
1/p

(∫ T

0

αp(s)(1 + ‖y[ψ]s‖BC + sup
s∈[0,T ]

‖y(s)‖E)pds

)1/p

+

(
D

∫ t

0

αp(s)(1 + ‖y[ψ]s‖BC + sup
s∈[0,T ]

‖y(s)‖E)pds

)1/p

.

Using inequality(3.9), we obtain the following estimate

‖y(t)‖E ≤M (l‖ψ‖BC +mN) +D1/pM1M2T
1/p (‖x1‖E +Ml‖ψ‖BC +MmN) +

D2/pM1M2T
1/p

(∫ T

0

αp(s)(1 +H‖ψ‖BC)pds+

∫ T

0

αp(s)(K + 1)p‖y‖pPCds
)1/p

+

(
D

∫ t

0

αp(s)(1 +H‖ψ‖BC)pds+D

∫ t

0

αp(s)(K + 1)p‖y‖pPCds
)1/p

≤

M (l‖ψ‖BC +mN) +D1/pM1M2T
1/p (‖x1‖E +Ml‖ψ‖BC +MmN) +

D2/pM1M2T
1/p21/p

(∫ T

0

αp(s)(1 +H‖ψ‖BC)pds
)1/p

+

D2/pM1M2T
1/p21/p

(∫ T

0

αp(s)(K + 1)p‖y‖pPCds
)1/p

+

(2D)1/p

(∫ t

0

αp(s)(1 +H‖ψ‖BC)pds
)1/p

+ (2D)1/p

(∫ t

0

αp(s)(K + 1)p‖y‖pPCds
)1/p

≤

M (l‖ψ‖BC +mN) +D1/pM1M2T
1/p (‖x1‖E +Ml‖ψ‖BC +MmN) +

D2/pM1M2T
1/p21/p(1 +H‖ψ‖BC)

(∫ T

0

αp(s)ds

)1/p

+

D2/pM1M2T
1/p21/p(K + 1)

(∫ T

0

αp(s)‖y‖pPCds
)1/p

+

(2D)1/p(1 +H‖ψ‖BC)
(∫ t

0

αp(s)ds

)1/p

+ (2D)1/p(K + 1)

(∫ t

0

αp(s)‖y‖pPCds
)1/p

.

Let us introduce the following notation:

c0 = M (l‖ψ‖BC +mN) +D1/pM1M2T
1/p (‖x1‖E +Ml‖ψ‖BC +MmN) +

(D2/pM1M2T
1/p21/p + (2D)1/p)(1 +H‖ψ‖BC)‖α‖Lp ,

h(s) =
(
D2/pM1M2T

1/p21/p(K + 1) + (2D)1/p(K + 1)
)1/p

α(s).
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Then we get:

‖y‖PC ≤ c0 +

(∫ T

0

hp(s)‖y‖pPCds
)1/p

.

Let v(t) = ‖y‖pPC , then from the last inequality we obtain the estimate:

v(t) ≤ 2pcp0 + 2p
∫ T

0

hp(s)v(s)ds.

Now applying Lemma 3.7 to the last inequality, we get

v(t) = ‖y‖pPC ≤ 2pcp0

(
1 +

∫ T

0

e2p
∫ T
0 hp(θ)dθhp(s)ds

)
.

Then we have the final estimate for 1 < p <∞ :

‖y‖PC ≤ 2q0
p

√
1 +

∫ T

0

e2p
∫ T
0 hp(θ)dθhp(s)ds = γ2.

For the case p =∞, in the same way as in the case p = 1, the following estimate holds:

‖y‖PC ≤ U1e
(1+D1M1M2T )D1‖α‖L∞ (K+1) = γ3,

where

U1 = M(l‖ψ‖BC +mN) +D1M1M2T (‖x1‖E +Ml‖ψ‖BC +MmN) +

(1 +D1M1M2T )D1‖α‖L∞ (1 +H‖ψ‖BC)T.
Now, if we take R ≥ max{γ1, γ2, γ3}, then we can guarantee that the set V ⊂ D, given

as
V = {y ∈ D : ‖y‖PC < R},

contains all solutions of inclusion (3.8). Thus, the multioperator Γ satisfies on ∂V the
condition of Theorem 2.2 with a = 0, hence the set of its fixed points is non-empty and
compact.

4. CONTROLLABILITY PROBLEMS FOR SEMILINEAR DIFFERENTIAL
INCLUSIONS WITH A DELAY AND IMPULSE EFFECTS

4.1. Controllability problems for a first order semilinear functional differential
inclusions

Consider the following system governed by a differential inclusion in a separable Banach
space E :

y′ (t) ∈ Ay (t) + F (t, yt) +Bu(t), t ∈ [0, T ] \ {t1, t2, · · · , tm}, (4.10)

y (θ) = ψ(θ), θ ∈ (−∞, 0], (4.11)

Iky(tk) = y(t+k )− y(tk), k = 1, ...,m, (4.12)

where F : [0, T ]× BC → Kv(E) is a multivalued map, ψ ∈ BC is a given function. Suppose
that
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(A) A : D (A) ⊂ E → E is a linear closed operator, generating a C0-semigroup eAt, t ≥ 0;

a multimap F : [0, T ]× BC → Kv(E) is such that:

(F1) for each ψ ∈ BC the multifunction F (·, ψ) : [0, T ]→ Kv (E) admits a measurable
selection;

(F2) for a.e. t ∈ [0, T ] the multimap F (t, ·) : BC → Kv (E) is u.s.c.;
(F3) there exists a function α ∈ L∞+ [0, T ] such that

‖F (t, ψ)‖E := sup{‖z‖E : z ∈ F (t, ψ)} ≤ α(t)(1 + ‖ψ‖BC)
for a.e. t ∈ [0, T ] and for all ψ ∈ BC;

(F4) there exists a function ωF : [0, T ]× R+ → R+ satisfying the conditions (ω1)-(ω3) such
that for each bounded set Ω ⊂ BC we have

χ (F (t,Ω)) ≤ ωF (t, ϕ (Ω)) for a.e. t ∈ [0, T ].

We impose the following conditions on the impulse functions Ik:

(I1) the functions Ik : E → E, 1 ≤ k ≤ m, are completely continuous.
(I2) the functions Ik : E → E, 1 ≤ k ≤ m, are globally bounded, i.e., there exists N > 0

such that ‖Ikx‖ ≤ N for all x ∈ E.
Notice that when q = 1 :

G(t) = eAt, T (t) = eAt,

therefore, in accordance with [24], a function y ∈ C((−∞, T ];E), is a mild solution of
problem (4.10)-(4.12), if it can be represented in the form:

y(t) =

 eAt
(
ψ(0) + Σtk<tIk(y(tk)) +

∫ t
0
eA(t−s)f(s)ds+

∫ t
0
eA(t−s)Bu(s)ds, t ∈ [0, T ],

ψ(t), t ∈ (−∞, 0],

where f ∈ PF (y[ψ]), PF is a superposition multioperator (see Example 2.1).
The fact that the superposition multioperator PF : C((−∞, T ];E) ( L1([0, T ];E)

satisfies condition (Q1) can be verified by Lemma 5.1.1 from [24]. Conditions (Q2) and
(Q3) for PF follow from (F3) and (F4), respectively. Taking into account Lemma 3.1, we
can consider relation (4.10) as a special case of functional inclusion (3.1) with Q = PF , and
S = L is the Cauchy operator.

As a direct consequence of Theorem 3.3, we obtain the following result.
Theorem 4.1:
Suppose that conditions (A), (F1)–(F4), (I1), (I2), (W ) hold. Then the set of solutions to
problem (4.10)-(4.12), (3.4) is a non-empty compact subset of the space C((−∞, T ];E).

4.2. Controllability problems for fractional semilinear functional differential inclusions
Let us recall the notion of the Caputo fractional derivative.
Definition 4.1:
The Caputo fractional derivative of an order q ∈ (0, 1) of a function g ∈ C1([0, T ];E) is the
function CDq

0g of the following form:

CDq
0g(t) =

1

Γ(1− q)

∫ t

0

(t− s)−qg(s) ds,

where Γ is the Euler’s gamma-function

Γ(q) =

∫ ∞
0

xq−1e−xdx.
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Consider the following control system governed by a functional differential inclusion in
a separable Banach space E :

CDq
0y (t) ∈ Ay (t) + F (t, yt) +Bu(t), t ∈ [0, T ] \ {t1, t2, · · · , tm}, (4.13)

y (θ) = ψ(θ), θ ∈ (−∞, 0], (4.14)

Iky(tk) = y(t+k )− y(tk), k = 1, ...,m, (4.15)
where ψ ∈ BC is a given function. Suppose that

(A) A : D (A) ⊂ E → E is a linear closed operator, generating a C0-semigroup {U(t)}t≥0.

Assume also that a multimap F : [0, T ]× BC → Kv(E) satisfies conditions (F1)–(F4)
from Example 2.1, impulse functions obey the conditions (I1), (I2).

A function y ∈ C((−∞, T ];E), is a mild solution to problem (4.13)–(4.14), if it can be
presented in the form (see [12]):

y(t) =


G(t)

(
ψ(0) + Σtk<tIk(y(tk)) +

∫ t
0
(t− s)q−1T (t− s)f(s)ds+∫ t

0
(t− s)q−1T (t− s)Bu(s)ds, t ∈ [0, T ],

ψ(t), t ∈ (−∞, 0],

where f ∈ PF (y[ψ]).
The fact that the superposition multioperator PF : C((−∞, T ];E) ( Lp([0, T ];E), p >

1/q satisfies condition (Q1) can be verified as in the paper [28]. Conditions (Q2) and (Q3)
for PF follow from (F3) and (F4), respectively. Taking into account Lemma 3.1, we can
consider the relation (4.13) as a special case of functional inclusion (3.1) with Q = PF , and
S = G is the Cauchy type operator.

As a direct consequence of Theorem 3.3, we obtain the following result.
Theorem 4.2:
Suppose that conditions (A), (F1)–(F4), (I1), (I2), (W ) hold. Then the set of solutions to
problem (4.13)-(4.15), (3.4) is a non-empty compact subset of the space C((−∞, T ];E).
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