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Abstract: The article concerns a piecewise linear modeling of a vast range of color printing devices: 
various printers of different kind and nature, presses, etc. The central purpose is not a presentation 
of ready to use computational algorithms, or, moreover, accomplished software solutions. The 
point is to reveal some aspects of mathematical modeling, which could serve as both a guideline 
for creation of practical and robust engineer solutions and an example of nontrivial application of 
piecewise linear topology. 
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1. PRELIMINARIES 

Consider a stimuli space ℝ! of m colorants and a reference space ℝ" of n colors. In color 
management practice, the dimension of reference space n is always equal to three, n = 3, since 
any color can be described exactly by three real numbers who are the coordinates of this color 
in some color space, e.g., XYZ, Lab, etc. The dimension m of stimuli space can vary in 
accordance with the number of colorants the considered printing device uses. This dimension 
is called a dimension of a printing device. In most practical cases the dimension of printing 
device is either three, m = 3, or four, m = 4. In the first case we deal with a three-dimensional 
printing device and in the second case we deal with a four-dimensional printing device. 

Not all the combinations (x1,…,xm) of real numbers represent combination of colorants, 
because the amount xk, 1£k£m, of the k-th colorant is measured in percents and can vary from 
zero percents (do not put the colorant at all) to one hundred percents (put as much colorant as 
possible). A printing device renders a combination (x1,…,xm) of colorants into the 
corresponding color (y1, y2, y3). It means that a printing device can be described by a map 

 

F: Wm ® ℝ#, 
 

where Wm = {( x1, … , xm), 0£ x1, … , xm£100} is the m-dimensional colorants cube in the 
stimuli space ℝ! and F(x1, … , xm) = (y1, y2, y3) is the point, whose coordinates correspond to 
the color rendered by mixture of  the colorants combination. We will call such a map a printing 
device. 

To find the value of this function we should with the printing device under consideration 
reproduce on a sheet of paper the patch formed by the colorants combination (x1,…,xm) and 
measure the color coordinates (y1, y2, y3) of this patch by a colorimetric measurement tool. 

The number of colorants combinations (x1,…,xm) in the colorants cube  is infinite and 
of cause it’s impossible to print and measure all of them, since actually we can print and 
measure only the finite subset of such combinations. Consider a finite set {wi} Ì Wm, i.e., a 
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mesh of fixed points wi, i=1,…,M, inside the colorants cube  and a set {pi} Î ℝ# = {( y1, 
y2, y3), - ¥ < y1, y2, y3 <+ ¥} 

of the corresponding values pi, F(wi) = pi, i=1,…,M, in three-dimensional color space. 
Call this mesh function a measurement data for the printing device under consideration. Hence, 
a measurement data is a discrete map 

f: {wi} ® {pi} 
 

such that f(wi) = pi = F(wi) for i=1,…,M. For simplicity, we will restrict ourselves to the 
case of a regular mesh only. Recall its definition. 

Definition. Let Wm = [a1, b1] ´ … ´ [am, bm] be an m-dimensional rectangular 
parallelepiped with a1 < b1, …, am < bm. For k = 1,…,m consider finite sets Zk = {xk0 , …, 
xkM(k)}, ak = xk0 < … < xkM(k) = bk, of M(k)+1 real numbers. The product mesh {wi} = Z1 ´ … 
´ Zm Ì Wm of M points, M = ( M(1)+1)…(M(m)+1), is called regular inside the m-dimensional 
parallelepiped . 

There are two principal problems of mathematical modeling of a printing device. 
Direct problem. To find a continuous map 
 

F: Wm ® ℝ#
 

 

being a satisfactory approximation to a given discrete function f, i.e., to the measurement 
data of the printing device under consideration. We will call the solution of this problem a 
model of the printing device or for conciseness just a printing device described by the 
corresponding measurement data (see section 1). 

Inverse problem. To find a continuous map 
 

g: F(Wm) ® Wm, 
 

being an inverse map to F, i.e., the composition of the maps g and F should be the identical 

map of the set F(Wm), . The problem, naturally, involves description of the 
gamut, i.e., the image F(Wm) to the map F. Moreover, in case m>3 an inverse map should 
satisfy to some additional conditions, for example, the maximal (minimal) possible amount of 
the m-th colorant component xm. 

We will restrict our examination of these problems to the class of piecewise linear maps. 
Remind the necessary notions. A k-dimensional simplex is a convex hull of k+1 affinely 
independent points of an m-dimensional space ℝ! , where 0£k£m. The boundary of a k-
dimensional simplex consists of faces with different dimensions: k-1, k-2, …, 0. One-
dimensional faces are called edges, and zero-dimensional faces are called vertices. 

Definition. Suppose the colorants cube Wm is decomposed into a union of N, N>0, sets Dj, 
 

. 
This decomposition is called simplex if for j=1,…, N the set Dj, is an m-dimensional 

simplex and the intersection of any two simplexes Dj and Dk is either empty, Dj Ç Dk = Æ, or is 
a union of whole (m–1)-, (m–2)-, …, and 0-dimentional faces to these simplexes. 

Definition. A continuous map 
 

F: Wm ® ℝ#, 

is called piecewise linear if there exists a simplex decomposition  of the m-
dimensional colorant cube  such that all the restrictions F½Dj : Dj ® ℝ# of the map F to 
tetrahedrons Dj are linear maps. In other words, F½Dj (x) = cj + Bjx, where x = ( x1, … , xm)T 
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is an m-dimensional vector of colorants combination, Bj is a 3´m matrix, and cj is a three-
dimensional vector, cj Î ℝ#, for j=1,…, N (cf. [1, sections 1.4 and 2.3]. 

Remark. Generally speaking, for real applications the formulated above notions of simplex 
decomposition of the colorants cube Wm and its piecewise linear map is not sufficient. Indeed, 
rather often a colorants limitations, for example, 

, 
where , should be applied to the colorants cube . Such limitations have 

practical sense. In particular, they allow to avoid putting too much of colorants to a sheet of 
paper. Moreover, sometimes several color limitations should be applied to the colorants cube. 
As a result in general case we will get not a cube decomposed into simplexes but a convex 
polyhedron decomposed into intact and truncated simplexes. Nevertheless all the constructions 
below actually are through in this general case. Therefore the reader, especially the one who 
is mostly interested in ideas rather than in technical details, can easily content himself with the 
case of cubes and simplexes only because in general case all the same ideas and methods are 
practiced. 

2. DIRECT PROBLEM FOR THREE-DIMENSIONAL PRINTING DEVICES 
Firstly examine a problem of approximation for a three-dimensional printing device. Let a 
finite set {wi} Ì W3 of points wi, i=1,…, M, inside the colorants cube W3 be a regular mesh. 
Consider a discrete map 

f: {wi} ® {pi}, 
 

of measurement data, where pi = f(wi) = F(wi) for i=1,…, N. To approximate the given 
discrete map f  by a continuous one 

F: W3 ® ℝ#, 
 

use a piecewise linear or, what is the same in three-dimensional case, a tetrahedral 
interpolation. We will mostly follow the text-book [2] in our constructions. 

By definition of a regular mesh, for k=1,2,3 there exist the one-dimensional meshes Zk = 
{xk0, … , xkM(k)}, ak = xk0 < … < xkM(k) = bk, of M(k)+1 real numbers such that {wi} = Z1 ´ Z2 
´ Z3 Ì W3 and M = (M(1)+1)(M(2)+1)(M(3)+1). It means that the three-dimensional colorants 
cube W3 can be decomposed into the union 

 
of the mesh parallelepiped cells Pi,j,k = [x1i-1, x1i] ´ [x2j-1, x2j] ´ [x3k-1, x3k], i=1,…,M(1), 

j=1,…,M(2), k=1,…,M(3). Inside each of these parallelepiped cells the continuous 
approximation F of the measurement discrete map f is constructed by the following way. 

Consider an arbitrary three-dimensional rectangular parallelepiped 
P = [a1, b1] ´ [a2, b2] ´ [a3, b3] = {(x1, x2, x3), a1£ x1£ b1, a2£ x2£ b2, a3£ x3£ b3}, 
where a1, b1, a2, b2, a3, and b3 are fixed real numbers. There is an obvious one-to-one 

correspondence of the 8 vertices to the rectangular parallelepiped P and the 8 vertices (0,0,0), 
(0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1) to the unit three-dimensional cube 

 
P1 = {(x1, x2, x3), 0£ x1£ 1, 0£ x2£1, 0£ x3£ 1}. 
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Numerate all the 8 vertices of the rectangular parallelepiped P by means of the 
corresponding vertices of the unit cube P1, x000, x001, x010, x011, x100, x101, x110, x111. Apply the 
same numeration to the values of the discrete map f, i.e., put pijl = f(xijl) for i,j,l=0,1. 

Define the map F inside the rectangular parallelepiped P, 
yn = Fn(x1, x2, x3) = pn000 + rn1Dx1 + rn2Dx2 + rn3Dx3, 

 
where n, n=1,2,3, is the number of component of the map F in three-dimensional color 

space ℝ# and Dxi = (xi - xi0)/(xi1 - xi0) for i=1,2,3. The coefficients rni, i=1,2,3, are determined 
in correspondence with the following table (cf.  [2, p. 70–72]). 

Table 1. Coefficients rni, i=1,2,3 

 
The interpolation under consideration has pure geometrical sense. We decompose a three-

dimensional rectangular parallelepiped into six tetrahedrons. These tetrahedrons are defined 
by the conditions in the second column of the table above. Inside each tetrahedron the map F 
is constructed by linear interpolation of the values pijl, i,j,l=0,1, of the discrete map f at the 
vertices to the tetrahedrons. Thus we have constructed the piecewise linear map F, being a 
solution to the direct problem of mathematical modeling for a three-dimensional printing 
device. In other words, we have constructed a piecewise linear model of a three-dimensional 
printing device. 

3. DIRECT PROBLEM FOR FOUR-DIMENSIONAL PRINTING DEVICES 
Now consider a four-dimensional printing device, which is modelled in a way similar to the 
three-dimensional case. Let a finite set {wi} Ì W4 of points wi, i=1,…,M, of the colorants cube 
W4 be a regular mesh. The measurement data pi = f(wi) = F(wi), i=1,…, M, determines a 
discrete map 

f: {wi} ® {pi}, 
 

To approximate the discrete map f  by a continuous map 
F: W4 ® ℝ#, 

 

use a piecewise linear or, which in four-dimensional case is the same, pentahedral 
interpolation. 

By definition of a regular mesh, for k=1,2,3,4 there exist the one-dimensional meshes Zk 
= {xk0 ,…, xkM(k)}, ak = xk0 < … < xkM(k) = bk, of M(k)+1 real numbers such that {wi} = Z1 ´ Z2 
´ Z3 ´ Z4 Ì W4 and M = (M(1)+1)(M(2)+1)(M(3)+1)(M(4)+1). It means that the four-
dimensional colorants cube W4 can be decomposed into the union of the mesh of parallelepiped 
cells: 

, 
Pi,j,k = [x1i-1, x1i] ´ [x2j-1, x2j] ´ [x3k-1, x3k] ´ [x4k-1, x4k]. Inside each parallelepiped cell 

Pi,j,k the continuous approximation F of the discrete map f is constructed by the following way. 

No Conditions rn1 rn2 rn3 
1 Dx1 ³ Dx2 ³ Dx3 pn100- pn000 pn110- pn100 pn111- pn110 
2 Dx1 ³ D x3 ³ Dx2 pn100- pn000 pn111- pn101 pn101- pn100 
3 Dx3 ³ Dx1 ³ Dx2 pn101- pn001 pn111- pn101 pn001- pn000 
4 Dx2 ³ Dx1 ³ Dx3 pn110- pn010 pn010- pn000 pn111- pn110 
5 Dx2 ³ Dx3 ³ Dx1 pn111- pn011 pn010- pn000 pn011- pn010 
6 Dx3 ³ Dx2 ³ Dx1 pn111- pn011 pn011- pn001 pn001- pn000 
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Consider an arbitrary four-dimensional rectangular parallelepiped P = {(x1, x2, x3, x4), a1£ 
x1£ b1, a2£ x2£ b2, a3£ x3£ b3, a4£ x4£ b4}. There is an obvious one-to-one correspondence 
between the vertices of the parallelepiped P and the vertices (0,0,0,0), (0,0,0,1), (0,0,1,0), 
(0,0,1,1), (0,1,0,0), (0,1,0,1), (0,1,1,0), (0,1,1,1), (1,0,0,0), (1,0,0,1), (1,0,1,0), (1,0,1,1), 
(1,1,0,0), (1,1,0,1), (1,1,1,0), (1,1,1,1) of the unit four-dimensional cube P1 = {(x1, x2, x3, x4), 
0£ x1£1, 0£ x2£1, 0£ x3£1, 0£ x4£1}. Numerate the vertices of the rectangular parallelepiped 
P by the corresponding vertices of the cube P1: x0000, x0001, x0010, x0011, x0100, x0101, x0110, 
x0111,x1000, x1001, x1010, x1011, x1100, x1101, x1110, x1111. Apply this numeration also to the values of 
the map f, i.e., put pijkl = f(xijkl) for i,j,k,l=0,1, and define the components of the map F on the 
parallelepiped P: 

 

yn = Fn(x1, x2, x3, x4) = pn000 + rn1D x1 + rn2D x2 + rn3D x3 + rn4D x4, 
 

where n=1,2,3, Dxi = (xi - xi0)/( xi1 - xi0) for i=1,2,3,4, and rni are determined by the table: 

Table 2. Coefficients rni, i=1,2,3,4 
No Conditions rn1 rn2 rn3 rn4 
1 Dx1 ³ Dx2 ³ Dx3 ³ Dx4 pn1000-pn0000 pn1100-pn1000 pn1110-pn1100 pn1111-pn1110 
2 Dx1 ³ Dx2 ³ Dx4 ³ Dx3 pn1000-pn0000 pn1100-pn1000 pn1111-pn1101 pn1101-pn1100 
3 Dx1 ³ Dx4 ³ Dx2 ³ Dx3 pn1000-pn0000 pn1101-pn1001 pn1111-pn1101 pn1001-pn1000 
4 Dx4 ³ Dx1 ³ Dx2 ³ Dx3 pn1001-pn0001 pn1101-pn1001 pn1111-pn1101 pn0001-pn0000 
5 Dx1 ³ Dx3 ³ Dx2 ³ Dx4 pn1000-pn0000 pn1110-pn1010 pn1010-pn1000 pn1111-pn1110 
6 Dx1 ³ Dx3 ³ Dx4 ³ Dx2 pn1000-pn0000 pn1111-pn1011 pn1010-pn1000 pn1011-pn1010 
7 Dx1 ³ Dx4 ³ Dx3 ³ Dx2 pn1000-pn0000 pn1111-pn1011 pn1011-pn1001 pn1001-pn1000 
8 Dx4 ³ Dx1 ³ Dx3 ³ Dx2 pn1001-pn0001 pn1111-pn1011 pn1011-pn1001 pn0001-pn0000 
9 Dx3 ³ Dx1 ³ Dx2 ³ Dx4 pn1010-pn0010 pn1110-pn1010 pn0010-pn0000 pn1111-pn1110 
10 Dx3 ³ Dx1 ³ Dx4 ³ Dx2 pn1010-pn0010 pn1111-pn1011 pn0010-pn0000 pn1011-pn1010 
11 Dx3 ³ Dx4 ³ Dx1 ³ Dx2 pn1011-pn0011 pn1111-pn1011 pn0010-pn0000 pn0011-pn0010 
12 Dx4 ³ Dx3 ³ Dx1 ³ Dx2 pn1011-pn0011 pn1111-pn1011 pn0011-pn0001 pn0001-pn0000 
13 Dx2 ³ Dx1 ³ Dx3 ³ Dx4 pn1100-pn0100 pn0100-pn0000 pn1110-pn1100 pn1111-pn1110 
14 Dx2 ³ Dx1 ³Dx4 ³ Dx3 pn1100-pn0100 pn0100-pn0000 pn1111-pn1101 pn1101-pn1100 
15 Dx2 ³ Dx4 ³ Dx1 ³ Dx3 pn1101-pn0101 pn0100-pn0000 pn1111-pn1101 pn0101-pn0100 
16 Dx4 ³ Dx2 ³ Dx1 ³ Dx3 pn1101-pn0101 pn0101-pn0001 pn1111-pn1101 pn0001-pn0000 
17 Dx2 ³ Dx3 ³ Dx1 ³ Dx4 pn1110-pn0110 pn0100-pn0000 pn0110-pn0100 pn1111-pn1110 
18 Dx2 ³ Dx3 ³ Dx4 ³ Dx1 pn1111-pn0111 pn0100-pn0000 pn0110-pn0100 pn0111-pn0110 
19 Dx2 ³ Dx4 ³ Dx3 ³ Dx1 pn1111-pn0111 pn0100-pn0000 pn0111-pn0101 pn0101-pn0100 
20 Dx4 ³ Dx2 ³ Dx3 ³ Dx1 pn1111-pn0111 pn0101-pn0001 pn0111-pn0101 pn0001-pn0000 
21 Dx3 ³ Dx2 ³ Dx1 ³ Dx4 pn1110-pn0110 pn0110-pn0010 pn0010-pn0000 pn1111-pn1110 
22 Dx3 ³ Dx2 ³ Dx4 ³ Dx1 pn1111-pn0111 pn0110-pn0010 pn0010-pn0000 pn0111-pn0110 
23 Dx3 ³ Dx4 ³ Dx2 ³ Dx1 pn1111-pn0111 pn0111-pn0011 pn0010-pn0000 pn0011-pn0010 
24 Dx4 ³ Dx3 ³ Dx2 ³ Dx1 pn1111-pn0111 pn0111-pn0011 pn0011-pn0001 pn0001-pn0000 

 
The interpolation under consideration has pure geometrical sense. We decompose a four-

dimensional rectangular parallelepiped into 24 pentahedrons. These pentahedrons are defined 
by the conditions in the second column of the table above. Inside each tetrahedron the map F 
is constructed by linear interpolation of the values pikjl, i,j,k,l=0,1, of the discrete map f at the 
vertices to the pentahedrons. 
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Thus we have constructed the piecewise linear map F, being a solution to the direct 
problem of mathematical modeling for a four-dimensional printing device. In other words, we 
have constructed a piecewise linear model of a four-dimensional printing device. 

4. GAMUT DESCRIPTION FOR THREE-DIMENSIONAL PRINTING DEVICES 
Consider a piecewise linear model 

F: W3 ® ℝ# 
 

of a given three-dimensional printing device. For practical applications it is important to find 
in color space the gamut of the printing device, i.e., the image F(W3) of the piecewise linear 
map F. In particular, we need it to go on with the inverse problem.  

By definition of a piecewise linear map F, we have the simplex decomposition of the 

three-dimensional colorants cube W3 into the union of N, N>0, tetrahedrons Dj: . 
Each tetrahedron has four two-dimensional faces. These faces are triangles and each triangle 
belongs either to one or several tetrahedrons of the set {Dj}. In a standard way the faces of 
these tetrahedrons can be divided into two classes. 

Definition. Fix a tetrahedron Dl, l=1,…,N, and consider it’s two-dimensional face d, which 
is a triangle. The face d is called boundary if it doesn’t belong to any other tetrahedron of the 
set {Dj}. In other words, d Ì Dl, and d Ë Dk for k=1,…,l-1,l+1,…,N. The face d is called 
internal if there is a tetrahedron Dk from the set {Dj} such that d belongs to both Dl and Dk, i.e., 
d Í Dl Ç Dk. 

Denote the set of all the boundary faces of the colorants cube W3 by Q. 
Remark. The set Q of all the boundary faces doesn’t depend on the choice of the three-

dimensional printing device, i.e., on the choice of the corresponding piecewise linear map F. 
Indeed, the union of all these faces always coincides with the boundary ¶W3 of the three-

dimensional colorants cube: . 
Suppose the printing device under consideration is non-degenerate, i.e., the corresponding 

piecewise linear map F is non-degenerate. By definition, it means that all the restrictions 
F½Dj : Dj ® ℝ#, 
of the map F to tetrahedrons Dj are non-degenerate linear maps F½Dj (x) = cj + Bjx (see 

section 1). In other words, the determinant of the corresponding matrix Bj is either positive, 
det Bj > 0, or negative, det Bj < 0. 

Definition. Fix a number l, l=1,…,N, and consider two-dimensional internal face d of the 
tetrahedron Dl, which is a triangle. The internal face d is called singular if there exists a 
tetrahedron Dk from the set {Dj} such that d belongs to both Dl and Dk, d Í Dl Ç Dk, and the 
determinants of the corresponding matrixes Bl and Bk have different signs, i.e., det Bl × det Bk 
< 0. 

Denote the set of all the singular faces of the given three-dimensional printing device by 
S. 

Remark. On the contrary to the set Q of all the boundary faces, the set S of all the singular 
faces essentially depends on the choice of the three-dimensional printing device, i.e., on the 
choice of the corresponding piecewise linear map F. For example, for some printing devices 
this set is empty and for some it is not (see section 6). 

It is possible to describe the gamut boundary of a non-degenerate printing device in terms 
of boundary and singular faces. The following theorem is through. 

Theorem. For any non-degenerate three-dimensional printing device the boundary of the 
gamut is a subset of the images of all the boundary and singular faces, i.e., 
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¶F(W3) Í F(Q) È F(S). 
 
This theorem can seem to be a pure abstract mathematical proposition. And, of course, it 

really is. But nevertheless, it does significantly more because it gives a strict mathematical 
ground for creation of a wide range of computational algorithms for practical approximation 
of color gamut boundaries of various three-dimensional printing devices. In particular, the 
author designed a variant of such an algorithm, which constructs a three-dimensional gamut 
boundary for any real color printing device with three colorants. As an input it takes a file with 
colorimetric measurements data of the printing device under consideration (see section 1), and 
as an output it constructs the color gamut boundary, i.e., the corresponding boundary of the 
three-dimensional body in a reference space of three colors.  

As it was said in the preface, the same details of computational algorithms are not 
presented in this article. Therefore, we will just give an example of what the designed 
algorithm does in practice. The picture below visualizes a piecewise linear approximation of 
the gamut boundary of a rather standard printing device with three colorants, which means that 
the stimuli space is three-dimensional in this case. In reference space the Lab coordinate 

system is chosen, and one colorants limitation  is applied. 
 

 
Fig. 1. A piecewise linear approximation of the gamut boundary for a three-dimensional printing device  

The next picture gives another example of the output of the same algorithm, which is a 
visualized color gamut boundary. Here we handle exactly the same printing device as in the 
previous case but the colorants limitation is changed to the tighter one, namely to        
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The way of visualization is also exactly the same, including angle of view, the scale, and 
the coordinate system. 
 

 
Fig. 2. Results of the algorithm for the same printing device with tighter colorants limitation 

5. GAMUT DESCRIPTION FOR FOUR-DIMENSIONAL PRINTING DEVICES 
Consider a piecewise linear model 

F: W4 ® ℝ#, 
 

of a four-dimensional printing device.  
Definition. If the image of the boundary ¶W4 of the four-dimensional colorants cube 

coincides with the image of the whole cube W4, i.e., F(W4) = F(¶W4), then the four-
dimensional printing device is called proper.  

Remark. From technological point of view, the assumption of a four-dimensional printing 
device to be proper is reasonable for most real four-dimensional printing devices.  

By definition of the piecewise linear map F, all the restrictions F½Dj : Dj ® ℝ#, of the 
map F to pentahedrons Dj are linear maps, i.e., F½Dj (x) = cj + Bjx, where Bj is a 3´4 matrix 
for j=1,…,N. Let Bji be the 3´3 matrix obtained by throwing away the i-th column from the 
3´4 matrix Bj and put 

cj = ( det Bj1, - det Bj2, det Bj3, - det Bj4 ) 
for j=1,…, N. 

Definition. Consider the four-dimensional printing device corresponding to the piecewise 
linear map F. A vector field c on the colorants cube W4 is called the characteristic vector field 
of the printing device under consideration if c½Dj = cj for j=1,…, N . The four-dimensional 
printing device is non-degenerate if the corresponding characteristic vector field c is non-
degenerate, i.e., cj ¹ 0 for all j=1,…,N. 
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Remark. By definition, the characteristic vector field of any four-dimensional printing 
device is a four-dimensional piecewise constant vector field on the four-dimensional colorants 
cube W4. 

In this section we will describe the gamut of a proper non-degenerate four-dimensional 
printing device, i.e., the image F(W4) of the corresponding piecewise linear map F in color 
space. 

By definition of a piecewise linear map, we have the simplex decomposition of the four-

dimensional colorants cube W4 into the union of N, N>0, pentahedrons Dj, . Each 
pentahedron has five three-dimensional faces. These faces are tetrahedrons and each 
tetrahedron either belongs to one or several pentahedrons of the set {Dj}. 

Definition. Fix a pentahedron Dl, l=1,…,N, and consider it’s three-dimensional face, 
which is a tetrahedron d. The face d is called boundary if it doesn’t belong to any other 
pentahedron of the set {Dj}. In other words, d Ì Dl, and d Ë Dk for k=1,…,l-1,l+1,…,N. 

Denote the set of all the boundary faces of the colorants cube W4 by Q. 
Remark. The set Q of all the boundary faces doesn’t depend on the choice of the four-

dimensional printing device, i.e., on the choice of the corresponding piecewise linear map F. 
The union of all these faces always coincides with the boundary ¶W4 of the four-dimensional 

colorants cube, . 
On the boundary ¶W4 of the four-dimensional colorants cube W4 there exists the normal 

vector field n to this cube. Let dj, j=1,…,N, be a boundary face of the four-dimensional 
colorants cube W4 belonging to the pentahedron D j. Denote by nj the restriction of the normal 
vector field n to this face: nj = n½dj. Let dk and dl be boundary faces of the four-dimensional 
colorants cube W4 such that dk Ì Dk, dl Ì Dl for some pentahedrons Dk and Dl, k,l=1,…,N. By 
definition, these boundary faces are tetrahedrons. Suppose they have a two-dimensional face, 
which is a triangle d, in common, d = dk Ç dl. 

Definition. The triangle d is called a singular face of a non-degenerate four-dimensional 
printing device that is defined by the piecewise linear map F if the inner products (nk, ck) and 
(nl, cl) of the normal vector field n and the characteristic vector field c have different signs: 

 

(nk, ck) × (nl, cl) < 0. 
 

Denote the set of all the singular faces of the given four-dimensional printing device by S. 
Remark. The set Q of all the boundary faces doesn’t depend on the choice of a printing 

device. On the contrary, the set S of all the singular faces essentially depends on the choice of 
a four-dimensional printing device, i.e., on the choice of the corresponding piecewise linear 
map F. Moreover, a boundary face is a three-dimensional simplex, i.e., a tetrahedron, whereas 
a singular face is a two-dimensional simplex, i.e., a triangle. There is also a serious difference 
between three- and four-dimensional cases of printing devices. Indeed, in three-dimensional 
case the boundary faces are two-dimensional and in four-dimensional case – four-dimensional. 
An other important difference is the following: for most three-dimensional printing devices 
the set S of all the singular faces is empty, while for any four-dimensional printing devices the 
set S of all the singular faces is not empty.  

It is possible to describe the gamut boundary of a proper non-degenerate printing device 
in terms of singular faces only. The following theorem is through. 

Theorem. For any proper non-degenerate four-dimensional printing device the boundary 
of the gamut is a subset of the images of all the singular faces, i.e., ¶F(W4) Í F(S). 

All the remarks that were made in the previous section after the theorem about the gamut 
boundaries of the three-dimensional printing devices are entirely correct in the case described 
by the theorem under consideration. In particular, a wide range of algorithms that approximate 
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the color gamut boundary of any real color printing device with four colorants can be designed 
grounded on it. As in the case of three-dimensional stimuli space an input for this algorithm is 
a file with colorimetric measurements data of the printing device under consideration (see the 
previous section). And as an output this algorithm produces piecewise linear approximation of  
the color gamut boundary, i.e., the corresponding three-dimensional body boundary in a 
reference space of three colors.  

The following picture gives an example of such approximation. It shows the color gamut 
boundary in reference space of a rather standard printing device with four colorants (cyan, 
magenta, yellow, and black), which means that the stimuli space is four-dimensional. To be 
definite, call the measurement file of this device CMYK.dat. In reference space the Lab 

coordinate system chosen, and one colorants limitation  is applied. 
 

 
Fig. 3. The color gamut boundary for a four-dimensional printing device 

The next picture gives another example of the algorithm output. Here we have exactly the 
same printing device as in the previous picture, which is described by measurement data from 
CMYK.dat file, but the colorants limitation is changed to a tighter one, namely to    

.  
The way of rendering is exactly the same, including angle of view, the scale, and the 

coordinate system. 
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Fig. 4. Results of the algorithm for the same printing device with tighter colorants limitation 

 

6. THREE-DIMENSIONAL REGULAR PRINTING DEVICES 
Consider a piecewise linear model 

F: W3 ® ℝ# 
 

of a three-dimensional printing device. 
Definition. The three-dimensional printing device is called regular if the piecewise linear 

map F is an injection. 
Lemma. Let a topological space W be compact and a map F, 
 

F: W ® F(W), 
 

 be a continuous injection. Then there exists the unique continuous inverse map 
 

g = F-1: F(W) ® W. 
 

In other words, then the map F is a homeomorphism. 
Proof. See [3, ch. 2, § 8]. 
Remark. Since the three-dimensional cube W3 is a compact topological space the lemma 

under consideration gives a satisfactory approach to solution of the inverse problem of 
modeling of three-dimensional regular printing devices (see section 1). Important to note, that 
most of the three-dimensional printing devices are regular though sometimes singular printers 
are met. 
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By definition of a piecewise linear map, we have the simplex decomposition of the three-

dimensional colorants cube W3 into the set of N, N>0, tetrahedrons Dj, , such that 
all the restrictions F½Dj : Dj ® ℝ#, of the map F to tetrahedrons Dj are linear maps, i.e., 

 

F½Dj (x) = cj + Bjx, 
 

where Bj is a 3´3 matrix, and x, cj are three-dimensional vectors for j=1,…, N. 
Definition. A three-dimensional printing device is called strictly non-degenerate if all the 

determinates of the matrixes Bj are of the same sign, i.e., det Bj × det Bj > 0 for all the indexes 
i,j=1,…,N. 

Remark. By definition of a singular face (see section 4), a three-dimensional printing 
device is strongly non-degenerate if and only if the set S of all its singular faces is empty, S = 
Æ. Any three-dimensional strongly non-degenerate printing device is non-degenerate. The 
inverse statement is false because there exist three-dimensional non-degenerate printing 
devices that are not strongly non-degenerate.  

There is an effective criterion of a three-dimensional printing device to be regular. 
Theorem. Let 

F: W3 ® ℝ#
 

 

be a piecewise linear model of a three-dimensional printing device. This printing device 
is regular if and only if it is strongly non-degenerate and the restriction 

 

F½¶W3 : ¶W3 ® ℝ#
 

 

of the map F to the boundary ¶W3 of the three-dimensional colorants cube W3 is an 
injection. 

By this theorem, the necessary condition of a three-dimensional printing device to be 
regular is its strong non-degeneracy. By definition, it means that all the determinates of the 
matrixes Bj of the piecewise linear map F have the same sign. Describe the scheme of an 
algorithmic approach to forcing a three-dimensional printing device to become strictly non-
degenerate.  

At the first step count the number n+ of positive determinants and the number n- of 
negative determinants. For clarity, assume that n+ > n-. 

At the second step define a positive threshold e, e > 0, which is usually a small real number, 
and construct the error functional R, 

, 
where Rj = Rj(p1, … , pM) = 0 if det Bj ≥ e, and Rj = Rj(p1, … , pM) = (e - det Bj)2 if det Bj 

< e, j=1,…, N. Here p1, … , pM are the three-dimensional vectors in color space, forming the 
measurement data of the three-dimensional printing device under consideration (see section 1). 
By construction of the direct problem solution, all the determinants det Bj of the piecewise 
linear map F are third order polynomials with respect to measurement data p1,…, pM for 
j=1,…,N (see section 2). Hence, all the functions Rj are smooth for j=1,…,N and the error 
functional R = R(p1, … , pM) is smooth with respect to measurement data p1,…,pM too.  

At the third step minimize the error functional R with respect to measurement data 
p1,…,pM, i.e., R(p1, …, pM) ® min, by some minimization method. The resulting argument 
(p10, … , pM0) of the minimal value is the measurement data for regularized three-dimensional 
printing device. 

Remark. There are M three-dimensional vectors in measurement data. Therefore the total 
dimension of the space is 3M. Thus we have a 3M-dimensional non-convex minimization 
problem. By construction, the error functional R is not convex and can have more than one 
minimal point. 
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7. FOUR-DIMENSIONAL REGULAR PRINTING DEVICES 
Consider a piecewise linear model 

F: W4 ® ℝ#
 

 

of a four-dimensional printing device.  
Definition. The four-dimensional printing device is called regular if the following three 

conditions hold for the piecewise linear map F. 
(1) The color gamut F(W4) is homeomorphic to closed three-dimensional disk D3. 
(2) For any internal point p of the color gamut F(W4), p Î int F(W4), the pre-image F-1(p) 

is homeomorphic to a segment [a, b], a<b, and the intersection F-1(p) Ç ¶W4 of this pre-image 
and the boundary ¶W4 of the colorants cube W4 consists exactly of the two boundary points of 
the pre-image F-1(p). 

(3) For any boundary point p of the gamut F(W4), p Î ¶F(W4), the pre-image F-1(p) 
consists of exactly one point. 

Remark. If a four-dimensional printing device is regular then it is non-degenerate and 
proper. Of cause, the inverse statement is false because there exist four-dimensional non-
degenerate proper printing devices that are not regular. 

Let c be the characteristic vector field of the four-dimensional printing device under 
consideration. By definition, it is a piecewise constant vector field such that c½Dj = cj, where 

 

cj = ( det Bj1, - det Bj2, det Bj3, - det Bj4 ) 
 

for j=1,…,N (see section 5). 
Definition. A four-dimensional printing device is called strictly non-degenerate if it is 

non-degenerate and at any point x of the four-dimensional colorants cube W4 all the four 
coordinates of the characteristic vector field c have the same sign. In other words, for all 
j=2,…,N the i-th coordinate cji = (-1)i+1det Bji of the characteristic vector field c at the j-th 
simplex has the same sign as the i-th coordinate  c1i = (-1)i+1det B1i of the characteristic vector 
field c at the first simplex for i=1,2,3,4. 

Remark. It is possible to show that for a strictly non-degenerate four-dimensional printing 
device the set S of all its singular faces is homeomorphic to two-dimensional sphere S2. 

There is a sufficient condition of a four-dimensional printing device to be regular. 
Theorem. Suppose the four-dimensional printing device under consideration is strictly 

non-degenerate and the restriction F½S of the piecewise linear map F to the set S of all its 
singular faces is an injection. Then this printing device is regular. 

Describe the scheme of an algorithmic approach that allows forcing a four-dimensional 
printing device to become strictly non-degenerate. 

At the first step count the number ni+ of positive i-th coordinates and the number ni- of 
negative i-th coordinates of the characteristic vector field c, i=1,2,3,4. For clarity, assume that 
ni+ > ni- for i=1,2,3 and n4+ < n4- . 

At the second step define a positive threshold e, e  > 0, which is usually a small real 
number, and construct the error functional R, 

. 
Here Rji = Rji(p1, …, pM) = 0 if (-1)i+1det Bji ≥ e and Rj = Rj(p1, … , pM) = (e - det Bj)2 if  

(-1)i+1det Bji < e for i=1,2,3. For i=4 Rj4 = Rj4(p1, …, pM) = 0 if det Bji ≥ e and Rj = Rj(p1,…, 
pM) = (e - det Bj)2 if det Bji < e for j=1,…,N. In both cases p1, …, pM are the three-dimensional 
vectors in color space that form the measurement data of the four-dimensional printing device 
under consideration (see section 1). By construction of the piecewise linear map F, all the 
determinants det Bji are the third order polynomials with respect to measurement data vectors 
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p1,…,pM for j=1,…,N and i=1,2,3,4 (see section 3). Thence all the functions Rji are smooth for 
j=1,…,N, i=1,2,3,4, and the error functional R = R(p1, …, pM) is smooth with respect to 
measurement data vectors p1,…,pM too.  

At the third step minimize the error functional R with respect to measurement data 
p1,…,pM, i.e., R(p1, …, pM) ® min, by some minimization method. The resulting argument 
(p10, … , pM0) of the minimal value is the measurement data for regularized four-dimensional 
printing device. 

Remark. The dimension of the space of measurement data is 3M. Thus we obtain a 3M-
dimensional non-convex minimization problem. By construction, the error functional R is not 
convex and can have more than one minimal point.  

Consider the measurement file CMYK.dat that we have used in the example of section 5. 
Direct calculations show that this printing device is not strictly non-degenerate. Indeed, the 
table below indicates that some coordinates of the characteristic vector field are positive 
whereas some are negative: 

 

 
Fig. 5. Distribution for coordinates of the characteristic vector field 

 
From geometrical point of view, it means that we have too many singular faces that lead 

to formation of redundant faces or singularities inside the color gamut. Visualization of these 
singularities can be seen in the picture below: 

 

 
Fig. 6. Singularities inside the color gamut 

 



    MATHEMATICAL MODELING OF COLOR PRINTING DEVICES: COLOR GAMUT VISUALIZATION…    131 

 
Copyright ©2021 ASSA.                                                                                    Adv. in Systems Science and Appl. (2021) 

 

In particular, the singularities are the polyhedrons in white, magenta, yellow, and red.  
Therefore, it makes sense to implement the described above algorithmic scheme and apply the 
resulting tool to the measurement data from CMYK.dat file. The author have implemented 
such a tool and successfully applied it to force the data to become strictly non-degenerate. The 
table below shows that after the work of this tool the data became really strictly non-degenerate: 
 

 
Fig. 7. Distribution for coordinates after applying the algorithm 

 
From geometrical point of view, it means that all the redundant singular faces have been 

removed and, therefore, no singularities exist anymore. Visualization of color gamut of the 
printing device after forcing it to become strictly non-degenerated is given in the picture below: 
 

 
Fig. 8. The color gamut without singularities after applying the algorithm 

 
Indeed, no singularities are present anymore. 
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