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Abstract: An eco-epidemiological model representing the interactions between prey and
predator populations affected by a disease in an ecosystem is presented. The model is governed by
a five-dimensional nonlinear system of ordinary differential equations coupling both ecological
and epidemiological features of interacting populations. The well-posedness of the model is
established with respect to positivity and boundedness of solutions. Conditions for asymptotic
stability of different equilibrium points are extensively investigated to determine the existence
and coexistence of prey and predator species using local linearization and Lyapunov functions
techniques. Additionally, the analysis of the model is extended to assess the effects of three time-
dependent control functions, such as disease prevention, treatment and alternative resource for
predator, on the population dynamics of the prey-predator coexistence in the system.
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1. INTRODUCTION

Interaction between organisms of different species is a common phenomenon in an
ecosystem. It is an intrinsic feature which cannot be downplayed in the study of ecological
system. This interaction, especially between prey and predator species, often affects or
changes the population sizes of organisms in the system [11]. Since the advent of the
classical Lotka and Volterra prey-predator models [20, 31], many ecosystem models, which
can be defined as mathematical representations of ecological system of prey and predator
interactions, have been studied in literature to better understand the real system (see, e.g.
[5, 11, 13, 17, 27]). In [11], analysis of modified Lotka-Volterra model was carried out by
taking into consideration an environmental case containing two related populations of prey
and predator species having influence on the size of each other. Kumar and Kumari [17]
studied the impact of fear on a chaotic model describing the interactions of the species in the
food chain of one prey and two predators. Prasad et al. [27] investigated the role of mutual
interference between predators on the dynamics of additional food provided predator-prey
system.

In recent decades, a number of studies have considered ecosystems of interacting
populations among which diseases spread. The resulting ecological systems are described
by eco-epidemiological models [7–9, 21, 29]. Das [9] studied the predator-prey model
with parasitic infection transmitting among the predator population only. Nandi et al. [21]
developed a predator-prey system where prey species only are infected with a viral disease
resulting into susceptible and two-stage infected classes. Bera et al. [8] presented theoretical
analysis supported by simulation of the dynamical behaviors of a prey-predator system where
both populations are affected by diseases.
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Interest has been growing recently in the application of optimal control theory to the
dynamics of eco-epidemiological models for prey-predator system. AL-Nassir [6] studied a
two-dimensional continuous prey-predator system incorporating an optimal control variable
with the aim of reducing the number of the predator density in the population. In [10], the
authors extended a prey-predator mathematical model with infection and harvesting on prey
to include one time-dependent control for preventing infection in the prey population only.
In another development, Hugo et al. [16] applied optimal control theory in minimizing the
spread of Newcastle disease among chickens (prey) and humans (predator) populations using
three control variables, such as vaccination of prey, education campaign and treatment of
infected humans.

In this work, a five-dimensional nonlinear prey-predator model is studied to gain further
insights into the dynamics of eco-epidemiological interactions between prey and predator
populations. The analysis of the model is extended to investigate the impact of three optimal
control variables, namely disease prevention in both prey and predator populations, treatment
control for prey, and provision of alternative resources control for predator population. The
rest of the work is organized as follows: The model is formulated and its well-posedness is
established in Section 2. In Section 3, existence and stability of possible equilibrium points
are investigated. In Section 4, the model is extended to explore optimal control dynamics with
numerical simulations. Section 5 is devoted to concluding remarks.

2. MODEL FORMULATION

The dynamic eco-epidemiological prey-predator system is formulated by sub-dividing the
prey population at time, t, into susceptible Xs(t), infected Xi(t) and recovered Xr(t). On
the other hand, the predator population is sub-divided into two, namely susceptible Ys(t)
and infected Yi(t). It is assumed that the susceptible prey population increases logistically
with intrinsic growth rate r and carrying capacity k. Following effective contact with the
infected prey, the susceptible prey becomes infected at rate β1. To avoid extinction of the
prey population due to disease, the infected prey is allowed to recover at per capita rate
γ. The natural mortality rate for the prey population is given by µ1. Further, it is assumed
that the susceptible predator, being healthy, has the capacity to attack and consume both
susceptible and infected prey, while the recovered prey is assumed to be under cover from
predation. It is also assumed that predators depend on prey for sustenance. The susceptible
predator contracts disease from infected predator at rate β2, while the infected predator,
being unhealthy, has the capacity to attack and consume infected prey only as assumed in [8].
It has been assumed that only infected prey population recovers due to their accessibility
to treatment. Hence, recovered class for predators is not considered. This assumption is
based on some eco-epidemiological cases, for examples: carnivorous animals (predator) and
humans (prey), and hawks (predator) and chicks (prey). The predation and conversion rates
for the predator population are given, respectively, by Pi and Ci, for i = 1, 2, 3. The natural
mortality rate for predator population is given by µ2. Concise description of the variables
and the parameters of the prey-predator system is presented in Table 2.1 and the nonlinear
ordinary differential equations describing the interacting prey and predator populations is
given by
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dXs

dt
=rXs

(
1− Xs

k

)
− β1XsXi − P1XsYs − µ1Xs

dXi

dt
=β1XsXi − P2XiYs − P3XiYi − (µ1 + γ)Xi

dXr

dt
=γXi − µ1Xr

dYs
dt

=C1P1XsYs + C2P2XiYs − β2YsYi − µ2Ys

dYi
dt

=β2YsYi + C3P3XiYi − µ2Yi.

(2.1)

Table 2.1. The variables and parameters of the malaria model (2.1)

Variable Description
Xs(t) Susceptible (healthy) prey
Xi(t) Infected (unhealthy) prey
Xr(t) Recovered prey
Ys(t) Susceptible (healthy) predator
Yi(t) Infected (unhealthy) predator
Parameter Description
r Intrinsic growth rate
k Carrying capacity
β1 Disease transmission rate in prey
β2 Disease transmission rate in predator
Pi, i = 1, 2, 3 Predation coefficients
Ci, i = 1, 2, 3 Conversion rates
γ Recovery rate of infected prey
µ1 Natural mortality rate of prey
µ2 Natural mortality rate of predator

2.1. Well-posedness of the model
The mathematical and eco-epidemiological relevance of the prey-predator system (2.1)
depends on the well-posedness of the model. Keeping in mind that all the parameters of
the model are non-negative. Here, the boundedness and positivity of solutions of the model
are investigated to establish the well-posedness of the model.

2.1.1. Boundedness of solutions
The following result is required to establish the boundedness of solutions of the model (2.1).

Lemma 2.1:
The susceptible prey population Xs(t) is bounded.

Proof
It is clear from the first equation of the model (2.1) that

dXs

dt
≤ rXs −

X2
s

k
. (2.2)
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Solving the nonlinear first order differential inequality of Bernoulli type (2.2) yields

Xs(t) ≤
kXs(0)

ke−rt +Xs(0)(1− e−rt)
.

It follows that the lim supXs(t) < k as t→∞.

Theorem 2.1:
The solutions of the system (2.1) are uniformly bounded.

Proof
Let the total prey and predator populations be represented, respectively, by X and Y , so that
the total population of both species be T = X + Y . Then it follows that

dT

dt
≤ rXs − µ1X − µ2Y. (2.3)

Using Lemma 2.1 and let µ = min{µ1, µ2}, then (2.3) becomes

dT

dt
+ µT ≤ rXs ≤ rk,

which on integration gives

T (t) ≤ rk

µ
(1− e−µt) + T (0)e−µt.

Consequently, lim supT (t) < (rk/µ) + ε, ∀ ε > 0 as t→∞. This ends the proof.

2.1.2. Positivity of solutions

Theorem 2.2:
The solution set {Xs, Xi, Xr, Ys, Yi} of the eco-epidemiological model (2.1) with non-
negative initial conditions, Xs(0), Xi(0), Xr(0), Ys(0), Yi(0) in Ω, remain non-negative for
all time t > 0.

Proof
SinceXs(t) < k as shown in Lemma 2.1, then (1−Xs/k) ≥ 0 with equality if the size of the
susceptible prey is exactly its carrying capacity. Hence, the first equation of the model (2.1)
implies that

dXs(t)

dt
+ (β1Xi + P1Ys + µ1)Xs(t) ≥ 0, (2.4)

which on using integrating factor gives

d

dt

[
Xs(t) exp

(∫ t

0

(β1Xi(φ) + P1Ys(φ))dφ+ µ1t

)]
≥ 0. (2.5)

Further integration of (2.5) gives

Xs(t) ≥ Xs(0) exp

[
−
(∫ t

0

(β1Xi(φ) + P1Ys(φ))dφ+ µ1t

)]
> 0, ∀t > 0. (2.6)

All other variables can be proved to be positive in a similar approach.
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Hence, it is sufficient to consider the dynamics of the flow generated by the system (2.1) in a
feasible region defined by

Ω =

{
(Xs, Xi, Xr, Ys, Yi) ∈ R5

+ : T <
rk

µ
+ ε

}
.

In the region Ω, the prey-predator model (2.1) can be said to be eco-epidemiologically well-
posed.

3. ANALYSIS OF THE MODEL

In this section, the prey-predator model is analysed around the possible equilibrium points.

3.1. Existence of equilibrium points
The prey-predator model (2.1) has the following possible equilibrium points:

3.1.1. Trivial equilibrium point (E0)
This is a steady state in the absence of prey and predator populations. Hence, no interactions
exist. The equilibrium point is given by

E0 = (0, 0, 0, 0, 0). (3.7)

3.1.2. Axial equilibrium point (E1)
This is a steady state where only the susceptible prey is present. In other words, it is the
disease-free cum predator-free equilibrium point. It exists provided that the intrinsic growth
rate r exceeds the natural mortality rate µ1. The equilibrium point is given by

E1 =
(
k
[
1− µ1

r

]
, 0, 0, 0, 0

)
. (3.8)

3.1.3. Disease-free equilibrium point (E2)
This is a steady state where there is no disease in both prey and predator populations. It exists

provided the inequality r
(

1− µ2

kC1P1

)
> µ1 holds. Hence, it is obtained as

E2 =

(
µ2

C1P1

, 0, 0,
1

P1

[
r

(
1− µ2

kC1P1

)
− µ1

]
, 0

)
. (3.9)

3.1.4. Predator-free equilibrium point (E3)
This is a steady state where there is no predator in the system. It exists provided the inequality
r
(

1−
(
µ1+γ
kβ1

))
> µ1 holds. The equilibrium is given as

E3 =

(
µ1 + γ

β1
,

1

β1

[
r

(
1−

(
µ1 + γ

kβ1

))
− µ1

]
,
γ

β1µ1

[
r

(
1−

(
µ1 + γ

kβ1

))
− µ1

]
, 0, 0

)
.

(3.10)

3.1.5. Infected prey-free equilibrium (E4)
This is a steady state where the infected prey does not exist. The equilibrium will exist if
k > k

r

(
P1µ2
β2

+ µ1

)
and C1P1

β2

[
k − k

r

(
P1µ2
β2

+ µ1

)]
> µ2. Thus, it is given by

E4 =

(
k − k

r

(
P1µ2

β2
+ µ1

)
, 0, 0,

µ2

β2
,
C1P1

β2

[
k − k

r

(
P1µ2

β2
+ µ1

)]
− µ2

)
. (3.11)
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3.1.6. Infected predator-free equilibrium (E5)
This is a steady state where the infected predator is absent in the ecosystem. The equilibrium
is given by

E5 = (X∗
s , X

∗
i , X

∗
r , Y

∗
s , 0), (3.12)

such that X∗
s > 0, X∗

i > 0, X∗
r > 0, Y ∗

s > 0, and where

X∗
s =

C2[P2(r − µ1)− P1(µ1 + γ)]− β1µ2

C2P2

(
1
k

+ P1β1
P2

)
− C1P1β1

,

X∗
i =

µ2

C2P2

− C1P1

C2P2

C2[P2(r − µ1)− P1(µ1 + γ)]− β1µ2

C2P2

(
1
k

+ P1β1
P2

)
− C1P1β1

 ,
X∗
r =

γX∗
i

µ1

,

Y ∗
s =

β1X
∗
s − (µ1 + γ)

P2

.

3.1.7. Interior equilibrium point (E6)
This is a steady state where all the populations for prey and predator species are present in
the system. The equilibrium is given by

E6 = (X∗∗
s , X

∗∗
i , X

∗∗
r , Y

∗∗
s , Y ∗∗

i ), (3.13)

such that X∗∗
s > 0, X∗∗

i > 0, X∗∗
r > 0, Y ∗∗

s > 0, Y ∗∗
i > 0, and where

X∗∗
s =

1

k

[
(r − µ1)−X∗∗

i

(
β1 −

C3P1C3

β2

)]
,

X∗∗
i =

β2[(P2 − P3)µ2 + β2(µ1 + γ)− (r − µ1)(β1β2 − C1P1P3)]

β2(P2P3C3 + C2P2P3) + (β1β2 − C1P1P3)(β1β2 − C3P1P3)
,

X∗∗
r =

γX∗∗
i

µ1

,

Y ∗∗
s =

µ2 − C3P3X
∗∗
i

β2
,

Y ∗∗
i =

β1X
∗∗
s − P2Y

∗∗
s − (µ1 + γ)

P3

.

3.2. Stability analysis
The Jacobian matrix of the prey-predator system (2.1) is given by

J =


J1 −β1Xs 0 −P1Xs 0
β1Xi J2 0 −P2Xi −P3Xi

0 γ −µ1 0 0
C1P1Ys C2P2Ys 0 J3 −β2Ys

0 0 0 β2Yi β2Ys + C3P3Xi − µ2

 , (3.14)
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where

J1 = r − 2rXs

k
− β1Xi − P1Ys − µ1,

J2 = β1Xs − P2Ys − P3Yi − (µ1 + γ),
J3 = C1P1Xs + C2P2Xi − β2Yi − µ2.

The stability of each of the equilibrium points is analysed by finding the eigenvalues of the
Jacobian matrix (3.14) evaluated at each point.

3.2.1. Stability of E0

The Jacobian matrix (3.14) is evaluated at the trivial equilibrium point (3.7). Hence, solving
the corresponding characteristic equation |J(E0)− λI5)| = 0, where λ is the eigenvalue
and I5 is the identity matrix of order five, the following eigenvalues are obtained: λ1 =
r − µ1, λ2 = −µ1, λ3 = −µ2, λ4 = −(µ1 + γ), λ5 = −µ2.
It can be seen that all the eigenvalues are unconditionally negative except λ1. Thus, E0 will
be stable if r < µ1 and unstable if r > µ1. This result is theorized as follows.
Theorem 3.1:
The trivial equilibrium point E0 of the prey-predator model (2.1), given by (3.7), is stable if
r < µ1 and unstable if r > µ1.

The implication of Theorem 3.1 is that the coexistence of prey-predator population will
not occur if the intrinsic growth rate r does not exceed the natural mortality rate µ1. In other
words, stable equilibrium point E0 will result into extinction of prey and predator species in
the ecosystem.

3.2.2. Stability of E1

The characteristic equation of the matrix (3.14) evaluated at the axial equilibrium point E1 is
given by |J(E1)− λI5)| = 0, which gives the following eigenvalues: λ1 = µ1 − r, λ2 = −µ1,
λ3 = β1k

(
1− µ1

r

)
− (µ1 + γ), λ4 = C1P1k

(
1− µ1

r

)
− µ2, λ5 = −µ2.

The stability result is theorized as follows.
Theorem 3.2:
The axial equilibrium point E1 of the prey-predator model (2.1), given by (3.8), is stable if
the inequalities: µ1 < r, β1k

(
1− µ1

r

)
< (µ1 + γ) and C1P1k

(
1− µ1

r

)
< µ2 hold.

The implication of Theorem 3.2 is that the stable E1 will support the existence of prey
population only in the ecosystem provided these threshold conditions are satisfied:
R01 < 1,R02 < 1 andR03 < 1, where

R01 =
µ1

r
, R02 =

β1k
(
1− µ1

r

)
µ1 + γ

, and R03 =
C1P1k

(
1− µ1

r

)
µ2

.

Now, suppose R0 = max{R01,R02,R03}, and considering the prey sub-model only such
that the axial equilibrium point E1 becomes Ẽ1 = (X0

s , 0, 0), where X0
s = k

[
1− µ1

r

]
. The

following global stability result is proved.
Theorem 3.3:
The equilibrium point Ẽ1 is globally asymptotically stable ifR0 < 1.

Proof
Since P1 = 0 in the absence of predation, thenR0 = max{R01,R02}. Consider the Lyapunov
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function (combination of Goh-Volterra [2, 3, 13, 15, 22] and linear types) given by

L = Xs −X0
s −X0

s ln
Xs

X0
s

+Xi. (3.15)

The time derivative of Lyapunov function (3.15) along the trajectory of the prey only sub-
model is given by

L̇ =

(
1− X0

s

Xs

)
dXs

dt
+
dXi

dt
. (3.16)

Using dXs

dt
= rXs

(
1− Xs

k

)
− β1XsXi − µ1Xs and dXi

dt
= β1XsXi − (µ1 + γ)Xi in (3.16)

with Xs ≤ X0
s , it follows that

L̇ = (Xs −X0
s )

(
r

[
1− Xs

k

]
− β1Xi − µ1

)
+ β1XsXi − (µ1 + γ)Xi

≤ r

[
1− X0

s

k

]
− β1Xi − µ1 + β1X

0
sXi − (µ1 + γ)Xi.

(3.17)

Since r
[
1− X0

s

k

]
= µ1 at the disease-free steady state of the prey only sub-model, then it

follows from (3.17), by further simplifications, that

L̇ ≤ −β1Xi − (µ1 + γ)

(
1− β1X

0
s

µ1 + γ

)
Xi. (3.18)

SinceR02 =
β1X

0
s

µ1 + γ
, consequently (3.18) becomes

L̇ ≤ −β1Xi − (µ1 + γ) (1−R02)Xi.

Therefore, L̇ ≤ 0 when R02 < 1 with equality, L̇ = 0, if and only if Xi = 0. It follows
from LaSalle’s Invariance Principle [19] that the largest invariant set contained in
{(Xs, Xi, Xr) ∈ R3

+ : L̇ = 0} is the singleton set {Ẽ1}. Hence, the equilibrium point Ẽ1 =
(k[1− (µ1/r)], 0, 0) is globally asymptotically stable.

The implication of Theorem 3.3 is that the presence of disease in the prey population
can be eliminated if R02 < 1, irrespective of the initial sizes of the infected prey in the
ecosystem. Thus, every solution of the prey only sub-model will always converge to the point
Ẽ1 wheneverR02 is less than unity. This theoretical result is demonstrated in Figure 3.1.

3.2.3. Stability of E2

Considering that there are only two disease classes in the prey-predator system (2.1), then
using the notations in the next generation operator method [30], it follows that

F =

[
β1µ2
C1P1

0

0 β2
P1
m1

]
and V =

[
P2

P1
m1 + µ1 + γ 0

0 µ2

]
,

where m1 = r
(

1− µ2
kC1P1

)
− µ1. Hence, the basic reproduction number of the full

system (2.1), denoted by R∗
0, is given by

R∗
0 = ρ(FV −1) = max

 β1µ2

C1P1

(
P2

P1
m1 + µ1 + γ

) , β2m1

P1µ2

 . (3.19)
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Fig. 3.1. Convergence of solution trajectories of prey sub-model to the equilibrium point Ẽ1 at different initial
sizes. The parameter values used are: r = 11.2, β1 = 0.04, µ1 = 0.85, γ = 0.75, k = 30, so thatR01 = 0.0759

andR02 = 0.6931, implying thatR0 = R02 < 1.

Therefore, by Theorem 2 of [30], the following stability result is claimed.

Theorem 3.4:
The disease-free equilibrium point E2 of the prey-predator model (2.1), given by (3.9), is
stable provided that R∗

0 < 1.

The implication of Theorem 3.4 is that the presence of few species around the equilibrium
point E2 will support the coexistence of both prey and predator species in a disease-free
ecosystem whenever the basic reproduction number, R∗

0, is less than unity. The global
dynamics of the prey-predator around the disease-free equilibrium point E2 is explored next.

Theorem 3.5:
The disease-free equilibrium point of the prey-predator model (2.1), given by (3.9), is globally
asymptotically stable if R∗

0 > 1.

Proof
The proof is based on using the Lyapunov function defined by

F =
P1

P2m1 + P1(µ1 + γ)
Xi +

1

µ2

Yi, (3.20)

which when differentiated with respect to time, t, gives

dF
dt

=
P1

P2m1 + P1(µ1 + γ)
[β1XsXi − P2XiYs − P3XiYi − (µ1 + γ)Xi]

+
1

µ2

(β2YsYi + C3P3XiYi − µ2Yi).
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Since Xs ≤ β1µ2
C1P1

and Ys ≤ 1
P1

[
r
(

1− µ2
kC1P1

)
− µ1

]
, noting that m1 = r

(
1− µ2

kC1P1

)
− µ1.

Therefore, it follows, after simplification, that

dF
dt
≤

 β1µ2

C1P1

(
P2

P1
m1 + µ1 + γ

) − 1

Xi −
P1P3

P2m1 + P1(µ1 + γ)
XiYi

+

[
β2m1

P1µ2

− 1

]
Yi +

1

µ2

(C3P3XiYi)

≤

max

 β1µ2

C1P1

(
P2

P1
m1 + µ1 + γ

) , β2m1

P1µ2

− 1

 (Xi + Yi)

−
[

P1

P2m1 + P1(µ1 + γ)
− C3

µ2

]
P3XiYi

= [R∗
0 − 1](Xi + Yi)−

[
P1

P2m1 + P1(µ1 + γ)
− C3

µ2

]
P3XiYi.

Consequently, dF/dt ≤ 0 if R∗
0 < 1 and Xi = 0 or Yi = 0. Thus, Xs → µ2/(C1P1), Xr → 0

and Ys → m1/P1 as both Xi → 0 and Yi → 0. Therefore, by LaSalle’s invariance principle
[19], the disease-free equilibrium point E2 is globally asymptotically stable.

The implication of Theorem 3.5 is that elimination of disease in the ecosystem is
independent of initial sizes of infected prey and infected predator whenever R∗

0 < 1.
This result is demonstrated in Figure 3.2(a) for infected prey and Figure 3.2(b) for
infected predator population, where every solution trajectory converges to the disease-free
equilibrium.

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9

10

Time

In
fe

c
te

d
 P

re
y

(a)

0 5 10 15
0

5

10

15

20

25

Time

In
fe

c
te

d
 P

re
d
a
to

r

(b)

Fig. 3.2. Convergence of solution trajectories of prey-predator model to the disease-free equilibrium point E2 at
different initial sizes. The parameter values used are: mu1 = 0.8, r = 3, β1 = 0.4, P1 = 1.0, γ = 0.35, P2 =
0.2, P3 = 1.0, µ2 = 0.85, k = 30, β2 = 0.3, C1 = 0.25, C2 = 0.25, C3 = 0.15, so that R∗

0 = 0.6565 < 1.

Copyright © 2021 ASSA. Adv Syst Sci Appl (2021)



STABILITY ANALYSIS AND OPTIMAL MEASURE 93

3.2.4. Stability of E3

Evaluating the Jacobian matrix (2.1) at predator-free equilibriumE3 leads to the characteristic
equation |J(E3)− λI5| = 0. Thus, the following eigenvalues are obtained:

λ1 = −µ1 λ2 = −µ2,

λ3 =
C1P1

β1
(µ1 + γ)− C2P2

β1
(m2 + µ2),

λ4 = −r
2

(
µ1 + γ

kβ1

)
+

1

2

√
r2
(
µ1 + γ

kβ1

)2

+ 4m2(µ1 + γ),

λ5 = −r
2

(
µ1 + γ

kβ1

)
− 1

2

√
r2
(
µ1 + γ

kβ1

)2

+ 4m2(µ1 + γ),

where m2 = r
(

1− µ1+γ
kβ1

)
− µ1. The stability of E3 is theorized as follows

Theorem 3.6:
The predator-free equilibrium point E3 of the prey-predator model (2.1), given by (3.10), is
stable if the following conditions hold

C1P1(µ1 + γ) < C2P2(m2 + µ2) and

√
r2
(
µ1 + γ

kβ1

)2

+ 4m2(µ1 + γ) < r

(
µ1 + γ

kβ1

)
.

This result implies that stable E3 will not be able to support the coexistence of both prey
and predator populations. The presence of few species around the predator-free equilibrium
point E3 will make predator population to go extinct in the ecosystem.

3.2.5. Stability of E4

The Jacobian matrix (3.14) is evaluated at the infected prey-free equilibrium point (3.11).
Hence, solving the corresponding characteristic equation |J(E4)− λI5)| = 0 gives one
eigenvalue, λ1 = −µ1, and the remaining four eigenvalues are obtainable from

λ4 +W1λ
3 +W2λ

2 +W3λ+W4 = 0, (3.21)

where
W1 = r − µ1 − P1

µ2

β2
,

W2 = d1d2 − 2µ2(d1 + d2) + µ2 + C1P1d3 − C1P1
µ2

β2

with d1 = r − 2r d3
k
− P1

µ2
β2
− µ1, d2 = β1d3 − P2

µ2
β2
− C1P1P3

d3
β2
− (µ1 + µ2 + γ) and

d3 = k − k
r

(
P1µ2
β2

+ µ2

)
.

W3 = C1P1

[
(d2 − µ2)

µ2

β2
− d3(d2µ2 + d1)

]
− d2µ2(2d1 + µ2)

and

W4 = d2µ
2
2

(
d1 +

P1

β2

)
.
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Applying Routh-Hurwitz’s criterion, the roots of (3.21) will have negative real parts if
W1 > 0, W1W2 > W3, W1W2W3 > W 2

1W4 +W 2
3 . The stability result is hereby theorized

as follows.
Theorem 3.7:
The infected prey-free equilibrium of the prey-predator model (2.1), given by (3.11), is stable
if W1 > 0, W1W2 > W3 and W1W2W3 > W 2

1W4 +W 2
3 .

The implication of Theorem 3.7 is that the presence of few species around the stable
infected prey-free equilibrium E4 will support the coexistence of both prey and predator
populations in the ecosystem.

3.2.6. Stability of E5

Two of the eigenvalues of the Jacobian matrix (3.14) evaluated at the infected predator-free
equilibrium point E5 are given by λ1 = −µ1 and λ2 = −µ2, while the remaining can be
obtained from the characteristic equation

λ3 + e1λ
2 + e2λ+ e3 = 0, (3.22)

where e1 = −(f1 + f2 + f3), with f1 = 2C1P1f̃1 − µ2(1 + C2P2) such that

f̃1 =
C2P2(r − µ1)− P1C2(µ1 + γ)− βµ2

C2P2

(
1
k

+ P1β1
P2

)
− C1P1β1

,

f2 = r − µ2 −
[

2r

k
+

C2P2 + kP1β1(C2 − C1)

k(C2P2 + kP1C2 − C1P1β1)

]
f̃1 − β1

(
µ2 −

C1P1

C2P2

f̃1

)
(1− P1)

f3 = β1f̃1 − P2

[(
C2P2 + kP1β1(C2 − C1)

k(C2P2 + kP1C2 − C1P1β1)

)
f̃1 − β1

(
µ2 −

C1P1

C2P2

f̃1

)]
− (µ1 + γ).

e2 = f1f2 + f3(f1 + f2) + β2
1 f̃1

(
µ2 − C1P1

C2P2
f̃1

)
+ P 2

1
C1

P2
f̃1(f3 + (µ1 + γ)− β1f̃1), e3 =

1
P2

(f3 + (µ1 + γ)− β1f̃1)
[(
µ2 − C1P1

C2P2
f̃1

)
(P2(C2[P1f̃1 − P2]− C1P1))− C1P

2
1 f̃1(f3 + f1f2)

]
.

By Routh-Hurwitz’s criterion, the roots of the characteristic equation (3.22) will have
negative real parts if e1 > 0 and e1e2 > e3. This result is stated as follows.
Theorem 3.8:
The infected predator-free equilibrium point of the prey-predator system (2.1), given by
(3.12), is stable if e1 > 0 and e1e2 > e3.

The result in Theorem 3.8 implies that coexistence of prey and predator species in the
ecosystem is possible in the absence of infected predator, provided that the given parametric
conditions are valid.

3.2.7. Stability of E6

Recall from (3.19) that the basic reproduction number of the full system (2.1) is given by

R∗
0 = max

 β1µ2

C1P1

(
P2

P1
m1 + µ1 + γ

) , β2m1

P1µ2

 .

The following global stability result is explored.
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Theorem 3.9:
The interior equilibrium point E6 of the prey-predator model (2.1) is globally asymptotically
stable if R∗

0 > 1.

Proof
Let R∗

0 > 1, such that the interior equilibrium point E6 exists. Noting from (3.13) that
E6 = (X∗∗

s , X
∗∗
i , X

∗∗
r , Y

∗∗
s , Y ∗∗

i ), then the following Lyapunov function of quadratic type [28]
is defined:

V =
1

2
[(Xs −X∗∗

s ) + (Xi −X∗∗
i ) + (Xr −X∗∗

r ) + (Ys − Y ∗∗
s ) + (Yi − Y ∗∗

i )]2 (3.23)

The time derivative of V in (3.23) along the solution path of the full system (2.1) is given by

V̇ = [(Xs −X∗∗
s ) + (Xi −X∗∗

i ) + (Xr −X∗∗
r ) + (Ys − Y ∗∗

s ) + (Yi − Y ∗∗
i )]

dT

dt
, (3.24)

where T (t) = Xs +Xi +Xr + Ys + Yi. Recall from (2.3) of the boundedness result
(Theorem 2.1) that

dT

dt
≤ rk − µT, and since X∗∗

s +X∗∗
i +X∗∗

r + Y ∗∗
s + Y ∗∗

i =
rk

µ
.

It follows from (3.24) that

V̇ ≤
[
T (t)− rk

µ

]
[rk − µT (t)]

= µ

[
T (t)− rk

µ

] [
rk

µ
− T (t)

]
= −µ

[
T (t)− rk

µ

]2
= −µ[(Xs −X∗∗

s ) + (Xi −X∗∗
i ) + (Xr −X∗∗

r ) + (Ys − Y ∗∗
s ) + (Yi − Y ∗∗

i )]2.

It can be seen that V̇ ≤ 0 with equality if and only if Xs = X∗∗
s , Xi = X∗∗

i , Xr = X∗∗
r ,

Ys = Y ∗∗
s and Yi = Y ∗∗

i . Hence, by LaSalle’s invariance principle [19], the largest invariant
set in {(Xs, Xi, Xr, Ys, Yi) ∈ R5

+ : V̇ = 0} is the only set {E6}. Thus, the interior equilibrium
point E6 = (X∗∗

s , X
∗∗
i , X

∗∗
r , Y

∗∗
s , Y ∗∗

i ) is globally asymptotically stable. This completes the
proof.

The implication of Theorem 3.9 is that coexistence of prey and predator species in the
ecosystem is possible while disease persists in the population. The presence of disease in
the ecosystem, such that R∗

0 > 1, is independent of initial population sizes of both infected
prey and predator species. This global stability result is depicted in Figure 3.3(a) for infected
prey population and Figure 3.3(b) for infected predator population. The phase portrait which
illustrates the stable coexistence of prey and predator populations is presented in Figure 3.4.

4. OPTIMAL CONTROL MODEL

In order to enhance the coexistence of both prey and predator species in the ecosystem, the
prey-predator model (2.1) is extended by incorporating the following three time-dependent
optimal control functions:
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Fig. 3.3. Convergence of solution trajectories of prey-predator model to the interior equilibrium point E6 at
different initial sizes. The parameter values used are:mu1 = 0.5, r = 11.2, β1 = 0.4, P1 = 1.0, γ = 0.35, P2 =
0.2, P3 = 1.0, µ2 = 0.65, k = 30, β2 = 0.65, C1 = 0.25, C2 = 0.25, C3 = 0.15, so that R∗

0 = 9.7293 > 1.
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Fig. 3.4. Phase portrait of predator against prey showing stable coexistence of both populations around the
interior (positive) equilibrium point.

1. The control function u1(t) ∈ [0, 1], which represents disease prevention measure for
both prey and predator populations.

2. The function u2(t) ∈ [0, 1], which represents treatment control for prey population.
3. The control function u3(t) ∈ [0, 1] representing alternative source of food for predator

survival.

Therefore, the prey-predator model (2.1) becomes a non-autonomous system of ordinary
differential equations of the form:
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dXs

dt
= rXs

(
1− Xs

k

)
− (1− u1(t))β1XsXi − P1XsYs − µ1Xs

dXi

dt
= β1XsXi − P2XiYs − P3XiYi − (µ1 + γ)Xi − u2(t)r0Xi

dXr

dt
= γXi + u2(t)r0Xi − µ1Xr

dYs
dt

= C1P1XsYs + C2P2XiYs − (1− u1(t))β2YsYi − µ2Ys + u3(t)c0Ys

dYi
dt

= (1− u1(t))β2YsYi + C3P3XiYi − µ2Yi,

(4.25)

where r0 and c0 are the rate constants for the optimal controls u2(t) and u3(t), respectively.
Since the goal is to reduce the risk of both prey and predator species going extinct, such that
the populations of infected prey and predator are minimized at minimum costs possible, then
the following objective functional is formed

J =

∫ tf

0

(
A1Xi + A2Yi +

1

2
[B1u

2
1 +B2u

2
2 +B3u

2
3]

)
dt, (4.26)

where A1, A2, B1, B2 and B3 are the positive weight constants for balancing the terms in the
objective functional over the time interval [0, tf ]. Further, the cost function associated with
the disease prevention measure for prey and predator populations is represented by the term
1/2B1u

2
1, while the treatment measure for prey population and the provision of alternative

food source for predator are, respectively, represented by the terms 1/2B2u
2
2 and 1/2B3u

2
3.

The objective functional is made of nonlinear cost on controls of quadratic type in line with
the standards for optimal control problems (see, e.g. [1, 4, 14, 16, 24, 25]).

Therefore, the optimal control problem for the prey-predator system (4.25) is to seek a
control triple u∗ = (u∗1, u

∗
2, u

∗
3, ), such that

J(u∗) = min {J(u1, u2, u3) : u1, u2, u3 ∈ U} , (4.27)

where U = {ui(t) : 0 ≤ ui(t) ≤ 1,Lebesgue measurable, t ∈ [0, tf ], for i = 1, 2, 3} is a non-
empty set of all admissible controls.

4.1. Analysis of the control model
The necessary conditions that must be satisfied by the optimal control triple u∗ for the
minimization problem are derivable from Pontryagin’s Maximum Principle [26]. This
principle converts the problem in (4.27) with (4.26) subject to the state system (4.25) into a
problem of minimizing pointwise a Hamiltonian H, with respect to u1(t), u2(t) and u3(t).
Thus, the Hamiltonian for the control problem is given by
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H = A1Xi + A2Yi + 1
2
[B1u

2
1 +B2u

2
2 +B3u

2
3]

+η1

[
rXs

(
1− Xs

k

)
− (1− u2(t))β1XsXi − P1XsYs − µ1Xs

]
+η2 [β1XsXi − P2XiYs − P3XiYi − (µ1 + γ)Xi − u2(t)r0Xi]

+η3[γXi + u2(t)r0Xi − µ1Xr]

+η4[C1P1XsYs + C2P2XiYs − (1− u1(t))β2YsYi − µ2Ys + u3(t)c0Ys]

+η5[(1− u1(t))β2YsYi + C3P3XiYi − µ2Yi],

(4.28)

where η1, η2, η3, η4 and η5 are the adjoint or co-state variables corresponding to the state
variables Xs, Xi, Xr, YS and Yi, respectively. Applying the existence results as given in
[2, 12], the following result is obtained.
Theorem 4.1:
For the optimal control triple u∗ that minimizes the objective functional (4.26) over U subject
to (4.25), there exist adjoint variables η1, η2, η3, η4 and η5 satisfying the system governing
the adjoint variables

dη1
dt

= 2rXs

k
η1 + (1− u1)β1Xi(η1 − η2) + P1Ys(η1 − C1η4) + (µ1 − r)η1

dη2
dt

= (1− u1)β1Xs(η1 − η2) + P2Ys(η2 − C2η4) + P3Yi(η2 − C3η5)
+(γ + u2r0)(η2 − η3) + µ1η2 − A1

dη3
dt

= µ1η3

dη4
dt

= P1Xs(η1 − C1η4) + P2Xi(η2 − C2η4) + (1− u1)β2Yi(η4 − η5)
+(µ2 − u3c0)η4

dη5
dt

= P3Xi(η2 − C3η5) + (1− µ1)β2Ys(η4 − η5) + µ2η5 − A2

(4.29)

and with the transversality conditions

η1(tf ) = η2(tf ) = η3(tf ) = η4(tf ) = η5(tf ) = 0. (4.30)

Moreover, the optimal control triple (u∗1, u
∗
2, u

∗
3) is characterized as follows

u∗1 = max
{

0,min
{

1, 1
B1

[β1XsXi(η2 − η1) + β2YsYi(η5 − η4)]
}}

,

u∗2 = max
{

0,min
{

1, 1
B2

[r0Xi(η2 − η3)]
}}

,

u∗3 = max
{

0,min
{

1, −c0Ysη4
B3

}}
.

(4.31)

Proof
The system (4.29) governing the adjoint variables is obtained by finding the partial derivative
of the Hamiltonian H (4.28) as follows:

dη1
dt

= − ∂H
∂Xs

, dη2
dt

= − ∂H
∂Xi

, dη3
dt

= − ∂H
∂Xr

, dη4
dt

= − ∂H
∂Ys
, dη5

dt
= − ∂H

∂Yi
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with the transversality conditions:

η1(tf ) = η2(tf ) = η3(tf ) = η4(tf ) = η5(tf ) = 0.

Finally, differentiating the Hamiltonian H partially with respect to each of the three
controls u1, u2 and u3, so that

∂H

∂u1
≡ B1u1 + β1XsXi(η1 − η2) + β2YsYi(η4 − η5) = 0,

∂H

∂u2
≡ B2u2 + r0Xi(η3 − η2) = 0,

∂H

∂u3
≡ B3u3 + c0Ysη4 = 0,

which when solved on the interior of the control set U gives the required characterization
(4.31). Hence, the proof.

4.2. Simulations of the control model
Here, the numerical simulations of the coupled system of state equations (4.25) with adjoint
equations (4.29) are conducted. The standard iterative fourth order forward-backward Runge-
Kutta method is used to solve the optimality system due to difference in time orientations of
the state and adjoint equations [18, 23]. The optimal control problem is simulated over the
time interval [0, 15] in years using these parameter values: µ1 = 0.5, r = 11.2, β1 = 0.4,
P1 = 1.0, γ = 0.35, P2 = 0.2, P3 = 1.0, µ2 = 0.65, k = 30, β2 = 0.65, C1 = 0.25, C2 =
0.25, C3 = 0.15. In addition, the balancing weight constants are given as A1 = 1, A2 = 0.1,
B1 = 0.01, B2 = 0.0001 and B3 = 0.008. The rate constants for the controls are chosen as
r0 = 0.4 and c0 = 0.15.

Thus, to minimize the objective functional (4.26) with disease prevention control only
at low cost of implementation, the control u1 should be maintained at maximum (100%)
effort for 8 years before being dropped to zero in final time as shown in the Figure 4.5(a).
The control profile shown in Figure 4.5(b) indicates that single implementation of treatment
control u2 requires maximum (100%) effort throughout the period of the control intervention.
It is observed in Figure 4.5(c) that alternative food source control u3 should be at the upper
bound for 14 years before coming to the lower bound. The combined implementation of the
three controls for minimizing the objective functional is depicted in Figure 4.5(d), where it
is can be observed that prevention control u1 should be maintained at the upper bound for 8
years before declining to the lower bound, treatment control u2 and provision of alternative
food source u3 should be maintained at maximum (100%) for about 2 years and almost 1
year, respectively.

The effects of combining all the three optimal controls on the dynamical behaviors of prey
and predator populations are illustrated in Figure 4.6. The size of susceptible prey population
with control reduces due to predation when compared with the size without control, but the
population does not go extinct due to the presence of the combined optimal control as shown
in Figure 4.6(a). This suggests the possibility of stable coexistence of predators with low
density of prey population as indicated in [27]. The infected prey population with optimal
control (Figure 4.6(b)) decreases sharply when compared with the case without control.
Further, in Figure 4.6(c), it can be seen that the size of susceptible predator population with
combined optimal control is higher than the size without control. Whereas, the presence of
the combined optimal control reduces the population size of the infected predator in the
ecosystem.
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Fig. 4.5. Control profiles for single and combined implementations of u1, u2 and u3.

5. CONCLUSION

A nonlinear mathematical model of prey-predator interacting populations in an ecological
system with disease spread is studied. The five-dimensional eco-epidemiological model is
analyzed with a view to providing insights into the behavior of ecosystem in the presence
of disease. Seven possible equilibrium points, namely trivial, axial, disease-free, predator-
free, infected prey-free, infected predator-free and interior equilibrium points are analytically
determined. Asymptotic stability of the eco-epidemiological system is analyzed to investigate
the behavior of the system around each of the obtained equilibrium points. Some conditions
that guarantee the existence of each prey and predator species, as well as coexistence of both
prey and predator populations are given using local linearization and Lyapunov functions
techniques.

In addition, the eco-epidemiological model is extended to include three time-dependent
optimal controls, such as disease prevention in both species, treatment strategy for prey and
provision of alternative food source for predator survival. Hence, the optimal control prey-
predator model is analyzed using Pontryagin’s maximum principle in order to enhance the
coexistence of both prey and predator species by reducing the risks of their extinction in the
ecosystem, such that the populations of infected prey and predator species are minimized at
minimum costs possible.
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Fig. 4.6. Combined effects of optimal controls u1, u2 and u3 on the dynamics of the prey-predator model.

The analysis of the eco-epidemiological model presented in this study can be applied to a
wide spectrum of interactions between different kinds of living beings in the environment.
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